第九章不等式与不等式组参考解析
乌鲁木齐七十中七年级数学下册第九章【不等式与不等式组】习题(含答案解析)

一、选择题1.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >- 4.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-5.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .7.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D .8.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-9.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >-B .2m >C .3m >D .2m <-10.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 11.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x > B .若x y >,则22x y -<- C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题12.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足不等式2x+y>8,则m 的值是_____.13.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.14.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____.15.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________.16.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.17.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -. (1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.18.若关于x 、y 的二元一次方程组23242x y ax y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.19.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.20.点()1,2P x x -+不可能在第__________象限. 21.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________三、解答题22.解关于x 的不等式组:231123x x x x <+⎧⎪⎨<+⎪⎩23.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来. 24.解不等式组并将不等式组的解集表示在数轴上.(1)1223(2)4x x x ⎧-≤⎪⎨⎪<-+⎩ (2)1232(2)3(1)1x x x x ⎧>-⎪⎨⎪-≤--⎩25.解下列不等式(组)(1)221 43x x+-≥(2)273125x xx+>-⎧⎪-⎨≥⎪⎩一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( )A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-42.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解4.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .5.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-6.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >- B .2m >C .3m >D .2m <-7.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .8.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤9.在数轴上,点AA 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .1010.已知关于x 的方程:24263a x xx --=-的解是非正整数,则符合条件的所有整数a 的值有( )种. A .3B .2C .1D .011.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.14.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.15.“x 的4倍与1的差不大于3”用不等式表示为 ________________ . 16.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 17.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶. 18.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.19.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.20.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.21.不等式组12153114xx -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.三、解答题22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x-<-⎧⎪⎨-≥-⎪⎩ 23.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 25.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.已知关于x 的不等式组15x ax b-≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( )A .6B .8C .10D .123.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( )A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-44.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-6.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .7.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.8.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( )A .B .C .D .9.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4x7天后,小圆背诵的诗词最多为( ) A .10首B .11首C .12首D .13首10.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤11.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( ) A .20人B .19人C .11人或13人D .19人或20人二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.13.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.14.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________. 15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.16.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.17.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________. 18.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________. 19.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____20.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.21.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______ 三、解答题22.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩23.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.24.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 25.某物流公司在疫情期间,要将300吨防疫物资运往某地,现有A 、B 两种型号的汽车可供调用.已知A 型汽车每辆比B 型车可多装5吨.6辆A 型车与2辆B 型车刚好能装完150吨物资.要求在每辆车不超载的条件下,把300吨防疫物资装运完.(1)求A 型车、B 型车各能装多少吨物资?(2)若确定调用5辆A 型车,则至少还需调用B 型车多少辆?。
第九章 不等式与不等式组(提升评测)(解析版)

第九章 不等式与不等式组【提升评测】一、单选题1.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】 111x x -<⎧⎨-⎩①②由不等式①组得,x<2①不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a①1B .a≤2C .1①a≤2D .1≤a≤2【答案】C【解析】①x=2是不等式(x−5)(ax−3a+2)①0的解,①(2−5)(2a−3a+2)①0,解得:a①2①①x=1不是这个不等式的解,①(1−5)(a−3a+2)>0,解得:a>1①①1<a①2①故选C.3.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤8 【答案】C【解析】①不等式组有解, ①m①5①故选C①①方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.已知关于不等式2<(1-a )x 的解集为x <21a -,则a 的取值范围是( ) A .1a >B .0a >C .0a <D .1a < 【答案】A【解析】由题意可得1−a<0①移项得−a<−1①化系数为1得a>1①故选A①5.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是( )A .1<x≤11B .7<x≤8C .8<x≤9D .7<x <8 【答案】B【详解】解:已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x千米,从而根据题意列出不等式2.43)7192.4(3)719 2.4xx-+≤⎧⎨-+-⎩(>,从而得出7<x≤8.故选B.【点睛】此题主要考查了不等式组应用,解题关键是理解不足1千米按1千米计这句话的含义.6.对于不等式组1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1①2①3B.此不等式组的解集为7 16x-<≤C.此不等式组有5个整数解D.此不等式组无解【答案】A【解析】解:1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩①②,解①得x≤72,解①得x①①1,所以不等式组的解集为﹣1①x≤72,所以不等式组的整数解为1①2①3①故选A①点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.7.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8【答案】C【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.8.若不等式2463x a x -≥+ 的解集是x≤-4,则a 的值是( ) A .34B .22C .-3D .0【答案】B【解析】 解不等式2463x a x -≥+得:x≤1810a -- ① 又不等式的解集为x≤-4,所以:1810a --= - 4,所以x=22;故选B. 9.已知关于x 的不等式(1)2a x ->的解集为21x a <-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a < 【答案】B【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a <0,所以可解得a 的取值范围.【详解】①不等式(1-a )x >2的解集为21x a<-, 又①不等号方向改变了,①1-a <0,①a >1;故选:B .【点睛】此题考查解一元一次不等式,解题关键在于掌握在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )A .2332a B .4332a C .4332a < D .4332a < 【答案】B【分析】 根据题意先求出不等式组的解集,因为不等式组有3个整数解,进而可以逆推出a 的取值范围.【详解】解:①230320a x a x +>⎧⎨-≥⎩, ①解得不等式组的解集为:2332a x a -<≤, ①不等式组恰有3个整数解,必定有整数解0,且3|||2|23a a ->, ①三个整数解不可能是-2,-1,0,若三个整数解为-1,0,1,则不等式组22133122⎧⎪⎪⎨⎪⎪-≤-≤⎩-a <a <无解,若三个整数解为0,1,2,则有不等式组22323310a a ⎧⎪⎪⎨⎪⎪≤-≤-⎩<<解得4332a ≤≤. ①a 的取值范围是4332a ≤≤. 故选:B.【点睛】本题考查不等式组的解法及整数解的确定.掌握求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.且解答本题要根据整数解的取值情况分情况进行讨论.11.关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<≤- B .11542a -≤<- C .11542a -≤≤- D .11542a -<<- 【答案】B【分析】解不等式组求出不等式组的解集,再根据解集求a 的取值范围【详解】解238x x <-得:8x >,解24x a ->得:24x a <-,①不等式组的解集是:824x a <<-,①不等式组有四个整数解,即:9、10、11、12,①24122413a a ->⎧⎨-≤⎩解2412a ->得:52a <-解2413a -≤得:114a ≥- ①解集为:11542a -≤<- 故选:B【点睛】本题考查的是一元一次不等式组的解法,正确解出不等式组的解集,确定a 的范围,是解决本题的关键. 12.关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4-【答案】A【解析】【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值.【详解】解:解不等式22x a -+≥,得22a x- ,①由数轴得到解集为x≤-1, ①212a -=- ,解得:a=0. 故选:A.【点睛】 本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.13.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥1【答案】B【解析】【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x 的取值正好在不等式组的解集之外,从而求出a 的取值范围.【详解】 解:原不等式组可化为22023x a x x-+≤⎧⎨+⎩> 即1x x a ≥⎧⎨⎩,<故要使不等式组无解,则a≤1.故选B .【点睛】 本题考查解不等式组,解题关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.14.若不等式组x 24255x x a -⎧+>-⎪⎨⎪>⎩的解集为空集,则a 的取值范围是( )A .a >3B .a≥3C .a <3D .a≤3【答案】B【解析】【分析】根据不等式组的解集为空集时的条件列出不等式,即可求出a 的取值范围.【详解】24255x x x a -⎧-⎪⎨⎪⎩+>①>②, 由①得:x <3,①不等式组24255x x x a +>>-⎧-⎪⎨⎪⎩的解集为空集,①a 的取值范围是:a ≥3;①①B.【点睛】①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①.15.若方程组32223x y k y x +=⎧⎨-=⎩的解满足x <1,且y >1,则整数k 的个数是( ) A .4B .3C .2D .1【答案】A【解析】【分析】本题可运用加减消元法①将x ①y 用含k 的代数式表示①然后根据x ①1①y ①1得出k 的范围①再根据k 为整数可得出k 的值①【详解】 32223x y k y x +=⎧⎨-=⎩①②①①①①①得①4x =2k ①3①①x 234k -=① ①x ①1①①234k -<1①解得①k 72<① 将x 234k -=代入①①得①2y 234k --=3①①y 298k +=①①y①1①①298k+>1①解得①k12->①①1722k-<<①①k为整数①①k可取0①1①2①3①①k的个数为4个①故选A①【点睛】本题考查了二元一次方程和不等式的综合问题①通过把x①y的值用k的代数式表示①再根据x①y的取值判断k的值①16.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<【答案】A【解析】【分析】求出两个关于x的不等式的解集,再根据不等式组恰有3个整数解,即可得a的范围.【详解】解不等式x①2①x①a),得:x①2a,解不等式x①123≤x,得:x≤3①①不等式组恰有3个整数解,①0≤2a①1,解得:0≤a12<①故选A①【点睛】本题考查了不等式组的整数解,求出两个不等式的解集,根据不等式组的解集确定a的范围是关键.二、填空题17.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________①【答案】0【详解】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x ≥-, 解不等式①得:50x ≤,①不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为0.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.18.关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______【答案】6≤a <9.【分析】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a 的取值范围,求出a 的取值范围. 【详解】原不等式解得x≤3a , ①解集中只有两个正整数解,则这两个正整数解是1,2, ①2≤3a <3, 解得6≤a <9.故答案为6≤a <9.【点睛】本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.19.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为________.【答案】41或42【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【详解】由题意可得m=3n+80,0<m -5(n -1)<5,解得40<n<42.5,因为n为整数,所以n值为41或42,故答案为:41或42.【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组.20.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元.要使总收入不低于15.6万元,则最多只能安排_______人种茄子.【答案】4【分析】设安排x人种茄子,则由题意知:0.5×3x+0.8×2(10-x)≥15.6,解不等式即可.【详解】设安排x人种茄子,则种辣椒的人数为10−x.由每人可种茄子3亩或辣椒2亩可得:茄子有3x亩, 辣椒有2(10−x)亩.由茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元得:0.5×3x+0.8×2(10−x)①15.6,解得x①4.故最多只能安排4人种茄子故答案为:4.【点睛】此题考查一元一次不等式的应用,解题关键在于掌握运算法则列出方程三、解答题21.解不等式组20 {5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【答案】﹣1≤x<2.求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x <2,解不等式①,得x≥﹣1,①不等式组的解集是﹣1≤x <2.不等式组的解集在数轴上表示如下:22.解不等式组2151232513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ 并将解集在数轴上表示出来. 【答案】不等式组的解集为:17211x -≤<,在数轴上表示见解析. 【解析】试题分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()21512325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②① 由①得,x①−1711① 由①得,x<2① 故此不等式组的解集为:17 2.11x -≤< 23.已知:关于x ①y 的方程组52,25 4.x y a x y a +=-⎧⎨-=+⎩的解满足0x y >>. ①1)求a 的取值范围;①2)化简8232a a +--.【答案】①1①-14<a<23①①2①11a【分析】 ①1)将a 看作常数解方程组,根据x①y>0得关于a 的不等式组,解不等式组可得a 的取值范围;①2)根据(1)中a 的范围结合绝对值性质去绝对值符号化简即可.【详解】(1①52254x y a x y a +=-⎧⎨-=+⎩① 解方程组得323x a y a =+⎧⎨=-⎩① ①x y 0>>①①a+3>2-3a>0①①-1423① (2)①-1423① ①8a+2>0①3a -2<0① ①8a 23a 2+--=8a+2+3a -2=11a.【点睛】本题考查了二元一次方程组的解①解一元一次不等式组,绝对值的化简等,熟练掌握二元一次方程组的解法、一元一次不等式组的解法是关键.24.解不等式组()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③,请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式①,得 .(3)把不等式①、①和①的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】(1)x≥﹣3、不等式的性质3;(2)x <2;(3)作图见解析;(4)﹣2<x <2.【解析】试题分析:分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集. 试题解析:(1)解不等式①,得x ≥﹣3,依据是:不等式的性质3,故答案为x≥﹣3、不等式的性质3;(2)解不等式①,得x<2,故答案为x<2;(3)把不等式①,①和①的解集在数轴上表示出来,如图所示:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<2,故答案为﹣2<x<2.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式的解集,关键是先求出每个不等式的解集,分别在数轴上表示每一个不等式的解集,然后再确定出不等式组的解集.25.如果点P(x,y)的坐标满足2325, 210. x y m nx y m n+=--⎧⎨-=+-⎩(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.【答案】(1)点P的坐标(m-5,m-n);(2)2≤n<3;(3)-2≤n<-1.【解析】【分析】(1)把m、n当作已知条件,求出x,y的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.【详解】(1)①解方程组2325,210,x y m nx y m n+=--⎧⎨-=+-⎩得5,,x my m n=-⎧⎨=-⎩①点P的坐标(m-5,m-n);(2)①点P在第二象限,且符合要求的整数只有两个,由50,0,mm n-<⎧⎨->⎩得n<m<5,①2≤n<3(3)①点P在第二象限,且符合要求的整数之和为9,由50,0,mm n-<⎧⎨->⎩得n<m<5,①m的整数值为-1,0,1,2,3,4,①-2≤n<-1.【点睛】考查解一元一次不等式组, 二元一次方程组的解, 点的坐标,综合性比较强,熟练掌握一元一次不等式组的解法是解题的关键.26.(1)已知不等式组3()4213x x ba xx--≤⎧⎪+⎨>-⎪⎩的解集为1≤x<2,求a、b的值.(2)已知关于x的不等式组3155x ax a≥-⎧⎨≤-⎩无解,试化简|a+1|﹣|3﹣a|.【答案】(1)a=﹣1,b=2;(2)4.【分析】(1)先解出含参数的不等式的解集,再根据已知的解集求出a、b的值;(2)根据不等式无解得a﹣3>15﹣5a,即可求出a的取值,再根据绝对值的运算法则进行化简.【详解】(1)由①,得x≥32b﹣2,由①,得x<3+a,所以不等式组的解集为32b﹣2≤x<3+a,因为已知不等式组的解集委1≤x<2,所以32b﹣2=1,3+a=2,所以a=﹣1,b=2.(2)①关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解, ①a ﹣3>15﹣5a①a >3, 原式=a +1﹣(a ﹣3)=4.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式的解法.27.随着某市教育改革的不断深入,素质教育的全面推进,中学生利用假期参加社会实践的调查越来越多,一位同学在A 公司实习调查时,计划部给了他一份实习作业;在下述条件下,规划下个月的产量,若公司生产部有工人200名,每个工人的月劳动时间不超过196h ,每个工人生产一件产品需用2h ;本月将剩余原料60吨,下个月准备购进300吨,每件产品需原料20kg ;经市场调查,预计下个月市场对这种产品的需求量不少于16000件,公司准备充分保证市场要求,你能和这位同学一同规划出下个月的产量范围吗?(设下个月产量为x 件)【答案】下个月的产量不少于16000件,不高于18000件.【解析】【分析】此题关键在于分析包含题意的三个不等关系:(1)产品件数大于等于16000;(2)生产x 件产品所用时间不超过200个工人劳动时间;(3)生产x 件产品所用原料不超过360t ;从而建立不等式组.【详解】解:设下个月产量为x 件,依题意可得:()21962002060300100016000x x x ≤⨯⎧⎪≤+⨯⎨⎪≥⎩解得:16000≤x≤18000,即下个月的产量不少于16000件,不高于18000件.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解,解题关键是找出包含题意的三个不等关系.28.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.①1)求甲、乙两种内存卡每个各多少元?①2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?①3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【解析】【分析】(1)设甲内存卡每个x 元,乙内存卡每个y 元,依据“买2个甲内存卡和1个乙内存卡共用了90元,买了3个甲内存卡和2个乙内存卡用了160元”列出方程组并解答;(2)设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10-a )个,根据关系式列出一元一次不等式方程组.求解再比较两种方案.(3)设老板一上午卖了c 个甲内存卡,d 个乙内存卡,根据“甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元”列出方程组,并解答.【详解】①1)解:设甲内存卡每个x 元,乙内存卡每个y 元,则29032160x y x y +⎧⎨+⎩=,=① 解得2050x y ⎧⎨⎩== ① 答:甲内存卡每个20元,乙内存卡每个50元①2)解:设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10①a①个,则()()205010300205010350a a a a ⎧+-≥⎪⎨+-≤⎪⎩, 解得5≤a≤623① 根据题意,a 的值应为整数,所以a=5或a=6①方案一:当a=5时,购买费用为20×5+50×①10①5①=350元;方案二:当a=6时,购买费用为20×6+50×①10①6①=320元;①350①320①购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低①3)解:设老板一上午卖了c 个甲内存卡,d 个乙内存卡,则10c+15d=100①整理,得2c+3d=20①①c①d 都是正整数,①当c=10时,d=0①当c=7时,d=2①当c=4时,d=4①当c=1时,d=6①综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【点睛】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.29.自学下面材料后,解答问题 分母中含有未知数的不等式叫做分式不等式,如:201x x ->+;2301x x -<-等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:()1若0a >,0b >,则0a b >;若0a <,0b <,则0a b> ()2若0a >,0b <,则0a b <;若0a <,0b >,则0a b < 反之:()1若0a b >,则{00a b >>或{00a b << ()2若0a b<,则______或______. 根据上述规律 ()1求不等式201x x -<+的解集. ()2直接写出一个解集为3x >或1x <的最简分式不等式.【答案】(2){00a b ><,{00a b <>;(1)12x -<<;(2)30(1x x -->不唯一). 【分析】根据有理数除法法则①两数相除①同号得正①异号得负①解决问题.【详解】(2①①两数相除①同号得正①异号得负①a b<0① ①00a b ⎧⎨⎩><或 00a b ⎧⎨⎩<>① 故答案为0000a ab b ⎧⎧⎨⎨⎩⎩><,<>① ①1)由题意得①2010x x -⎧⎨+⎩><或 2010x x -⎧⎨+⎩<>① 第一个不等式组无解①第二个的解集为﹣1<x <2①则原分式不等式的解集为﹣1<x <2① ①2①①解集为x >3或x <1①①31x x -->0(不唯一). 【点睛】本题主要考查了利用理数除法法则解决分母中含有未知数的不等式.30.已知方程组3,31x y a x y a +=+⎧⎨-=-⎩的解是一对正数.(1)求a 的取值范围;(2)化简:21a ++2a. 【答案】(1)-12<a <2(2)a +3 【分析】(1)解含有字母参数a 的方程组,然后根据解是一对正数得到不等式,解不等式即可; (2)根据(1)中a 的取值范围,判断出2a+1和a -2的符号,再根据绝对值的意义求解即可.【详解】 (1)解方程组,得21,2.x a y a =+⎧⎨=-+⎩由题意,得210,20.a a +>⎧⎨-+>⎩解得-12<a <2. (2)由(1),得2-a >0,所以21a ++2a=2a +1+2-a =a +3.。
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
江西赣州市七年级数学下册第九章【不等式与不等式组】经典测试卷(答案解析)

一、选择题 1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .4.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <25.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --6.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .7.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n=;③每天最多背诵8首,最少背诵2首,7天后,小圆背诵的诗词最多为()A.10首B.11首C.12首D.13首8.若关于x的不等式组132(2)x ax x≥-⎧⎨≤+⎩仅有四个整数解,则a的取值范围是()A.12a≤≤B.12a≤<C.12a<≤D.12a<<9.下列命题是假命题的是().A.两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B.在实数7.5-,π-,2中,有3个有理数,2个无理数C.在平面直角坐标系中,点(21,7)P a a-+在x轴上,则点P的坐标为(7,0)-D.不等式组513(1)131722x xx x->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为710.若01x<<,则下列选项正确的是()A.21x xx<<B.21x xx<<C.21x xx<<D.21x xx<<11.如果a>b,那么下列不等式不成立...的是()A.0a b->B.33a b->-C.1133a b>D.33a b->-二、填空题12.对于实数x,我们规定[]x表示不大于x的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.14.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 15.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 16.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________. 17.不等式组210360x x ->⎧⎨-<⎩的解集为_______.18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.已知a 2a <+<a 的值为____________.20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m.23.解关于x的不等式组:2311 23x xx x<+⎧⎪⎨<+⎪⎩24.为更好地推进长沙市生活垃圾分类工作,改善城市生态环境,2019年12月17日,长沙市政府召开了长沙市生活垃圾分类推进会,意味着长沙垃圾分类战役的全面打响.某小区准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱分别是多少元?(2)若该小区物业计划用低于2150元的资金购买A、B两种型号的垃圾箱共20个,且至少购买6个B型垃圾箱,请问有几种购买方案?25.回答下列小题:(1)解不等式:2111 26x x-+-≤.(2)解不等式组:1132(1)4 xxx+⎧-≤⎪⎨⎪->-⎩.一、选择题1.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥2.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( ) A . B . C .D .3.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-b D .若a<b ,则-2a>-2b.4.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个5.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --7.如果a 、b 表示两个负数,且a b >,则( ) A .1a b> B .1b a> C .11a b> D .1ab <8.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-9.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D .10.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( ) A .20人B .19人C .11人或13人D .19人或20人11.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>二、填空题12.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abca b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号).13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________.15.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__.16.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.17.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________. 18.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.19.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.解不等式(或组): (1)2934x x++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩23.解下列不等式组: (1)3(1)51124x x x x -<+⎧⎨-≥-⎩(2)3(2)421152x x x x --≥⎧⎪-+⎨>⎪⎩24.某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少? 25.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x xx +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( ) A .1B .125C .6或125D .62.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc > D .若||||a b c c >,则a b > 3.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >- 4.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a5.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( ) A . B . C .D .6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .7.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数答错题数得分A20 0 100 B18 2 88 C14 6 64 D15 5 70 E91134下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数9.若a >b ,则下列式子正确的是( ) A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b10.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a-11.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤二、填空题12.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__. 13.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 14.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________. 15.点()1,2P x x -+不可能在第__________象限. 16.若不等式a x cx c b+>⎧⎨≥-⎩的解为x≥-b+c ,则a ,b 的大小关系一定满足:a___b .17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________. 18.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________. 19.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.20.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____. 三、解答题22.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .23.某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x -+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x x x x +>⎧⎪+-⎨-≥⎪⎩. 25.解下列不等式:(1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩。
2021年七年级数学下册第九单元《不等式与不等式组》经典习题(答案解析)

一、选择题1.若a b >,则下列结论不一定成立的是( )A .a c b c ->-B .22ac ab >C .c a c b -<-D .a c b c +>+ B 解析:B【分析】根据不等式的性质逐一分析四个选项的正误即可得出结论.【详解】解:A 、∵a >b ,∴a-c >b-c ,选项A 成立;B 、22ac ab >不一定成立;C 、∵a >b ,∴a b -<-∴c a c b -<-,选项C 成立;D 、∵a >b ,∴a c b c +>+,选项D 成立.故选:B .【点睛】本题考查了不等式的性质,牢记不等式的性质是解题的关键.2.已知实数a 、b ,下列命题结论正确的是( )A .若a b >,则 22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若33a b >,则22a b > B解析:B【分析】用特殊值举反例逐一判断即可.【详解】解:A 、当a=1,b=-2时,则2211,(2)4=-=, 221(2)<-,所以若a b >,则 22a b >不一定成立,故A 选项错误;B 、若a b >,则22a b >,故B 正确;C 、当a=1,b=-3时,则2211,(3)9=-=, 221(3)<-,所以若a b >,则22a b >不一定成立,故C 选项错误;D 、当a=1,b=-3时,则满足33a b >,但22a b <,所以若33a b >,则22a b >不一定成立,故D 选项错误.故选B .【点睛】本题考查了不等式的性质,掌握不等式的性质是解题的关键.3.不等式-3<a≤1的解集在数轴上表示正确的是()A.B.C.D. A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.4.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D. A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.不等式组64325xx x-<⎧⎨≥+⎩的解集是()A.x≥5B.x≤5C.x>3 D.无解A 解析:A【分析】先分别求出每个不等式的解集,然后再确定不等式组的解集即可.【详解】解:643 25xx x-<⎧⎨≥+⎩,解不等式①得:x>34,解不等式②得:x ≥5,所以不等式组的解集是x ≥5,故答案为A .【点睛】本题考查了解不等式组,正确求解每一个不等式和确定不等式组的解集是解答本题的关键.6.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D . B解析:B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】 111x x -<⎧⎨-⎩①② 由不等式①组得,x<2∴不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为,故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 7.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D . C解析:C【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”取解集,即可得到答案.【详解】解:3213232 51223x xx x++⎧≤+⎪⎨⎪->-⎩①②,解不等式①得:2x≥-;解不等式②得:3x>;将解集在数轴上表示为:,故选:C.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.8.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-2D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故选:D.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.9.若关于x的一元一次方程x−m+2=0的解是负数,则m的取值范围是A.m≥2B.m>2 C.m<2 D.m≤2C解析:C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.10.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤B .12a ≤<C .12a <≤D .12a << C 解析:C【分析】先解含参的不等式组,根据不等式组仅有四个整数解得到关于a 的不等式组,求解即可.【详解】解:132(2)x a x x ≥-⎧⎨≤+⎩①②, 解不等式①,得1x a ≥-,解不等式②,得:4x ≤,∵不等式组仅有四个整数解,∴011a <-≤,解得12a <≤,故选:C .【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.二、填空题11.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.296【分析】可设A 单价x 元B 单价y 元由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2可得xy 的关系式再由A 与C 单价差大于25元可得一元一次不等式根据各单价是低于50元解析:296【分析】可设A 单价x 元,B 单价y 元,由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2,可得x 、y 的关系式,再由A 与C 单价差大于25元,可得一元一次不等式,根据各单价是低于50元/千克的整数求出符合题意的解即可【详解】解:设A 单价x 元,B 单价y 元三类糖果单价和为108元得C 单价为(108-x-y )元又一班和二班购买糖果的总金额比值为3∶2可得:325(108)324(108)2x y x y x y x y ++--=++-- 整理可得:2x+3y=216①又A 与C 单价差大于25元,即x-(108-x-y )>25整理可得:2x+y>133,将①中的2x 代入可得:y<41.5又A 、B 、C 三类糖果单价是低于50元/千克的整数,故:若y=41,代入①得x=46.5,不符合题意若y=40,代入①得x=48,符合题意若y=39,代入①得x=49.5,不符合题意若y=38,代入①得x=51,不符合题意y 越小,x 越大,故后面x 的结果均大于50,不符合题意故x=48,y=40,108-x-y=20由上可知:A 类糖果的单价是48元B 类糖果的单价是40元C 类糖果的单价是20元故分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为:48×2+40×3+20×4=296(元)故答案为:296【点睛】本题考查一元一次不等式的解法,利用条件建立一元一次不等式并结合题意准确得到A 、B 、C 三类糖果的单价是解本题的关键12.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =;③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c ) 解析:②③⑤【分析】①根据a +b +c =0,且a >b >c 推出a >0,c <0,即可判断;②根据a +b +c =0求出a =-(b +c ),又ax +b +c =0时ax =-(b +c ),方程两边都除以a 即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.13.不等式21302x--的非负整数解共有__个.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.14.不等式组2173112xxx-<⎧⎪⎨+-≥⎪⎩的解集是____.1≤x<4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x<4解不等式②得x≥1所以不等式组的解集为:1≤x<4故答案为:1≤x<4【点睛】此题主要考查了求一元一次不解析:1≤x<4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】解:217?311?2xxx-<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x<4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x<4.故答案为:1≤x<4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.15.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____.﹣2<m <﹣1【分析】根据各象限内坐标符号特征列出不等式组然后解不等式组即可解答【详解】解:∵点P (3m+61+m )在第四象限∴即解得:﹣2<m <﹣1故答案为:﹣2<m <﹣1【点睛】本题考查各象限内解析:﹣2<m <﹣1【分析】根据各象限内坐标符号特征列出不等式组,然后解不等式组即可解答【详解】解:∵点P (3m +6,1+m )在第四象限,∴3601+0m m +>⎧⎨<⎩即21m m >-⎧⎨<-⎩, 解得:﹣2<m <﹣1,故答案为:﹣2<m <﹣1.【点睛】本题考查各象限内坐标符号特征、解一元一次不等式组,记住各象限内点的坐标符号特征是解答的关键.16.不等式12x -<的正整数解是_______________.12【分析】先求出不等式的解集再从不等式的解集中找出适合条件的正整数即可【详解】解:∴∴正整数解为:12故答案为:12【点睛】本题考查了一元一次不等式的整数解属于基础题关键是根据解集求出符合条件的解解析:1,2.【分析】先求出不等式的解集,再从不等式的解集中找出适合条件的正整数即可.【详解】解:12x -<∴3x <∴正整数解为:1,2.故答案为:1,2.【点睛】本题考查了一元一次不等式的整数解,属于基础题,关键是根据解集求出符合条件的解.17.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.18.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 19.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).>【分析】根据不等式的性质求解即可15>0所以不等式两端同时乘15时不改变不等号的方向【详解】∵a >b15>0∴15a >15b ∴15a+c >15b+c 故答案为>【点睛】本题考查了不等式的性质熟记不等解析:>【分析】根据不等式的性质求解即可,15>0,所以不等式两端同时乘15时,不改变不等号的方向.【详解】∵a >b ,15>0∴15a >15b∴15a+c >15b+c故答案为>.【点睛】本题考查了不等式的性质,熟记不等式两端同时乘或除一个负数时,符号改变是本题的关键.20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.解析:13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】 解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.某县举办运动会需购买A ,B 两种奖品,若购买A 种奖品5件和B 种奖品2件,共需80元;若购买A 种奖品3件和B 种奖品3件,共需75元.(1)求A 、B 两种奖品的单价各是多少元?(2)大会组委会计划购买A .B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,并求出自变量m 的取值范围,以及确定最少费用W 的值.解析:(1)A 、B 两种奖品的单价分别是10元、15元;(2)1015(100)W m m =+-,7075m ≤≤,当75m =时,W 有最小值为1125.【分析】(1)设A 种奖品的单价是x 元,B 种奖品的单价是y 元,根据“钱数=A 种奖品单价×数量+B 种奖品单价×数量”可列出关于x 、y 的二元一次方程组,解方程组即可得出结论; (2)设购买A 种奖品m 件,则购买B 种奖品(100m -)件,根据购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再结合数量关系即可得出W 与m 之间的函数关系,根据一次函数的性质既可以解决最值问题.【详解】解:(1)设A 、B 两种奖品的单价分别为x 、y 元则52803375x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩∴A 、B 两种奖品的单价分别是10元、15元.(2)设购买A 种奖品m 件,则B 为(100m -)件由题意得:3(100)1015(100)1150m m m m ≤-⎧⎨+-≤⎩, 解得:7075m ≤≤1015(100)W m m =+-15005m =-∵50-<,∴W 随m 的增加而减少,当75m =时,W 有最小值为1125.【点睛】本题考查了解二元一次方程组、一元一次不等式组以及一次函数的性质,解题的关键是:(1)列出关于x 、y 的二元一次方程组;(2)根据数量关系列出W 关于m 的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、函数关系或不等式组)是关键.23.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.解析:(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.24.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?解析:(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答.【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元.(2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本.【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 25.某社区要进行十九届五中全会会议精神宣讲,需要印刷宣传材料。
人教版数学七年级下册第九章—不等式与不等式组

第九章—不等式与不等式组一、不等式(一)不等式概念及其性质1.概念:用符号“>”(“≥”)或“<”(“≤”)表示大小关系的式子叫做不等式,用“≠”表示不等关系的式子也是不等式。
2.常见的不等号有:“>”、“≥”、“<”、“≤”和“≠”五种。
3.常见的关键词及对应的不等符号:”连接用“最多不高于不超过不大于小于或等于≤⎪⎪⎪⎭⎪⎪⎪⎬⎫”连接用“至少不少于不低于不小于大于或等于≥⎪⎪⎪⎭⎪⎪⎪⎬⎫ 4.常见的符号表示:(1)a 是正数表示为a >0;a 是负数表示为a <0;(2)a 是非负数表示为a ≥0;a 是非正数表示为a ≤0;(3)a 、b 同号表示为ab >0;a 、b 异号表示为ab <0;例题例 1.在下列各式中:①03>-x ;②034>+y x ;③4=x ;④22b ab a ++;⑤7=+y x ;⑥21>-;⑦23+≤-n m ,是不等式的有( )A.1个B.2个C.3个D.4个例2.有下列式子:①01<-;②132>-y x ;③112<-x ;④1+=x y ;⑤0≠x ;⑥12+x 。
其中是不等式的有( )A.2个B.3个C.4个D.5个例3.某种品牌粥,外包装标明:净含量为300±10g ,表明了这粥的净含量x (单位:g )的范围是( )A. 340320<<xB. 340320<≤xC.340320≤<xD.340320≤≤x例4.用不等号“>”、“<”、“≥”或“≤”填空:12+a 0。
例5.用适当的不等式表示下列关系:(1)a 的3倍与b 的51的和不大于3; (2)2x 的非负数;(3)x 的相反数与1的差不小于2;(4)x 与17的和比x 的5倍小。
例6.用不等式表示下列语句中的数量关系:(1)x 与1的和是正数;(2)y 的2倍与1的和大于3;(3)铅球的质量1m 比篮球的质量2m 大;(4)小丽的体重是a kg ,小花的体重是b kg ,她们的体重之和不超过100kg 。
2021年七年级数学下册第九单元《不等式与不等式组》知识点(答案解析)(1)

一、选择题1.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】 解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-,解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.2.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.3.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个B .5个C .6个D .无数个B 解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.4.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > C 解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b>2b,故本选项符合题意;D、∵a>b,且a>0时,∴a2>ab,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.不等式组10,{360xx-≤-<的解集在数轴上表示正确的是()A.B.C.D. D解析:D【解析】试题分析:10{360xx-≤-<①②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.6.如果不等式组5xx m<⎧⎨>⎩有解,那么m的取值范围是()A.m>5 B.m≥5C.m<5 D.m≤8C解析:C【解析】∵不等式组有解,∴m<5.故选C.【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.7.下列不等式中,是一元一次不等式的是()A .2x 10->B .12-<C .3x 2y 1-≤-D .2y 35+> A解析:A【分析】 只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.【详解】A 、是一元一次不等式;B 、不含未知数,不符合定义;C 、含有两个未知数,不符合定义;D 、未知数的次数是2,不符合定义,故选:A.【点睛】此题考查一元一次不等式的定义:只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.8.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7B 解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x ≤2,得:x ≥52, 因为不等式组有解, 所以不等式组的解集为52≤x <m , 因为不等式组的整数解有3个, 所以不等式组的整数解为3、4、5,所以5<m ≤6.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.9.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ B解析:B【分析】根据数轴图像即可求出解集.【详解】根据数轴可知表示的解集为12x -<≤,即数轴上表示的是不等式组12x -<≤的解集故选B .【点睛】本题考查在数轴表示不等式组的解集,解答本题的关键是明确题意,利用数形结合的思想解答.10.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤ D解析:D【分析】 根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.二、填空题11.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.【分析】先将方程组中的两个方程相加化简可得再代入可得一个关于m 的一元一次不等式然后解不等式即可得【详解】两个方程相加得:即由题意得:解得故答案为:【点睛】本题考查了二元一次方程组一元一次不等式熟练掌解析:3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得.【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-,解得3m <,故答案为:3m <.【点睛】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.12.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案【详解】解:不等式组由①得:由②得:x>-7∴不等式组的解集为:故答案为:【点睛】本题考查不等式组的求解掌握求每个不等式解集交集方法是解析:71x -<≤-【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案.【详解】解:不等式组233225x x x -≥⎧⎨+>-⎩①②,由①得: 1x ≤-,由②得:x>-7, ∴不等式组的解集为:71x -<≤-,故答案为:71x -<≤-.【点睛】本题考查不等式组的求解,掌握求每个不等式解集交集方法是解题关键.13.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 14.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限二【分析】根据四个象限的符合特点列出相应的不等式组即可得出结果【详解】解:由题意得解这四组不等式组可知无解因此点N 横坐标为负纵坐标为正不能同时成立即点N 一定不在第二象限故答案为:二【点睛】本题考查平解析:二【分析】根据四个象限的符合特点,列出相应的不等式组,即可得出结果.【详解】解:由题意得,080a a >⎧⎨->⎩,080a a >⎧⎨-<⎩,080a a <⎧⎨->⎩,080a a <⎧⎨-<⎩, 解这四组不等式组可知080a a <⎧⎨->⎩无解, 因此点N 横坐标为负,纵坐标为正,不能同时成立,即点N 一定不在第二象限. 故答案为:二【点睛】本题考查平面直角坐标系中各象限内点的坐标的符合,把符合问题转化为解不等式是解题关键.15.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________.【分析】先求出不等式组中每一个不等式的解集再求出它们的公共部分【详解】解:解①得:x >2解②得:x≥-4所以不等式组的解集是:x >2故答案为:x >2【点睛】本题考查的是一元一次不等式组的解解此类题目解析:2x >【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】 解:21312?2x x ->⎧⎪⎨-≤⎪⎩①② 解①得:x >2,解②得:x≥-4.所以,不等式组的解集是:x >2.故答案为:x >2.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.16.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.0<m≤1【分析】不等式组整理后表示出不等式组的解集由不等式组有3个整数解确定出m 的范围即可【详解】解:不等式组整理得:解得:由不等式组有3个整数解即整数解为123则m 的取值范围是0<m≤1故答案为解析:0<m≤1【分析】不等式组整理后,表示出不等式组的解集,由不等式组有3个整数解,确定出m 的范围即可.【详解】 解:不等式组整理得:72x m x ≥⎧⎪⎨<⎪⎩, 解得:72m x ≤<, 由不等式组有3个整数解,即整数解为1,2,3,则m 的取值范围是0<m≤1.故答案为:0<m≤1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.若a b >0,c b<0,则ac________0.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.18.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ . -2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>,∴13m x ->, 根据图示知,已知不等式的解集是1x >,∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.19.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.解析:13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.解析:2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.23.解下列不等式(组)(1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 解析:(1)x >﹣3;(2)﹣1≤x <2【分析】(1)根据不等式的性质解一元一次不等式解答即可;(2)分别求出每个不等式的解集,再求其解集的公共部分即可解答.【详解】解:(1)移项、合并同类项,得:﹣x <3,化系数为1,得:x >﹣3,∴不等式的解集为x >﹣3;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②, 解①得:x≥﹣1,解②得:x <2,∴不等式组的解集为﹣1≤x <2.【点睛】本题考查不等式的性质、解一元一次不等式(组),熟练掌握一元一次不等式(组)的解法是解答的关键,求解时注意不等号的方向.24.解下列不等式组,并把它的解集表示在数轴上.(1)35318x x +≥⎧⎨-<⎩; (2)()1212235x x x x ⎧+<-⎪⎪⎨+⎪>⎪⎩. 解析:(1)23x ≤<;(2)3x >【分析】(1)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可; (2)分别求出各不等式的解集,在数轴上表示出来即可.【详解】(1)解不等式35x +≥得2x ≥解不等式318x -<得3x <∴不等式的解集为23x ≤<,在数轴上表示如下:(2)解不等式()1212x x +<-得2x >, 解不等式235x x +>得3x >, ∴不等式的解集为3x >,在数轴上表示如下:【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集,解题的关键在熟练掌握不等式组的解法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.解不等式组:23332x x x x >-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.解析:(1)1<x≤3,图见解析【分析】求出不等式组中两个不等式的解集后,再求出两个解集的公共部分并在数轴上表示出来即可.【详解】解:解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为:1<x≤3,并可在数轴上表示如下:【点睛】本题考查不等式组的求解,熟练掌握求不等式解集公共部分的方法是解题关键. 26.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x 的代数式表示该班买票最少应付多少元?解析:(1)()15120x +;()13.5108x +;(2)①660元;②729元;(3)若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【分析】(1)若按个人票购买,则费用为(4×30+15x )元;若按团体票购买,该班师生买票共付费(4×30×0.9+15x ×0.9)元;(2)①把x =36代入计算即可求解,注意团体票x 不足46取46;②把x =42代入计算即可求解,注意团体票x 不足46取46;(3)先计算学生人数为x 时,购团体票比实际票便宜时的人数为x ≥40 35;因此根据此结果分三种情况计算:①若41≤x ≤46时,购团体最少;②若x >46时,按实际打折计算;③若0<x ≤40时,按实际不打折计算.【详解】解:(1)()4301515120x x ⨯+=+元,所以若按个人票购买,该班师生买票共付费()15120x +元;()4300.9150.913.5108x x ⨯⨯+⋅=+元.所以若按团体票购买,该班师生买票共付费()13.5108x +元;故答案为:()15120x +;()13.5108x +;(2)①当按个人票购买时,1536120660⨯+=(元),当按团体票购买时,13.546108729⨯+=(元).所以该班师生买票最少可付费660元;②当按个人票购买时,1542120750⨯+=(元),当按团体票购买时,13.546108729⨯+= (元).所以该班师生买票最少可付费729元;(3)依题意有()4301543046150.9x ⨯+≥⨯+⨯⨯,15609x ≥, 解得3405x ≥, ①若4146x ≤≤时,最好团体购票,则需费用:()43046150.98100.9729⨯+⨯⨯=⨯=(元),②若46x >时,则需费用为:()430150.910813.5x x ⨯+⨯=+(元),③若040x <≤时,则需费用:4301512015x x ⨯+=+(元),答:若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【点睛】本题考查了列代数式,代数式求值以及用一元一次不等式解决问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.27.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x +⎧-<⎪⎨⎪-⎩ 解析:(1)7x =或6x =-;(2)52x;(3)12x -<. 【分析】(1)用直接开平方解方程即可;(2)去括号,去分母,移项合并同类项,系数化为1,即可解;(3)分别解出两个不等式,再找公共部分即可.【详解】解:(1)2(21)1690x --= ∴2(21)169x -=∴2x-1是169的平方根,∴2113x -=±∴2113x -=或2113x -=-,∴214x =或212x =-∴7x =或6x =-.故7x =或6x =-.(2)211143x x +-+ ∴3(21)4(1)12x x +-+ ∴634412x x +-+∴25x ∴52x (3)421223x x x x +⎧-<⎪⎨⎪-⎩①②, ①式化简424x x -<+,∴36x <,∴2x <.②式化简22x -,∴1x -∴12x -<.【点睛】本题考查了利用平方根方程及一元一次不等式(组)的解法,熟悉平方根定义及一元一次不等式的解法步骤是解题关键.28.解下列不等式(组) (1)22143x x +-≥ (2)2731205x x x +>-⎧⎪-⎨≥⎪⎩ 解析:(1)x≤2;(2)2≤x<8;【分析】(1)不等式两边同时乘以12,化简计算即可.(2)分别求解两个不等式的取值,再把取值范围合并.【详解】(1)解:不等式两边同乘以12得:3(x+2)≥4(2x-1);去括号得:3x+6≥8x -4;移项合并同类项得:-5x≥-10;系数化为1得:x≤2;(2)解:解不等式1得:x<8;解不等式2得:x≥2;∴2≤x<8;【点睛】本题考察了不等式以及不等式组的简单运算,属于解不等式(组)的基础运算,注意细心即可.。
最新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)(1)

人教版七年级数学下册单元测试题:第9章 不等式与不等式组一、填空题1. “x 的4倍与2的和是负数”用不等式表示为 .2.若23x m-1-2>19是关于x 的一元一次不等式,则 . 3.不等式4+3x≥x -1的所有负整数解的和为 . 4.若不等式无解,则实数a 的取值范围是 .5.已知关于x ,y 的方程组的解满足不等式x +y >3,则a 的取值范围是 .6.已知关于x 的不等式组有且只有三个整数解,则a 的取值范围是 .二、选择题7.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b8.如图是关于x 的不等式2x -a≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 9.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( )①去分母,得5(x +2)>3(2x -1);②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 10.不等式组的解集表示在数轴上正确的是( )11.对于实数x,我们规定:[x]表示不小于x 的最小整数,例如:[1.4]=2,[4]=4,[-3.2]=-3,若=6,则x 的取值可以是( )A.41B.47C.50D.5812.张老师带领全班学生到植物园参观,门票每张10元,购票时才发现所带的钱不够,售票员告诉他:如果参观人数50人以上( 含50人 )可以按团体票八折优惠,于是张老师购买了50张票,结果发现所带的钱还有剩余.那么张老师和他的学生至少有( ) A.40人 B.41人 C.42人 D.43人 13.已知4<m<5,则关于x 的不等式组的整数解共有( )A.1个B.2个C.3个D.4个14.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些图书有( ) A.23本 B.24本 C.25本 D.26本 15.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A. 60B. 70C. 80D. 9016.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 三、解答题17.解下列不等式和不等式组: (1)2x -13-9x +26≤1;(2)18.已知不等式-1<6的负整数解是方程2x-3=ax 的解,试求出不等式组的解集.19.若不等式组的解集为-2<x<3,求a+b 的值.20.已知二元一次方程组其中x<0,y>0,求a 的取值范围,并把解集在数轴上表示出来.21.小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.22.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?23.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式. 24.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.( 1 )求每辆大客车和每辆小客车的乘客座位数;( 2 )由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.参考答案1.4x+2<02.m=23.-34.a≤-15.a>16.-2<a≤-17-16:CCDCC BBDCB17.解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:解:解不等式①,得x>-2.解不等式②,得x≤4.则不等式组的解集为-2<x≤4.将解集表示在数轴上如下:18.解:∵-1<6,4-5x-2<12,-5x<10,x>-2,∴不等式的负人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章不等式与不等式组参考解析
第1课
一、填空题
1.①3x+8<2y;②a≥b
2.<(点拨:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号方向不变)
3.>(点拨:根据不等式的基本性质,不等式两边同时乘或除以同一个负数,不等号方向改变)
4.1、2、3、4、5 5.≤1
2
(点拨:由题意可列出不等式
4
2
3y
-
≥1)
6.x>1
2
7.x>3(点拨:由题意可得不等式2x-6>0)
第2课
8.
2
3
x≥(点拨:代数式
5
2
3
-
-
x
的值是非正数,所以可得不等式
32
5
x-
≤
-
)
9.m>2(点拨:根据不等式的性质,不等号方向发生改变,所以x的系数小于0)
10.m>-3(点拨:解关于x的方程可得
3
2
m
x
+
=,因为解为正数,所以得到不等式
3
2
m+
>0,解不等式即可)11.3
126 5
x-≥
12.
302400
402400
x
x
≤
⎧
⎨
≥
⎩
,60米-80米/分.(点拨:7点出发,要在7点30分到40分之间到达学
校,意味着小明在30分钟之内的路程不能超过2400米,而40分钟时的路程至少达到2400米.由此可列出不等式组)
13.1<a<4(点拨:根据题意,可得到不等式组
3
2
2
2
2
3
a
a
+
⎧
⎪⎪
⎨
+
⎪
⎪⎩
,解不等式组即可)
14.1<a<7
第3课
15.x <2 16.x <1(点拨:由题意可知,x -1的绝对值等于它的相反数,则x -1<0,所以x <1. 17.21x -<<
18.2
x >ax (点拨:在不等式x a <两边同时乘以负数x ,则不等式的方向改变) 19.x >-1(点拨:由P (1-m ,m )在第二象限可知,1-m <0且m >0,所以m >1) 20.x <19
(点拨:先将x =3代入方程,可解得a =-5,再将a =-5代入不等式解不等式得出结果)
21.m <3(点拨:解不等式组可得结果3x x
m
⎧⎨
⎩,因为不等式组的解集是x >3,所以结合
数轴,根据“同大取大”原则,不难看出结果为m <3)
第4课
22.-3<a ≤-2(解不等式组可得结果a ≤x ≤2,因此五个整数解为2、1、0、-1、-2,所以-3<a ≤-2)
23.13支(点拨:设小明一共买了x 本笔记本,y 支钢笔,根据题意,可得混合组25100
30
x y x y +≤⎧⎨+=⎩,
可求得y ≤
40
3
,因为y 为正整数,所以最多可以买钢笔13支) 24.7折(点拨:设最低打x 折,由题意可得12008008005%10
x
⨯-≥⨯,解之得x ≥7) 二、选择题
25.A 26.A 27.D
第5课
28.B (点拨:x ≤
12a +,又不等式解为:x ≤-1,所以1
2
a +=-1,解得:a =-3)
29.C 30.D 31.C(点拨:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号的方向不变;不等式两边同时乘或除以同一个正数,不等号的方向不变,同时乘或除以同一个负数,不等号的方向要改变)
32.C(点拨:先求出不等式的解集,从中找出相应的正整数解即可)
第6课
33.B(点拨:注意解集表示时的方向及点的空心与实心区别)
34.B(点拨:因为|x -2|=x -2,根据一个正数的绝对值等于它的本身,可以知道x -2的值大于或等于0,从而得到相关不等式求解)
35.D(点拨:路程一定,速度的范围直接决定所用时间的范围) 36.A 37.C (点拨:非负整数解包括0) 38.A
第7课
39.A(点拨:先通过解方程求出用m 表示的x 的式子,然后根据方程解是负数,得到关于m 的不等式,求解不等式即可) 40.C 三、解答题 41.解析:(1)112x x -
>,1
12
x >,所以2x >. 42.解析:解不等式①,得2x -≥; 解不等式②,得1
2
x <-
. 在同一条数轴上表示不等式①②的解集,如答图9-1:
所以,原不等式组的解集是122
x -<-≤.
答图9-1
43.解析:解不等式
3
312
x x -++≥,得1x ≤.解不等式13(1)8x x --<-,得2x >-.
∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,
,.
第8课
44.解析:由题意可得
31025x x +--≥,解不等式x ≥17
3-. 45.解析:解关于x 的方程m x m x =--+2123,得344
m
x -=,因为方程解为非正数,所以有344m -≤0,解之得,m ≥34
.
46.解析:设该宾馆一楼有x 间房,则二楼有(x +5)间房,由题意可得不等式组
448
5483(5)484(5)48
x x x x ⎧⎪⎪
⎨
+⎪⎪+⎩,解这个不等式组可得9.6<x <11,因为x 为正整数,所以x =10 即该宾馆一楼有10间房间.
第9课
47.解析:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得
1(100),
218001500(100)161800.
x x x x ⎧
≥-⎪⎨
⎪+-≤⎩ ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.
(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100
-x )=100x +10000. ∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元.
48.解析:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:
(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.
49.解析:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:
8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:33
31
x x ⎧⎨
⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,
,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个;②A 种园艺造型32个 B 种园艺造型18个;③A 种园艺造型33个 B 种园艺造型17个.
(2)由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 50.解析:(1)60-x -y ;
(2)由题意,得 900x +1200y +1100(60-x -y )= 61000,整理得 y =2x -50. (3)①由题意,得 P = 1200x +1600y +1300(60-x -y )- 61000-1500, 整理得 P =500x +500.
②购进C 型手机部数为:60-x -y =110-3x .根据题意列不等式组,得
8,2508,11038.x x x ≥⎧⎪
-≥⎨⎪-≥⎩
解得 29≤x ≤34. ∴ x 范围为29≤x ≤34,且x 为整数.
∵P是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部.。