江西省重点中学协作体2013届高三第一次联考理科数学试卷

合集下载

2013年江西省理科高考数学题

2013年江西省理科高考数学题

2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+(C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8xx ≥1,x+y ≤3, y ≥a(x-3). {(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

江西省红色六校2013届高三第一次联考 数学理

江西省红色六校2013届高三第一次联考 数学理

江西省红色六校2013届高三第一次联考数学(理)试题(分宜中学、南城一中、遂川中学、瑞金一中、莲花中学、任弼时中学)时间:120分钟 总分:150分一、选择题(每小题5分,共50分)1、已知全集R U =,集合}01|{},012|{≤<-=>-+=x x Q x x x P ,则=⋃)(Q C P U ( )A .1|{-≤x x 或}0>xB .1|{-≤x x 或}1>xC .2|{-<x x 或}1>xD .2|{-<x x 或}0>x 2、若⎩⎨⎧<+≥=-)3(),3()3(,2)(x x f x x f x ,则=-)4(f ( ) A .2 B .21C .32D .3213.已知原命题:“若a+b ≥2,则a,b 中至少有一个不小于1”,则原命题与其否命题的真假情况是( )1-=xy 的= A. B. C. D. 5、如果数列}{n a 的前n 项和),3,2,1(102=-=n n n S n ,则数列}{n na 中数值最小的项是第几项( )A .3B .4C .5D .66、已知x xx f )31(log )(2-=,0x 为其零点,且0)()()(<⋅⋅c f b f a f ,c b a <<<0,则不可能有( ) A .cx <0 B .ax <<00 C .bx <0 D .ax >07、在ABC ∆所在平面内,O 为ABC ∆外一点,若动点P 满足)0((≠++=λλOA OP ,则P 点的运动轨迹经过ABC ∆的( )A .重心B .垂心C .内心D .外心8.已知:)10()3)(2)(1()(----=x x x x x f ,则)2(/fA .!82⨯B .!8C .!72⨯D .!79、函数d cx bx ax x f +++=23)(的图像如图所示, 则)1()1(-+f f 的值一定( ) A .大于0 B .小于0C .等于0D .不能确定 10、定义域为R 的函数)(x f 满足)(3)2(x f x f =+,当]2,0[∈x 时,xx x f 2)(2-=,如果]2,4[--∈x 时,)3(181)(t t x f -≥恒成立,则实数t 的取值范围( )A .]3,0(]1,(⋃--∞B .]3,0(]3,(⋃--∞C .),3[)0,1[+∞⋃-D .),3[)0,3[+∞⋃-二、填空题(每小题5分,共25分。

2013年高考江西卷理科数学试题及答案

2013年高考江西卷理科数学试题及答案

2013年普通高等学校招生全国统一考试理科数学(江西卷)第Ⅰ卷一、选择题1.已知集合M ={1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( ) A .-2i B .2i C .-4i D .4i答案 C解析 由M ∩N ={4}得z i =4,z =4i =-4i.2.函数y =x ln(1-x )的定义域为 ( ) A .(0,1) B .[0,1) C .(0,1]D .[0,1]答案 B解析 由⎩⎪⎨⎪⎧1-x >0x ≥0得,函数定义域为[0,1).3.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0C .12D .24答案 A解析 由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x 1=-3或x 2=-1(不合题意,舍去). 故数列的第四项为-24.4.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )答案 D解析 从第1行第5列、第6列组成的数65开始由左到右依次选出的数为:08,02,14,07,01,所以第5个个体编号为01. 5.⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( ) A .80 B .-80C .40D .-40答案 C解析 T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫-2x 3r =C r 5(-2)r x 10-5r , 令10-5r =0得r =2.∴常数项为T 3=C 25(-2)2=40.6.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1D .S 3<S 2<S 1答案 B解析 利用定积分的几何意义知B 正确.7.阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2] B.S =2]D.S =2]答案 C解析 逐项验证,可排除A 、B 、D.8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n =( )A .8B .9C .10D .11答案 A解析 由已知得m =4,n =4,∴m +n =8.选A.9.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .- 3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于E 、D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图像大致是( )答案 D解析 由题意得BC =23 3.当x =0时,y =233,否B.当x =23π时,y =433,∴x =π2时,y <433.所以选D.第Ⅱ卷二、填空题11.函数y =sin 2x +23sin 2x 的最小正周期T 为________. 答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝⎛⎭⎫2x -π3+3, ∴T =π.12.设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________. 答案 52解析 a 在b 方向上的射影为|a |cos 〈a ,b 〉=a ·b|b |.∵a ·b =(e 1+3e 2)·2e 1=2e 21+6e 1·e 2=5.|b |=|2e 1|=2. ∴a ·b |b |=52. 13.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 设e x =t ,则x =ln t (t >0), ∴f (t )=ln t +t ∴f ′(t )=1t +1,∴f ′(1)=2.14.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A 、B 两点,若△ABF为等边三角形,则p =________. 答案 6解析 由题意知B ⎝⎛⎭⎫p 3,-p 2,代入方程x 23-y 23=1得p =6. 三、选做题15.(1)(坐标系与参数方程选做题)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =ty =t 2(t 为参数),若以直角坐标 系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.答案 sin θ=ρcos 2θ解析 由⎩⎪⎨⎪⎧x =t y =t 2得曲线C 的普通方程为y =x 2, ①在极坐标系中,⎩⎪⎨⎪⎧y =ρsin θx =ρcos θ,②将②代入①得曲线C 的极坐标方程为sin θ=ρcos 2θ.(2)(不等式选做题)在实数范围内,不等式||x -2|-1|≤1的解集为________. 答案 [0,4]解析 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0|x -2|≤2得0≤x ≤4. ∴不等式的解集为[0,4]. 四、解答题16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos C +(cos A -3sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0 即有sin A sin B -3sin A cos B =0 因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 因为0<B <π, 所以sin B >0, 所以cos B >0, 所以tan B =3, 即B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22=14(a +c )2=14, ∴b ≥12.又a +c >b ,∴b <1,∴12≤b <1.17.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0, 由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n .n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式. ∴a n =2n .(2)证明 由a n =2n 得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2 =116⎣⎡⎦⎤1n 2-1(n +2)2 T n =116⎣⎡⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+…⎦⎤+⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2=116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564. 18.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.解 (1)从8个点中任取两点为向量终点的不同取法共有C 28=28种. X =0时,两向量夹角为直角共有8种情形, 所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)X 的所有可能值为-2,-1,0,1.X =-2时,有2种情形;X =-1时有10种情形; X =1时,有8种情形;X =0时有8种情形; 所以X 的分布列为:∴E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.19.如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,P A =32,连接CE 并延长交AD 于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值. (1)证明 在△ABD 中,因为E 为BD 中点, 所以EA =EB =ED =AB =1,故∠BAD =π2,∠ABE =∠AEB =π3.因为△DAB ≌△DCB ,所以△EAB ≌△ECB , 从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA .故EF ⊥AD ,AF =FD ,∴EF ∥AB ,GF ∥P A . 又∵P A ⊥平面ABCD ,AB ⊥AD , ∴GF ⊥AD ,EF ⊥AD , 故AD ⊥平面CFG .(2)解 以A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C ⎝⎛⎭⎫32,32,0,D (0,3,0),P ⎝⎛⎭⎫0,0,32, 故BC →=⎝⎛⎭⎫12,32,0,CP →=⎝⎛⎭⎫-32,-32,32,CD →=⎝⎛⎭⎫-32,32,0.设平面BCP 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CP →=0n 1·BC →=0即⎩⎨⎧-32x 1-32y 1+32z 1=012x 1+32y 1=0令y 1=-3,则x 1=3,z 1=2,n 1=(3,-3,2). 同理求得面DCP 的法向量n 2=(1,3,2), 从而平面BCP 与平面DCP 的夹角θ的余弦值为 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=44×22=24. 20.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A 、PB 、PM 的斜率分别为k 1、k 2、k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解 (1)由P ⎝⎛⎭⎫1,32在椭圆x 2a 2+y2b 2=1上,得, 1a 2+94b 2=1,①又e =c a =12,得a 2=4c 2,b 2=3c 2,②②代入①得,c 2=1,a 2=4,b 2=3. 故椭圆方程为x 24+y 23=1.(2)设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1得, (4k 2+3)x 2-8k 2x +4k 2-12=0, x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=k (x 1-1)-32x 1-1+k (x 2-1)-32x 2-1=2k -32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1=2k -32·8k 24k 2+3-24k 2-124k 2+3-8k 24k 2+3+1=2k -1.又将x =4代入y =k (x -1)得M (4,3k ), ∴k 3=3k -323=k -12,∴k 1+k 2=2k 3.故存在常数λ=2符合题意.21.已知函数f (x )=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a >0. (1)证明:函数f (x )的图像关于直线x =12对称;(2)若x 0满足f (f (x 0))=x 0,但f (x 0)≠x 0,则称x 0为函数f (x )的二阶周期点.如果f (x )有两个二阶周期点x 1、x 2,试确定a 的取值范围.(3)对于(2)中的x 1、x 2和a ,设x 3为函数f (f (x ))的最大值点,A (x 1,f (f (x 1))),B (x 2,f (f (x 2))),C (x 3,0).记△ABC 的面积为S (a ),讨论S (a )的单调性. (1)证明 因为f ⎝⎛⎭⎫12+x =a (1-2|x |) f ⎝⎛⎭⎫12-x =a (1-2|x |), 所以f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x因此f (x )的图像关于直线x =12对称.(2)解 ①当0<a <12时,f (f (x ))=⎩⎨⎧4a 2x ⎝⎛⎭⎫x ≤124a 2(1-x ) ⎝⎛⎭⎫x >12,所以f (f (x ))=x 只有一个解x =0, 又f (0)=0,故0不是二阶周期点.②当a =12时,f (f (x ))=⎩⎨⎧x ⎝⎛⎭⎫x ≤12,1-x ⎝⎛⎭⎫x >12.所以f (f (x ))=x 有解集⎩⎨⎧⎭⎬⎫x |x ≤12.又当x ≤12时f (x )=x ,故⎩⎨⎧⎭⎬⎫x |x ≤12中所有点都不是二阶周期点.③当a >12时,f (f (x ))=⎩⎪⎨⎪⎧4a 2x , x ≤14a,2a -4a 2x , 14a <x ≤12,2a (1-2a )+4a 2x , 12<x ≤4a -14a,4a 2-4a 2x , x >4a -14a.所以f (f (x ))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2.又f (0)=0,f ⎝⎛⎭⎫2a 1+2a =2a1+2a ,f ⎝⎛⎭⎫2a 1+4a 2≠2a 1+4a 2,f ⎝⎛⎭⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f (x )的二阶周期点. 综上所述,所求a 的取值范围为a >12. (3)解 由(2)得x 1=2a 1+4a 2,x 2=4a 21+4a 2. 因为x 3为f (f (x ))的最大值点,所以x 3=14a ,或x 3=4a -14a. 当x 3=14a 时,S (a )=2a -14(1+4a 2), 求导得S ′(a )=-2⎝ ⎛⎭⎪⎫a -1+22⎝ ⎛⎭⎪⎫a -1-22(1+4a 2)2, 所以a ∈⎝ ⎛⎭⎪⎫12,1+22时,S (a )单调递增, a ∈⎝ ⎛⎭⎪⎫1+22,+∞时,S (a )单调递减; 当x 3=4a -14a 时,S (a )=8a 2-6a +14(1+4a 2), 求导得S ′(a )=12a 2+4a -32(1+4a 2)2. 因为a >12,从而有S ′(a )>0, 所以a >12时,S (a )单调递增.。

江西省九校2013届高三第一次联考数学试卷(理科)

江西省九校2013届高三第一次联考数学试卷(理科)

江西省九校2013届高三第一次联考数学试卷(理科) 主命题: 乐平中学 许敏 副命题:余江一中 宋卫华 时长:120分钟 总分:150分注意事项:答题前考生务必将学校、姓名、班级、学号写在答题纸的密封线内。

答案填写在答题..卷.上对应题目的答案空格内,答案写在试卷上无效。

考试结束后,交回答题卷。

一、选择题(每小题5分,合计50分.每小题只有唯一正确选项,请填写在答题纸中相应的位置) 1.已知集合}55|{},53|{>-<=≤<-=x x x N x x M 或,M N 等于( ) A }55|{<<-x x B }35|{->-<x x x 或 C }53|{≤<-x x D }53|{>-<x x x 或 2.已知向量a =(1,2),b a ∙=5,52||=-b a ,则||b 等于( ) A 、5 B 、52 C 、5D 、253.定义运算bc ad dc b a -=,,,则符合条件01121=+-+ii i z ,,的复数z 的共轭复数....z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.若,,R y x ∈则“()324log2=-+y x xy ”是“0258622=++-+y x y x ”成立的条件( )A .充分不必要B .充要C .必要不充分D .既不充分也不必要5.设函数()2sin+4f x x πωω=()(>0)与函数()cos(2)(||)2g x x πφφ=+≤的对称轴完全相同,则φ的值为( )A .4π-B .4πC .2πD .2π-6.某市端午期间安排甲.乙等5支队伍参加端午赛龙舟比赛,若在安排比赛赛道时不将甲安排在第一及第二赛道上,且甲和乙不相邻,则不同的安排方有( ) A .56种 B .48种 C .42种 D .36种7.定义在R 上的函数g=f (x )满足f (4-x )=f (x ),(x -2)f ′(x )<0,若x 1<x 2,且x 1+x 2>4,则( ) A 、f(x 1)<f(x 2) B 、f(x 1)>f(x 2) C 、f(x 1)=f(x 2) D 、f(x 1)与f(x 2)的大小不确定8,执行如图所示的程序框图,输出的y 值最接近的是( ) A,234B.34 C.3 D.239.某正多面体的三视图如图所示,该几何体的体积是( )A .8B .83C .4D .4310. 设函数f (x )=x e (sin x cosx )-(0≤ x ≤2013π),则函数f (x )的各极大值之和为( )A.()πππe e e --112013 B.()πππ2100711e e e --C. ()πππeee --111007 D.()πππ2201411ee e --二、填空题 (每小题5分,合计25分,请将答案填到答题纸上。

2013年江西高考数学理科试卷(带详解)

2013年江西高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(江西卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,i M z =,i 为虚数单位,{}{}3,4,4N M N == ,则复数z =( )A.2i -B.2iC.4i -D.4i 【测量目标】集合的基本运算和复数的四则运算 【考查方式】利用并集运算、复数的乘法运算求解. 【难易程度】容易 【参考答案】C【试题解析】{}{}1,2,i ,3,4,M z N == 由{}4,M N = 得4,i=4,M z ∈∴4i.z =- 2.函数)y x =-的定义域为( )A.(0,1)B.[0,1)C.(0,1]D.[0,1]【测量目标】函数的定义域.【考查方式】利用根式和对数函数有意义的条件求解. 【难易程度】容易 【参考答案】B【试题解析】由00110x x x ⎧⇒<⎨->⎩…….3.等比数列,33,66x x x ++, 的第四项等于 ( )A.24-B.0C.12D.24【测量目标】等比数列性质.【考查方式】利用等比中项和等比数列的特点求解. 【难易程度】容易 【参考答案】A【试题解析】由2(33)(66)1x x x x +=+⇒=-或3x =-,(步骤1) 当1x =-时,330x +=,故舍去,(步骤2)所以当3x =-,则等比数列的前3项为3,6,12---,故第四项为24-.(步骤3)4.总体有编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号【测量目标】简单的随机抽样.【考查方式】利用随机抽样方法中随机数表的应用求解. 【难易程度】容易 【参考答案】D 【试题解析】依题意,第一次得到的两个数为65,6520>,将它去掉;第二次得到的两个数为72,由于7220>,将它去掉;第三次得到的两个数字为08,由于0820<,说明号码08在总体内,将它取出;继续向右读,依次可以取出02,14,07,02;但由于02在前面已经选出,故需要继续选一个,再选一个数就是01,故选出来的第五个个体是01. 5.2532()x x-展开式中的常数项为 ( )A.80B.-80C.40D.40-【测量目标】二项式定理.【考查方式】利用二项展开式的通项公式求解.【难易程度】容易 【参考答案】C【试题解析】展开式的通项为2510515532C ()()(2)C rrr r r r r T x x x --+=-=-, 令10502r r -=⇒=,故展开式的常数项为225(2)C 40-=.6.若22221231111,,e ,x S x dx S dx S dx x ===⎰⎰⎰则123,,S S S 的大小关系为( )A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<【测量目标】定积分的几何意义.【考查方式】利用定积分的求法比较三个的大小来求解. 【难易程度】中等 【参考答案】B 【试题解析】32222212311122271,ln ln 2,e e e e 11133x x x S x dx S dx x S dx x =========-⎰⎰⎰,显然213S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )第7题图A.22S i =-B.21S i =-C.2S i =D.24S i =+ 【测量目标】循环结构的程序框图.【考查方式】根据程序框图表示的算法对i 的取值进行验证. 【难易程度】中等 【参考答案】C【试题解析】当2i =时,22510;S =⨯+=<当3i =时,仍然循环,排除D;当4i =时,241910S =⨯+=< 当5i =时,不满足10,S <即此时10S …输出i .(步骤1)此时A 项求得2528,S =⨯-=B 项求得2519,S =⨯-=C 项求得2510,S =⨯=故只有C 项满足条件. (步骤2)8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线,CE EF 相交的平面个数分别记为,m n ,那么m n += ( )第8题图A.8B.9C.10D.11 【测量目标】线面平行的判定.【考查方式】利用线面平行,线面相交的判断及空间想象力求解. 【难易程度】中等 【参考答案】A【试题解析】直线CE 在正方体的下底面内,与正方体的上底面平行;与正方体的左右两个侧面,前后两个侧面都相交,故4m =;(步骤1)作CD 的中点G ,显然易证平面EFG 的底边EG 上的高线与正方体的前后两个侧面平行,故直线EF 一定与正方体的前后两个侧面相交;另外,直线EF 显然与正方体的上下两个底面相交;综上,直线EF 与正方体的六个面所在的平面相交的平面个数为4,故4n =,所以8m n +=.(步骤2)9.过点引直线l 与曲线y =,A B 两点,O 为坐标原点,当AOB △的面积取最大值时,直线l 的斜率等于 ( )A.3 B.3- C.3± D.【测量目标】直线与圆的位置关系.【考查方式】利用角形的面积,点到直线的距离公式,三角函数的最值求解. 【难易程度】中等 【参考答案】B【试题解析】因为AOB △的面积在π2AOB ∠=时,取得最大值.设直线l 的斜率为k ,则直线l 的方程为(y k x =,即0kx y -=,(步骤1)由题意,曲线y =O 到直线l 的距离为π1sin4⨯=,23k =⇒=(舍去),或k =.(步骤2) 10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间1l l ,l 与半圆相交于,F G 两点,与三角形ABC 两边相交于,E D 两点,设弧 FG 的长为(0π)x x <<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图象大致是( )第10题图A B C D 【测量目标】函数图象的判断.【考查方式】利用函数的图象、扇形弧长、三角函数,以及数形结合的数学思想求解. 【难易程度】较难 【参考答案】D【试题解析】连接OF ,OG ,过点O 作,OM FG ⊥过点A 作AH BC ⊥,交DE 于点N .因为弧 FG的长度为x ,所以,FOG x ∠=则cos,2x AN OM ==所以cos ,2AN AE x AH AB ==则,2xAE =.2x EB ∴=2x y EB BC CD ∴=++=π)2xx =+<< 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分.11.函数2sin2y x x =+的最小正周期为T 为 . 【测量目标】三角函数的周期.【考查方式】利用三角恒等变换求解三角函数的最小周期. 【难易程度】容易 【参考答案】π【试题解析】2πsin 2sin sin 2cos 22sin(233y x x x x x =+==-,故最小正周期为2ππ2T ==. 12.设1e ,2e 为单位向量.且1e ,2e 的夹角为π3,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 ___________.【测量目标】平面向量的数量积运算.【考查方式】利用向量的投影,向量的数量积运算求解. 【难易程度】容易 【参考答案】52【试题解析】121(3)2||cos ||||||||2θ+===e e e a b a b a a a b b2112π2611cos 2653.222+⨯⨯⨯+=== e e e 13.设函数()f x 在(0,)+∞内可导,且(e )e x x f x =+,则(1)f '= .【测量目标】导数的运算.【考查方式】利用导数的运算,函数解析式的求解,以及转化与化归的数学思想求解. 【难易程度】中等 【参考答案】2【试题解析】由1(e )e ()ln (0)()1(0)xxf x f x x x x f x x x'=+⇒=+>⇒=+>,故(1)2f '=. 14.抛物线22(0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于,A B 两点,若ABF △为等边三角形,则p = .【测量目标】直线与双曲线位置关系.【考查方式】利用抛物线与双曲线的简单性质,等边三角形的特征求解. 【难易程度】中等 【参考答案】6【试题解析】不妨设点A 在左方,AB 的中点为C ,则易求得点(0,),2pF (),2pA -)2pB -.(步骤1)因为ABF △为等边三角形,所以由正切函数易知tan 606FCp CB==⇒= . (步骤2)三、选做题:请在下列两题中任选一题作答,若两题都做,则按第一题评阅计分,本题共5分 15.(1).(坐标系与参数方程选做题)设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 . 【测量目标】极坐标与参数方程.【考查方式】利用参数方程、直角坐标系方程和极从标的互化. 【难易程度】容易【参考答案】2cos sin 0ρθθ-=【试题解析】由曲线C 的参数方程为2,x t y t ==(t 为参数), 得曲线C 的直角坐标系方程为2x y =,(步骤1) 又由极坐标的定义得,2(cos )sin ρθρθ=,即化简曲线C 的极坐标方程为2cos sin 0ρθθ-=.(步骤2)(2).(不等式选做题)在实数范围内,不等式211x --…的解集为 . 【测量目标】解绝对值不等式.【考查方式】利用绝对值不等式的解法,结合绝对值的性质求解. 【难易程度】容易 【参考答案】[]0,4【试题解析】||2|1|11|2|110|2|222204x x x x x --⇒---⇒-⇒--⇒剟剟剟剟?.四、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若1a c +=,求b 的取值范围 【测量目标】两角和与差的正余弦,余弦定理.【考查方式】给出相关信息,利用两角和的余弦函数,余弦定理求解. 【难易程度】中等【试题解析】(1)由已知得cos()cos cos cos 0A B A B A B -++=即有sin sin cos 0A B A B = (步骤1)因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0πB <<,所以π3B ∠=.(步骤2) (2)由余弦定理,有2222cos b a c ac B =+-.(步骤3)因为11,cos 2a c B +==,有22113()24b a =-+.又01a <<,于是有2114b <…,即有112b <….(步骤4)17.(本小题满分12分)正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{n a }的通项公式n a ; (2)令221(2)n n b n a+=+,数列{n b }的前n 项和为n T .证明:对于任意的*n ∈N ,都有564n T <【测量目标】数列的通项公式与前n 项和n S 的关系,裂项求和法.【考查方式】利用数列通项公式的求法和数列的求和,裂项求和法求出其前n 项和,通过放缩法证明. 【难易程度】中等【试题解析】(1)由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+.(步骤1)于是112,2a S n ==…时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =.(步骤1) (2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.(步骤3) 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (22221111)1151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.(步骤4) 18.(本小题满分12分)小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从12345678,,,,,,,,A A A A A A A A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若0X =就参加学校合唱团,否则就参加学校排球队. (1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.第18题图【测量目标】古典概型,离散型随机变量分布列和期望.【考查方式】利用组合数的公式、向量数量积运算、古典概型概率等求解. 【难易程度】中等【试题解析】(1)从8个点中任意取两点为向量终点的不同取法共有28C 28=种,当0X =时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为82(0)287P X ===.(步骤1) (2)两向量数量积X 的所有可能取值为2,1,0,1,2X --=-时,有两种情形;1X =时,有8种情形;1X =-时,有1(2)+(1)01.14147714EX =-⨯-⨯+⨯+⨯=-(步骤2)19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥平面,ABCD E 为BD 的中点,G 为PD 的中点,3,12DAB DCB EA EB AB PA ====△≌△,,连接CE 并延长交AD 于F . (1)求证:AD CFG ⊥平面;(2)求平面BCP 与平面DCP 的夹角的余弦值.第19题图【测量目标】线面垂直的判定,二面角,空间直角坐标系,空间向量及运算. 【考查方式】利用线面垂直的定理求解,通过建系求二面角的平面角的余弦值. 【难易程度】中等 【试题解析】(1)在ABD △中,因为E 是BD 的中点,所以1EA EB ED AB ====,故ππ,23BAD ABE AEB ∠=∠=∠=,(步骤1) 因为DAB DCB △≌△,所以EAB ECB △≌△, 从而有FED FEA ∠=∠,(步骤2)故,EF AD AF FD ⊥=,又因为,PG GD =所以FG PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .(步骤3)(2)以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(2A B C D,第19题(2)图3(0,0,)2P ,故1333(0),(),(,2222222BC CP CD ==--=- ,, (步骤4)设平面BCP 的法向量111(1,,)y z =n,则111102233022y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,,)33=-n .(步骤5)设平面DCP 的法向量222(1,,)y z =n,则222302330222y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,(步骤6)即2(1=n .从而平面BCP 与平面DCP的夹角的余弦值为12124cos θ=== n n n n (步骤7)20. (本小题满分13分)如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=k k k λ?若存在求λ的值;若不存在,说明理由.第20题图【测量目标】椭圆的方程,直线与椭圆的位置关系. 【考查方式】利用椭圆方程的方法及直线的斜率求解. 【难易程度】较难【试题解析】(1)由3(1,)2P 在椭圆上得,221914a b += ① 依题设知2a c =,则223b c =. ②(步骤1) ②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=.(步骤2) (2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=,(步骤3) 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④(步骤4)在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y y k x x ==--.所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 121212232.2()1x x k x x x x +-=--++ ⑤(步骤5)④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-=---+++ , 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意. (步骤6)方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--,令4x =,求得003(4,)1y M x -,从而直线PM 的斜率为0030212(1)y x k x -+=-,(步骤3)联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,(步骤4) 则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,(步骤5) 故存在常数2λ=符合题意. (步骤6)21. (本小题满分14分)已知函数1()=(12)2f x a x --,a 为常数且>0a . (1)证明:函数()f x 的图象关于直线1=2x 对称;(2)若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围;(3)对于(2)中的12,x x 和a , 设3x 为函数()()ff x 的最大值点,()()()1,,A x f f x()()()()223,,,0.B x f f x C x 记ABC △的面积为()S a ,讨论()S a 的单调性.【测量目标】函数单调性的综合应用.【考查方式】利用函数的对称性,解方程,导数的应用及函数单调性求解. 【难易程度】较难【试题解析】(1)证明:因为11()(12),()(12),22f x a x f x a x +=--=- 有11()()22f x f x +=-,(步骤1)所以函数()f x 的图象关于直线12x =对称. (步骤2) (2)当102a <<时,有224,(())4(1),a x f f x a x ⎧⎪=⎨-⎪⎩1,21.2x x >…所以(())f f x x =只有一个解0x =,又(0)0f =,故0不是二阶周期点. (步骤3)当12a =时,有1,2(()).11,2x x f f x x x ⎧⎪⎪=⎨⎪->⎪⎩… 所以(())f f x x =有解集1|2x x ⎧⎫⎨⎬⎩⎭…,又当12x …时,()f x x =,故1|2x x ⎧⎫⎨⎬⎩⎭…中的所有点都不是二阶周期点.(步骤4)当12a >时,有2222214,41124,42(()).1412(12)4,244144,4a x x a a a x x a f f x a a a a x x a a a a x x a ⎧⎪⎪⎪-<⎪=⎨-⎪-+<⎪⎪-⎪->⎩……… 所以(())f f x x =有四个解2222240,,,141214a a a a a a +++,(步骤5)又22(0)0,()1212a af f a a==++, 22222244(),()14141414a a a a f f a a a a ≠≠++++,故只有22224,1414a a a a ++是()f x 的二阶周期点.(步骤6) 综上所述,所求a 的取值范围为12a >.(步骤7)(3)由(2)得2122224,1414a a x x a a ==++,因为3x 为函数(())f f x 的最大值点,所以314x a =或3414a x a-=.(步骤8)当314x a =时,221()4(14)a S a a -=+.求导得:22112(22()(14)a a S a a ---'=-+,所以当1(2a ∈时,()S a单调递增,当)a ∈+∞时()S a 单调递减;(步骤9)当3414a x a -=时,22861()4(14)a a S a a -+=+,求导得:2221243()2(14)a a S a a +-'=+,因12a>,从而有2221243()02(14)a aS aa+-'=>+,(步骤10)所以当1(,)2a∈+∞时()S a单调递增. (步骤11)。

江西省重点中学盟校2013届高三第一次联考理科综合试卷

江西省重点中学盟校2013届高三第一次联考理科综合试卷

江西省重点中学盟校2013届高三第一次联考理科综合试卷命题人:物理:同文中学:卢冬阳赣州三中:谢宝华景德镇一中:丁明武化学:临川二中:周仁科新余四中:杨德生余江一中:潘加良生物:余江一中:吴可荣贵溪一中:李仓恒白鹭洲中学:邓恢彬1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).共300分,考试时间150分钟。

答案一律在答题卡上作答。

2.可能用到的相对原子量:C-12 H-1 O-16 Na-23 Mg-24 Al-27 Cl-35.5 Mn-55第I卷(选择题共126分)一、选择题(本题包括13小题,每小题6分。

在每小题给出的四个选项中,只有一个选项符合题目要求的)1.细胞是最基本的生命系统层次,生物的生命活动离不开细胞。

下列有关细胞的说法不正确的是A.细胞间进行信息交流大多与细胞膜的结构和功能有关B.细胞都有细胞膜和细胞质C.细胞的分化、凋亡和癌变都跟基因有关D.细胞进行光合作用必须在叶绿体中进行2.某湖泊由于大量排入污水,藻类爆发,引起水草(沉水植物)死亡,之后浮游动物及鱼类等生物死亡,水体发臭。

下列有关叙述中,错误..的是A.导致水草死亡的最主要非生物因素是缺少阳光B.藻类刚爆发时,某小组分别于早晨和下午在该湖泊的同一地点、同一水层取得两组水样,测得甲组pH 为7.3,乙组pH为6.0,那么取自早晨的水样是甲组C.更多水生生物死亡又加重了水体污染,这属于正反馈调节D.藻类刚爆发时,若投放食浮游植物的鱼类和种植大型挺水植物有利于修复3.甲图表示在一个细胞周期中不同时期所需时间的示意图,乙图表示不同温度条件下酶活性的变化曲线。

关于这两幅图的描述,正确的是A.利用一定剂量射线处理a时期可诱发突变B.观察有丝分裂装片时,视野中的大多数细胞都处于b时期C.温度在c点时酶的分子结构被破坏D.酶的最适温度必定为d点时的温度4.下图为某二倍体生物精原细胞分裂过程中细胞内的同源染色体对数的变化曲线。

基因重组最可能发生在A.AB段 B.CD段 C.FG段 D.HI段5.下列实验操作能达到预期结果的是A.在“观察根尖分生组织细胞的有丝分裂”实验中,统计每一时期细胞数占细胞总数的比例,能比较细胞周期各时期的时间长短B. 在鉴定还原糖时为避免样液本身颜色的干扰,应选取接近白色或无色的甘蔗提取液53C. 将载有水绵和好氧细菌的装片置于黑暗且缺氧的环境中,用极细光束照射后,细菌集中于有光照的部位,能说明光合作用产生的氧气来自于水D.在单侧光照射下,金丝雀虉草胚芽鞘向光弯曲生长,去尖端的胚芽鞘不生长也不弯曲,能说明生长素具有极性运输的特点6.赤霉素促进茎的伸长主要与细胞壁的伸展性有关。

江西省重点中学协作体2013届高三第一次联考 数学理

江西省重点中学协作体2013届高三第一次联考 数学理

江西省重点中学协作体2013届高三第一次联考数学理————————————————————————————————作者:————————————————————————————————日期:y=xy xCB AO江西省重点中学协作体2013届高三第一次联考 数学试题(理科)命题人: 南昌二中 赖敬华 鹰潭一中 黄鹤飞本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分,满分150分,时间120分钟 第Ⅰ卷一.选择题(本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是 符合题目要求的)1、巳知i 是虚数单位,集合M Z =(整数集)和221(1){,,,}i N i i i i += 则集合N M I 的元素个数是( )A .3个B .2个C .1个D .无穷个 2、下列说法正确的是( )A .函数()1f x x =在其定义域上是减函数B .两个三角形全等是这两个三角形面积相等的必要条件C .命题“x ∃∈R ,210x x ++>”的否定是 “x ∀∈R ,210x x ++<”D .给定命题p 、q ,若p q ∧是真命题,则p ⌝是假命题3、如图给出了一个程序框图,其作用是输入x 的值,输 出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有( )个.A .1B .2C .3D .44、如图,长方形的四个顶点为)2,0(),2,4(),0,4(),0,0(C B A O ,曲线 经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影 区域的概率是( )A .125B .21C .32D .435、函数()sin()f x A x ωϕ=+的图象如图所示,其中0>A ,0>ω,2πϕ<.则下列关于函数()f x 的说法中正确的是( )A .对称轴方程是2()3x k k ππ=+∈Z B .6πϕ-=xy O16π-65πy=2x-否 是开输x ≤y= x 输结是否 x y=C .最小正周期是πD .在区间35,26ππ⎛⎫-- ⎪⎝⎭上单调递减6、现有8名青年,其中5名能任英语翻译工作,4名能胜任电脑软件设计工作,且每人至少能胜这两项工作中的一项,现从中选5人,承担一项任务,其中3人从事英语翻译工作,2人从事软件设计工作,则不同的选派方法有( )A .60种B .54种C .30种D .42种7、若函数)(x f y =在R 上可导,且满足不等)()(x f >x f x -'恒成立,常数a ,b 满足,b a >则下列不等式一定成立的是( )A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <8、若变量,a b 满足约束条件6321a b a b a +≤⎧⎪-≤-⎨⎪≥⎩,23n a b =+,则n 取最小值时,212nx x ⎛⎫- ⎪⎝⎭ 二项展开式中的常数项为( )A .80-B .80C .40D .20-9、一个几何体的俯视图是一个圆,用斜二侧画法画出正视图和俯视图都是边长为6和4,锐角为450的平行四边形,则该几何体的体积为 ( ) A .π24B .π48C .π72D .以上答案均不正确10、已知椭圆的两个焦点)0,3(1-F ,)0,3(2F ,过1F 且与坐标轴不平行的直线1l 与椭圆相交于M ,N 两点,2MNF ∆的周长等于8. 若过点(1,0)的直线l 与椭圆交于不同两点P 、Q ,x 轴上存在定点E (m ,0),使QE PE ⋅恒为定值,则E 的坐标为 ( )A .⎪⎭⎫ ⎝⎛0,613 B .⎪⎭⎫ ⎝⎛0,415 C .⎪⎭⎫ ⎝⎛0,817 D .⎪⎭⎫⎝⎛0,512 第Ⅱ卷二.填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置) 11、数列{}n a 共有11项,.10,.3.2.1,1,4,01111Λ==-==+k a a a a kk 且满足这样条件的不同数列的个数为 ;12、某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是 ;频率组距13、设函数()sin ()f x x x x R =∈在0x x =处取得极值,则200(1)(1cos 2)x x ++= ;14、如图放置的正方形ABCD ,1=AB ,A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OB OC ⋅的最大值是 ;15、(考生注意:请在下列两题中任选一题作答,如果多做,则按所做的第一题评分)(A ) (坐标系与参数方程选做题)在极坐标系中,若等边三角形(ABC 顶点A ,,B C 按顺时针方向排列)的顶点,A B 的极坐标分别为72,,2,66ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则顶点C 的极坐标为 ;(B ) (不等式选讲选做题)关于x 的不等式:33)3(42-+≥-x k X 的解集为[]n m ,,若 3=-m n ,则实数k 的值等于 .三.解答题(本大题共6小题,共75分。

2013年高考理科数学江西卷word解析版

2013年高考理科数学江西卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013江西,理1)已知集合M ={1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( ).A .-2iB .2iC .-4iD .4i 答案:C解析:由M ∩N ={4},得z i =4,∴z =4i=-4i.故选C.2.(2013江西,理2)函数y -x )的定义域为( ).A .(0,1)B . [0,1)C .(0,1]D .[0,1] 答案:B解析:要使函数有意义,需0,10,x x ≥⎧⎨->⎩解得0≤x <1,即所求定义域为[0,1).故选B.3.(2013江西,理3)等比数列x,3x +3,6x +6,…的第四项等于( ).A .-24B .0C .12D .24 答案:A解析:由题意得:(3x +3)2=x (6x +6),解得x =-3或-1.当x =-1时,3x +3=0,不满足题意.当x =-3时,原数列是等比数列,前三项为-3,-6,-12,故第四项为-24.4.(2013江西,理4)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5A .08 答案:D解析:选出的5个个体的编号依次是08,02,14,07,01,故选D.5.(2013江西,理5)5232x x ⎛⎫- ⎪⎝⎭展开式中的常数项为( ).A .80B .-80C .40D .-40答案:C解析:展开式的通项为T r +1=5C rx 2(5-r )(-2)r x -3r =5C r(-2)r x 10-5r .令10-5r =0,得r =2,所以T 2+1=25C (-2)2=40.故选C. 6.(2013江西,理6)若2211d S x x =⎰,2211d S x x=⎰,231e d x S x =⎰,则S 1,S 2,S 3的大小关系为( ).A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:2211d S x x =⎰=23117|33x =,2211d S x x=⎰=21ln |ln 2x =, 231e d x S x =⎰=2217e |e e=(e 1)>e>3x =--,所以S 2<S 1<S 3,故选B.7.(2013江西,理7)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( ).A .S =2*i -2B .S =2*i -1C .S =2*iD .S =2*i +4 答案:C解析:当i =2时,S =2×2+1=5;当i =3时,S =2×3+4=10不满足S <10,排除选项D ;当i =4时,S =2×4+1=9;当i =5时,选项A ,B 中的S 满足S <10,继续循环,选项C 中的S =10不满足S <10,退出循环,输出i =5,故选C.8.(2013江西,理8)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n =( ).A .8B .9C .10D .11 答案:A解析:由CE 与AB 共面,且与正方体的上底面平行,则与CE 相交的平面个数m =4.作FO ⊥底面CED ,一定有面EOF 平行于正方体的左、右侧面,即FE 平行于正方体的左、右侧面,所以n =4,m +n =8.故选A.9.(2013江西,理9)过点,0)引直线l 与曲线y A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ).A B . C .± D .解析:曲线y若直线l 与曲线相交于A ,B 两点,则直线l 的斜率k <0,设l :y =(k x ,则点O 到l 的距离d =又S △AOB =12|AB |·d =22111222d d d -+⨯=≤=,当且仅当1-d 2=d 2,即d 2=12时,S △AOB 取得最大值.所以222112k k =+,∴213k =,∴k =.故选B.10.(2013江西,理10)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图像大致是( ).答案:D第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二、填空题:本大题共4小题,每小题5分,共20分.11.(2013江西,理11)函数y =sin 2x +2x 的最小正周期T 为________.答案:π解析:∵y =sin 2x -cos 2x )π=2sin 23x ⎛⎫-+ ⎪⎝⎭,∴2ππ2T ==.12.(2013江西,理12)设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________.答案:52解析:∵a ·b =(e 1+3e 2)·2e 1=212e +6e 1·e 2=2+6×12×πcos3=5,∴a 在b 上的射影为5||2⋅=a b b . 13.(2013江西,理13)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.答案:2解析:令e x =t ,则x =ln t ,∴f (t )=ln t +t ,∴f ′(t )=11t+,∴f ′(1)=2. 14.(2013江西,理14)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线22=133x y -相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案:6解析:抛物线的准线方程为2py =-,设A ,B 的横坐标分别为x A ,x B ,则|x A |2=|x B |2=234p +,所以|AB |=|2x A |.又焦点到准线的距离为p ,由等边三角形的特点得||2p AB =,即2234344p p ⎛⎫=⨯⨯+ ⎪⎝⎭,所以p =6.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分. 15.(2013江西,理15)(1)(坐标系与参数方程选做题)设曲线C 的参数方程为2,x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.答案:ρcos 2θ-sin θ=0解析:由参数方程2,x t y t =⎧⎨=⎩得曲线在直角坐标系下的方程为y =x 2.由公式cos ,sin x y ρθρθ=⎧⎨=⎩得曲线C 的极坐标方程为ρcos 2θ=sin θ.(2)(不等式选做题)在实数范围内,不等式211x --≤的解集为________. 答案:[0,4]解析:原不等式等价于-1≤|x -2|-1≤1,即0≤|x -2|≤2,解得0≤x ≤4.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(2013江西,理16)(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C+(cos A sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解:(1)由已知得-cos(A +B )+cos A cos B sin A cos B =0,即有sin A sin B A cos B =0,因为sin A ≠0,所以sin BB =0, 又cos B ≠0,所以tan B, 又0<B <π,所以π3B =. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B .因为a +c =1,cos B =12,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有14≤b 2<1,即有12≤b <1.17.(2013江西,理17)(本小题满分12分)正项数列{a n }的前n 项和S n 满足:2n S -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令221(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)解:由2n S -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0. 由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项a n =2n . (2)证明:由于a n =2n ,221(2)n n n b n a +=+,则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435112n T n n n n ⎡⎤=-+-+-++-+-⎢⎥(-)(+)(+)⎣⎦ 22221111115111621216264n n ⎡⎤⎛⎫=+--<+= ⎪⎢⎥(+)(+)⎝⎭⎣⎦. 18.(2013江西,理18)(本小题满分12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.解:(1)从8个点中任取两点为向量终点的不同取法共有28C =28种,X =0时,两向量夹角为直角共有8种情形, 所以小波参加学校合唱团的概率为P (X =0)=82287=. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为:EX =15(2)+(1)+0+114147714-⨯-⨯⨯⨯=-.19.(2013江西,理19)(本小题满分12分)如图,四棱锥P ABCD 中,P A ⊥平面ABCD ,E 为BD 的中点,G为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,P A =32,连接CE 并延长交AD 于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值.解:(1)在△ABD 中,因为E 是BD 中点,所以EA =EB =ED =AB =1,故∠BAD =π2,∠ABE =∠AEB =π3, 因为△DAB ≌△DCB ,所以△EAB ≌△ECB , 从而有∠FED =∠BEC =∠AEB =π3, 所以∠FED =∠FEA ,故EF ⊥AD ,AF =FD ,又因为PG =GD ,所以FG ∥P A . 又P A ⊥平面ABCD ,所以CF⊥AD ,故AD ⊥平面CFG .(2)以点A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C 3,22⎛⎫⎪ ⎪⎝⎭,D (00),P 30,0,2⎛⎫ ⎪⎝⎭,故1,22BC ⎛⎫= ⎪ ⎪⎝⎭,33,222CP ⎛⎫=-- ⎪ ⎪⎝⎭,3,22CD ⎛⎫=- ⎪ ⎪⎝⎭.设平面BCP 的法向量n 1=(1,y 1,z 1),则11110,2330,222y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩解得112,3y z ⎧=⎪⎪⎨⎪=⎪⎩即n 1=21,,33⎛⎫- ⎪ ⎪⎝⎭.设平面DCP 的法向量n 2=(1,y 2,z 2),则22230,2330,222y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩解得222.y z ⎧=⎪⎨=⎪⎩即n 2=(12).从而平面BCP 与平面DCP 的夹角的余弦值为cosθ=21124||||||4⋅==n n n n .20.(2013江西,理20)(本小题满分13分)如图,椭圆C :2222=1x y a b +(a >b >0)经过点P 31,2⎛⎫⎪⎝⎭,离心率e=12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解:(1)由P 31,2⎛⎫⎪⎝⎭在椭圆上得,2219=14a b +,① 依题设知a =2c ,则b 2=3c 2,② ②代入①解得c 2=1,a 2=4,b 2=3.故椭圆C 的方程为22=143x y +. (2)方法一:由题意可设AB 的斜率为k , 则直线AB 的方程为y =k (x -1),③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=22843k k +,x 1x 2=224343k k (-)+,④在方程③中令x =4得,M 的坐标为(4,3k ).从而111321y k x -=-,222321y k x -=-,33312412k k k -==--. 注意到A ,F ,B 共线,则有k =k AF =k BF ,即有121211y y k x x ==--. 所以k 1+k 2=121212121233311221111211y y y y x x x x x x --⎛⎫+=+-+ ⎪------⎝⎭ 1212122322()1x x k x x x x +-=-⋅-++.⑤④代入⑤得k 1+k 2=222222823432438214343k k k k k k k -+-⋅(-)-+++=2k -1, 又k 3=12k -,所以k 1+k 2=2k 3.(2)方法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为:00(1)1y y x x =--, 令x =4,求得M 0034,1y x ⎛⎫⎪-⎝⎭, 从而直线PM 的斜率为00302121y x k x -+=(-).联立00221,11,43y y x x x y ⎧=(-)⎪-⎪⎨⎪+=⎪⎩得A 0000583,2525x y x x ⎛⎫- ⎪--⎝⎭,则直线P A 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以k 1+k 2=00000000225232121211y x y y x x x x -+--++=(-)(-)-=2k 3,故存在常数λ=2符合题意.21.(2013江西,理21)(本小题满分14分)已知函数f (x )=1122a x ⎛⎫--⎪⎝⎭,a 为常数且a >0. (1)证明:函数f (x )的图像关于直线12x =对称; (2)若x 0满足f (f (x 0))=x 0,但f (x 0)≠x 0,则称x 0为函数f (x )的二阶周期点.如果f (x )有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数f (f (x ))的最大值点,A (x 1,f (f (x 1))),B (x 2,f (f (x 2))),C (x 3,0).记△ABC 的面积为S (a ),讨论S (a )的单调性.(1)证明:因为12f x ⎛⎫+⎪⎝⎭=a (1-2|x |),12f x ⎛⎫- ⎪⎝⎭=a (1-2|x |), 有1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以函数f (x )的图像关于直线12x =对称.(2)解:当0<a <12时,有f (f (x ))=2214,,2141,.2a x x a x x ⎧≤⎪⎪⎨⎪(-)>⎪⎩所以f (f (x ))=x 只有一个解x =0,又f (0)=0,故0不是二阶周期点.当12a =时,有f (f (x ))=1,,211,.2x x x x ⎧≤⎪⎪⎨⎪->⎪⎩所以f (f (x ))=x 有解集12x x ⎧⎫≤⎨⎬⎩⎭,又当12x ≤时,f (x )=x ,故12x x ⎧⎫≤⎨⎬⎩⎭中的所有点都不是二阶周期当12a >时,有f (f (x ))=2222214,41124,,421412(12)4,,244144.4a x x a a a x x a a a a a x x a a a a x x a ⎧≤⎪⎪⎪-<≤⎪⎨-⎪-+<≤⎪⎪-⎪>⎩,-,所以f (f (x ))=x 有四个解0,222224,,141214a a a a a a +++,又f (0)=0,22()1212a a f a a =++,22221414a a f a a ⎛⎫≠ ⎪++⎝⎭,2222441414a a f a a ⎛⎫≠ ⎪++⎝⎭,故只有22224,1414a a a a ++是f (x )的二阶周期点.综上所述,所求a 的取值范围为12a >. (3)由(2)得12214ax a=+,222414a x a =+, 因为x 3为函数f (f (x ))的最大值点,所以314x a =,或3414a x a-=. 当314x a=时,221()4(14)a S a a -=+,求导得:S ′(a )=22214a a a ⎛ ⎝⎭⎝⎭-(+),所以当a∈11,22⎛⎫⎪ ⎪⎝⎭时,S (a )单调递增,当a∈12⎛⎫++∞ ⎪ ⎪⎝⎭时S (a )单调递减; 当3414a x a-=时,S (a )=22861414a a a -+(+),求导得: S ′(a )=2221243214a a a +-(+),因12a >,从而有S ′(a )=2221243214a a a +-(+)>0,所以当a ∈1,2⎛⎫-∞ ⎪⎝⎭时S (a )单调递增.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省重点中学协作体2013届高三第一次联考
数学试卷(理)
命题:刘建华(九江一中) 王文彬(抚州一中) 审题:段兴仁(九江一中) 邓 烽(抚州一中)
本试卷分第I 卷和第II 卷两部分.满分150分.考试用时120分钟.
第I 卷(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若集合{
}}
{
2
,0A x x x B x x x ===->,则A B = ( ).
A .[0,1]
B .(,0)-∞
C .(1,)+∞
D .(,1)-∞-
2.若i z )5
4
(cos 53sin -+-
=θθ是纯虚数,则)4tan(πθ-的值为( ).
A .7-
B .71
- C . 7 D .7-或17
-
3.下列说法中,正确的是( )
A . 命题“若a b <,则22am bm <”的否命题是假命题.
B .设,αβ为两个不同的平面,直线l α⊂,则“l β⊥”是 “αβ⊥” 成立的充分不必要
条件.
C .命题“存在2
,0x R x x ∈->”的否定是“对任意2
,0x R x x ∈-<”. D .已知x R ∈,则“1x >”是“2x >”的充分不必要条件.
4.若双曲线22221(0,0)x y a b a b
-=>>实轴的两个端点与抛物线2
4x by =-的焦点构成一个
等边三角形,则此双曲线的离心率为( ) A .3
B C .2 D .
5.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,
可得这个几何体的体积是( )
A .2
B .4
C .6
D .12
俯视图
6.设1234518,19,20,21,22x x x x x =====,将这
五个数据依次输入右边程序框进行计算,则输出的S 值及其统计意义分别是( ) A .2S =,即5个数据的方差为2 B. 2S =,即5个数据的标准差为2 C. 10S =,即5个数据的方差为10 D. 10S =,即5个数据的标准差为10
7.设函数)2
2
,0)(sin(3)(π
ϕπ
ωϕω<
<->+=x x f 的图像关于直线3

=
x 对称,它的周期是π,则( )
A .)(x f 的图象过点2
1,0(
B .)(x f 在2,123ππ⎡⎤

⎥⎣⎦
上是减函数 C .)(x f 的一个对称中心是)0,12
5(π
D . 将)(x f 的图象向右平移||ϕ个单位得到函数
x y ωsin 3=的图象.
8.已知集合{}0,2M =,数列{}n a 满足(1,2,3,)n a M n ∈= ,设10012
2100
333
a a a W =+++ ,则W 一定不属于区间( )
A .[)0,1
B .(]0,1
C .12,33⎡⎫⎪⎢⎣⎭
D .12,33⎛⎤
⎥⎝⎦
9.如图,有一条长度为的线段MN ,其端点,M N 在边长为3的正方形
ABCD 的四边上滑动,当点N 绕着正方形的四边滑动一周时,MN 的中点P 所形成的轨迹长度最接近于( )
A.8
B.11
C.12
D.10
10.已知112233(,),(,),(,)A x y B x y C x y 为区域120230x x y x y ≤⎧⎪
-+≥⎨⎪+->⎩
内的任意三
点,又已知二元函数(1)4(,)3
x k y k
f x y x +-+-=
+(其中k 为参数),若以
(第6题图)
A A
B
D (第9题图)
112233(,),(,),(,)f x y f x y f x y 的值为三边长的三角形总是存在的,则实数k 的取值范围是
( )
A . (0,3)
B . []3,0
C . (0,)+∞
D . [)∞,0
第Ⅱ卷(共90分)
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.在35(1)(1)x x -+的展开式中,5x 的系数是 .
12.如图,OAB 由y 轴,直线1y =及曲线2
y x =(0x ≥)围成,假设随机向该区域内投点,该点落在区域内每个位置是等可能的.现随机向区域投一点P ,则直线OP 的斜率小于的概率是 .
13. 设,,,A B C D 是半径为2的球面上的四个不同点,且,,AB AC AD 两两相互垂直,用123,,S S S 分别表示,,ABC ABD ACD ∆∆∆的面积,则
123S S S ++的最大值是 .
14.如图,两射线,AM AN 互相垂直,在射线AN 上取一点B 使AB 的长为2,在射线AN 的左侧以AB 为斜边作一等腰直角三角形ABC .在射
线,AM AN 上各有一个动点,D E 满足ADE ∆与
ABC ∆的面积之比为3:2,则CD ED ⋅
的取值范围为__________.
三、选做题(本小题满分5分)
15.考生注意:请在下列两题中任选一题作答,如果多做,则按所做的第一题评分.
.A (坐标系与参数方程选做题)曲线4cos ρθ=与曲线cos 2
ρθ=+的交点间距离
为 .
.B (不等式选讲选做题)关于x 的不等式112+-<-+a a x x 的解集为空集,则实数a 的
取值范围为 .
四、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程及演算步骤.
16. (本小题满分12分)
已知向量2,cos 2),(cos 2,cos 2)m x x n x x ==-
.
A
B
B
C
M
N
N
D
E (第14题图)
x
(第12题图)。

相关文档
最新文档