精密加工与特种加工技术

合集下载

9精密加工与特种加工简介

9精密加工与特种加工简介

9.1.2 精密加工和超精密加工的特点


1. 加工方法 目前精密和超精密加工方法根据加工机理可分为四大类: 切削加工:精密切削、微量切削和超精密切削等; 磨削加工:精密磨削、微量磨削和超精密磨削等; 特种加工:电火花加工、电解加工、激光加工、电子束加工、离子束加工等; 复合加工:将几种加工方法复合在一起,如机械化学研磨、超声磨削、电解抛光 等。 在精密和超精密加工中特种加工和复合加工方法应用得越来越多。 2. 加工原则 一般加工时,机床的精度总是高于这被加工零件的精度,这一规律被称为“蜕化” 原则。而对于精密加工和超精密加工时,有时可利用低于工件精度的设备、工具, 通过工艺手段和特殊的工艺装备,加工出精度高于“母机”的工作母机或工件。 这种方法称为进化加工。 3. 加工设备 加工设备的几何精度向亚微米级靠近。关键元件,如主轴、导轨、丝杆等广泛采 用液体静压或空气静压元件。 定位机构中采用电致伸缩、磁致伸缩等微位移结构。 设备广泛采用计算机控制、适应控制、在线检测与误差补偿等技术。



2. 电火花加工的工艺特点 (1) 电火花可加工任何硬、脆、韧、软和高熔点的导电材料,在一定条件下,还 可加工半导体材料和非导电材料。 (2) 加工时无切削力,有利于小孔、薄壁、空槽以及各种复杂截面的型孔、曲线 孔和型腔等零件的加工,也适于精密细微加工。 (3) 当脉冲宽度不大时,对整个工件而言,几乎不受热影响,可提高加工质量, 适于加工热敏感性强的材料。 (4) 脉冲参数可任意调节,能在同一台机床上连续进行粗、半精、精加工。精加 工时精度为0.005mm,表面粗糙度Ra值为1.6~0.8μm,尺寸精度;精微加工时精度可 达0.002mm~0.001mm,表面粗糙度Ra值为0.05~0.01μm。 (5) 直接使用电能加工,易于实现自动化。

精密加工和特种加工简介

精密加工和特种加工简介
⑷加工能量易于控制、转换,可复合成新
精密加工和特种加工简介
13
的工艺技术,适应加工范围广。
一、电火花加工 1.基本原理 电火花加工是基于脉冲放电蚀除原理产生的,故又称 放电加工或电蚀加工。 电火花加工原理图,由脉冲电源、自动进给调节装置、 工作液循环系统、工具电极等组成。 加工时,脉冲电源的一极接工具电极,另一极接工 件电极。两极均浸入具有一定绝缘度的液体介质(常用 煤油或矿物油)中。
精密加工和特种加工简介
2
工件精度和减少表面粗糙度值为目的的加工方法,如研磨、 珩磨等。
光整加工是指不切除或从工件上切除极薄材料层, 以降低表面粗糙度为目的的加工方法,如超精加工、抛 光等。
一、研磨 1.加工原理
研磨是用研磨工具和研磨剂,从工件上研去一层极 薄表面层的精加工方法。
精密加工和特种加工简介
精密加工和特种加工简介
9
超精加工可在普通车床、外圆磨床上进行,对于批 量较大的生产则宜在专用机床上进行。工作时应充分地 加润滑油,以便形成油膜和清洗极细地磨屑。
超 精 加 工 后 地 工 件 表 面 粗 糙 度 Ra 值 约 在 0.1~0.006μm之间。
四、抛光
抛光是利用机械、化学或电化学地作用,使工件获 的光亮、平整表面的加工方法
精密加工和特种加工简介
5
经研磨后的工件表面,尺寸精度可达IT4~IT1级; 表面粗糙度值可减小到0.1~0.006μm。形状精度 相应提高。
亦可
2)生产效率低,加工余量小。 3) 研磨剂易飞溅,污染环境。
在现代制造业中研磨应用很广,许多精密量块、 量规、齿轮、钢球、喷油嘴、石英晶体、陶瓷元件、光 学镜头及棱镜等零件均需研磨。
3
采用不同的研磨工具(如研磨心棒、研磨套、研磨平板等) 可对内圆、外圆和平面等进行研磨。

精密加工与特种加工技术

精密加工与特种加工技术

1.1 精密与特种加工技术的工程背景制造技术是促进社会发展的潜动力,也是发展较早的科学技术,目前已有几千年的发展历史,经历了石器时代、铜器时代、铁器时代、现代的高分子塑料时代,从手工制造、机器制造发展到现代的智能控制自动化制造阶段,从一般精度加工、精密加工到现代的超精密加工及、纳米加工。

同时,随着科学技术的迅速发展,新型工程材料不断涌现和被采用,工件的复杂程度以及要求的加工精度越来越高,对机械制造工艺技术提出了更高的要求。

由于受刀具材料性能、结构、设备加工能力的限制,使用传统的切削加工方法很难完成对高强度、高韧度、高脆性、耐高温和磁性等性能新材料,以及精密复杂、微细构件和难以处理的形状的加工。

为了解决这些制造业加工的难题、适应时代的发展需要,精密与特种加工技术应运而生。

此外,精密与特种加工技术是先进制造技术的重要组成部分。

随着精密与特种加工技术的发展,一方面,计算机技术、信息技术、自动化技术等在精密与特种加工中广泛应用,逐步实现了加工工艺及加工过程的系统集成,另一方面,精密与特种加工充分体现了学科的综合性和专业乏间的渗透、交叉、融合性。

目前,精密与特种加工技术已成为一个国家制造业水平的重的要标志,对机械工业、航天工业、化学工艺等,尤其是国防工业的技术提升起着至关重要的作用。

近年来,国家有关部门将精密与特种加工技术列为关键技术,并已制定发展规划准备付诸实施,精密与特种加工技术迎来了前所未有的飞速发展时机。

再者,精密与特种加工技术的产生也是为了解决以下一系列机械制造业所面临的瓶颈问题。

(1)各种难切削材料的加工问题。

如硬质合金、钛合金、耐热钢、淬火钢、不锈钢。

金刚石、石英、锗、硅等各种高硬度、高强度、高韧度、脆性强的金属及非金属材料的加工。

(2)各种特殊复杂型面的加工问题。

如喷气涡轮机叶片、整体涡轮、发动机机匣、锻压模等的立体成形表面,各种冲模、冷拔模等特殊断面的型孔,以及炮管内膛线、喷油嘴等的加工。

精密加工和特种加工简介

精密加工和特种加工简介

14
四、激光加工
工件的激光加工由激光加工机完成。 激光加工机通常由激光器、电源、光学系统 和机械系统等组成。激光器(常用的有固体激 光器和气体激光器)把电能转变为光能,产生 所需的激光束,经光学系统聚焦后,照射在 工件上进行加工。工件固定在三坐标精密工 作台上,由数控系统控制和驱动,完成加工 所需的进给运动。
9
特点及应用范围
①加工硬、脆、韧、软和高熔点的导电材料; ②加工半导体材料及非导电材料; ③加工各种型孔、曲线孔和微小孔; ④加工各种立体曲面型腔,如锻模、压铸模、 塑料模的模膛; ⑤用来进行切断、切割以及进行表面强化、刻 写、打印铭牌和标记等。
10
二、电解加工
电解加工是利用金属在电解液中产生阳极溶 解的电化学原理对工件进行成形加工的一种 方法。 工件接直流电源正极,工具接负极,两极之 间保持狭小间隙(0.1mm-0.8mm)。具有一 定压力(0.5MPa-2.5MPa)的电解液从两极 间的间隙中高速15m/s-60m/s)流过。当工 具阴极向工件不断进给时,在面对阴极的工 件表面上,金属材料按阴极型面的形状不断 溶解,电解产物被高速电解液带走,于是工 具型面的形状就相应地“复印”在工件上。11
12
三、超声波加工

超声波加工是利用超声频(16KHz-25KHz) 振动的工具端面冲击工作液中的悬浮磨料, 由磨粒对工件表面撞击抛磨来实现对工件 加工的一种方法。
13
特点及应用范围

在加工难切削材料时,常将超声振动与其它 加工方法配合进行复合加工,如超声车削、 超声磨削、超声电解加工、超声线切割等。 这些复合加工方法把两种甚至多种加工方法 结合在一起,能起到取长补短的作用,使加 工效率、加工精度及工件的表面质量显著提 高。

精密加工和特种加工简介

精密加工和特种加工简介
(3)当脉冲宽度不大时,对整个工件而言热 影响小,能够提升加工质量,适于加工热 敏性强旳材料。
电火花线切割加工 电火花线切割加工是用线状电极(钼丝或铜
丝)靠火花放电对工件进行切割,故称为电 火花线切割,有时简称线切割。其应用广泛, 占电加工机床旳60%以上。
二、电解加工
1、加工旳基本原理
电解加工(电化学加工)是利用金属 在电解液中产生阳极溶解旳电化学反应原 理,对金属材料进行成形加工旳一种措施。
不产生宏观应力和变形 加工材料范围很广 电子束能量密度高,生产率很高 加工过程能够自动化 污染少,加工表面不氧化 需要一整套专用设备和真空系统,价格较贵,
应用有一定旳不足
➢电子束加工旳应用
按其功率密度和能量注入时间旳不同,可用于打 孔、切割、蚀刻、焊接、热处理和光刻加工等
➢高速打孔
最小直径可达0.003 mm左右 电子束还能加工小深孔(深径比>10:1) 可加工玻璃、陶瓷、宝石等脆性材料
3、电解加工旳特点及应用
(1)能以简朴旳进给运动一次加工出形状复杂旳型 面或型腔,如锻模、叶片等。
(2)可加工高硬度、高强度和高韧性等难切削旳金 属材料。
(3)加工中无机械切削力或切削热,适合于易变形 或薄壁零件旳加工。
(4)加工后零件表面无剩余应力和毛刺。
(5)工具阴极不损耗。
(6)因为影响电解加工旳原因较多难于实现高精度 旳稳定加工。
焦点上到达很高旳能量密度,靠光热效应来加 工多种材料旳。
激光加工旳特点: 功率密度高达108~1010W/cm2,几乎可加工任何材
料 激光光斑可聚焦到微米级,输出功率可调整,可
用于精密微细加工 所用工具为激光束,是非接触加工,所经没有明
显旳机械力,没有工具损耗;加工速度快,热影 响区小 打孔和切割旳激光深度受限

机械制造1_第6章 精密加工和特种加工

机械制造1_第6章 精密加工和特种加工

6.2 特种加工方法
1.电火花加工 (1)加工原理。
图6-6 电火花加工原理示意图 a)电火花加工机床结构示意图 b)原理示意图 1—床身 2—立柱 3—工作台 4—工件电极 5—工具电极 6—进给结构及间隙调节器
7—工作液 8—脉冲电源 9—工作液箱
6.2 特种加工方法
图6-7 电火花加工时工件表面形成过程
6.2 特种加工方法
6.2.1 特种加工的概念 特种加工主要是利用电能、光能、声能、热能和化学能
来去除金属和非金属材料的非传统性加工方法。 (1)力学加工。 (2)电物理加工。 (3)电化学加工。 (4)激光加工。 (5)化学加工。 (6)复合加工。 6.2.2 特种加工的特点及应用范围
6.2 特种加工方法
6.1 精密和超精密加工
图6-1 盒式超精密立式车床
6.1 精密和超精密加工
6.与测量技术配套 精密测量是精密加工和超精密加工的 必要条件,有时要采用在线检测、在位检测以及在线补偿 等技术,以保证加工精度要求。 6.1.3 精密与超精密加工方法
根据加工方法的机理和特点,精密和超精密加工方法可 以分为刀具切削加工、磨料加工、特种加工和复合加工4 类。
6.1 精密和超精密加工
(3)超净。 3.切削性能 精密加工和超精密加工必须能均匀地去除不 大于工件加工精度要求的极薄的金属层,这是精密加工和 超精密加工的重要特点之一。 4.加工设备 精密加工和超精密加工的实施必须依靠高精 密加工设备。 (1)机床主轴应具有极高的回转精度及很高的刚性和热稳定 性。 (2)机床的进给系统应能提供超精确的匀速直线运动,保证 在超低速条件下进给均匀,不发生爬行。
图6-2
6.1 精密和超精密加工
(1)金刚石刀具精密切削机理。 (2)影响金刚石刀具精密切削的因素。 1)金刚石刀具材料的材质、几何角度设计、晶面选择、刃 磨质量及对刀。 2)金刚石刀具精密切削机床的精度、刚度、稳定性、抗振 性和数控功能。 3)被加工材料的均匀性和微观缺陷。 4)工件的定位和夹紧。 5)工作环境。

04精密加工和特种加工

04精密加工和特种加工

抛光特点:
①方法简便、经济,不用特殊设备;
②容易对曲面进行加工;
③只能提高粗糙度,不能改变零件的尺寸精度、形状精度或位置精度;
④劳动条件差。
抛光应用: 抛光主要用于零件表面的装饰加工,或者利用抛光方法去除前道工序的加工
痕迹,提高零件的疲劳强度。
抛光零件表面的形状可以是平面、外圆、孔、以及各种成形表面等。 五、各种精密加工方法的比较:
用装有细磨粒、低硬度的油石磨头,在一定压力下 对工件表面进行光整加工的方法称为超级光磨 。
• 加工时工件旋转,油石以恒力轻压于工件表面, 在作轴向进给的同时作轴向微小振动,从而达到 对工件微观不平的表面进行光磨的效果。
超级光磨的特点 : ①加工余量极少,一般为3 ~ 10μm; ②生产率较高,一般加工时间只需30~60秒; ③表面质量好,Ra<0.012μm; ④设备简单,操作方便。 但是,超级光磨只能提高表面质量,不能提高尺寸精度和形位精度。
第二节 特种加工
特种加工是相对于传统的切削加工而言,传统的切削加工是用刀具靠机械 能去除工件表面的多余材料。当工件材料的强度、硬度、脆性、韧性过高, 或零件的结构过于复杂,或尺寸太小,或零件的刚度较差时,传统的切削加 工方法就难于实现。特种加工就是为解决这些难题而发展起来的一种新的加 工方法.
特种加工是直接利用电能、光能、声能、热能、化学能或多种能量复合形 式进行加工的方法。常用的特种加工有电火花加工、电解加工、超声波加工、 激光加工、电子束加工和离子束加工等。
精度为3~O.3 μm,粗糙度为O.3~O·03μm的叫精密加工;
精度为0.3~0.03 μm,粗糙度为0.03~0.005 μm的叫超精密加工,或亚微米 加工;
精度为0.03 μm(30纳米),粗糙度优于0.005 μm以上的则称为纳米(nm)加工。

精密加工与特种加工

精密加工与特种加工

一、名词解释1、杂散腐蚀:电解加工时,由于系统中杂散电流的存在而对零件产生的腐蚀。

杂散腐蚀是衡量电解液加工精度高低的指标。

2、空气静压轴承:是利用气体作为润滑剂的滑动轴承。

具有很高的回转精度,但刚度较低,只能承载较小的载荷。

3、激光束模式:激光束的断面能量分布称为模式,用TEM表示,是指横截面上的电磁能分布。

4、多电极更换法:采用多个电极依次更换加工同一个型腔,每个电极加工时必须把上一标准的放电痕迹去掉。

5、解理面:矿物晶体在外力作用下严格沿着一定结晶方向破裂,所裂出的光滑平面称为解理面。

6、电化学当量:在一个电极反应中,相当于1摩尔电子参与反应的发应物的质量。

7、浓度超电压:电解加工时,为减轻浓度极化现象保持一定电化学电流和加工速度而外加的一个电压。

8、精密研磨:属于游离磨粒切削加工,是在刚性研具上注入磨料,在一定压力下,通过研具与工件的相对运动,借助磨粒的微切削作用,除去微量的工件材料,以达到高级几何精度和优良表面粗糙度的加工方法。

9、分解电极法:根据型腔的具体问题将型腔形状分解成几个部分,分别制作不同的电极工具,再分别进行型腔的电火花加工。

是单电极平动加工法和多电极更换加工法的综合应用。

10、面网密度:面网上单位面积内结点的数目。

11、极性效应:在电火花加工过程中,两电极的电蚀量不同的现象。

12、电极电位:任何一种金属插入含该金属离子的水溶液中,在金属或溶液界面上形成的电位差。

二、计算电解加工三、简答1、研磨与抛光的差异。

答:(1)基本原理不同:研磨是通过介于工件与研具之间的磨料或研磨液的流动产生机械摩擦或化学作用去除微量加工余量。

抛光是指采用无纺布等软质材料,具有一定研磨性质地获得光滑表面的加工方法。

(2)磨具不同:研磨用磨具包括铸铁盘、沥青盘、锡盘等硬质材料(刚性材料);抛光采用无纺布、平绒布等软质材料(柔性材料)。

(3)作用不同:抛光只能提高工件表面的光亮度,不改变零件表面的粗糙度;研磨不但可以减小零件的粗糙度,还能在一定程度上提高零件的尺寸和形状精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1。

1 精密与特种加工技术的工程背景制造技术是促进社会发展的潜动力,也是发展较早的科学技术,目前已有几千年的发展历史,经历了石器时代、铜器时代、铁器时代、现代的高分子塑料时代,从手工制造、机器制造发展到现代的智能控制自动化制造阶段,从一般精度加工、精密加工到现代的超精密加工及、纳米加工。

同时,随着科学技术的迅速发展,新型工程材料不断涌现和被采用,工件的复杂程度以及要求的加工精度越来越高,对机械制造工艺技术提出了更高的要求。

由于受刀具材料性能、结构、设备加工能力的限制,使用传统的切削加工方法很难完成对高强度、高韧度、高脆性、耐高温和磁性等性能新材料,以及精密复杂、微细构件和难以处理的形状的加工。

为了解决这些制造业加工的难题、适应时代的发展需要,精密与特种加工技术应运而生。

此外,精密与特种加工技术是先进制造技术的重要组成部分。

随着精密与特种加工技术的发展,一方面,计算机技术、信息技术、自动化技术等在精密与特种加工中广泛应用,逐步实现了加工工艺及加工过程的系统集成,另一方面,精密与特种加工充分体现了学科的综合性和专业乏间的渗透、交叉、融合性.目前,精密与特种加工技术已成为一个国家制造业水平的重的要标志,对机械工业、航天工业、化学工艺等,尤其是国防工业的技术提升起着至关重要的作用。

近年来,国家有关部门将精密与特种加工技术列为关键技术,并已制定发展规划准备付诸实施,精密与特种加工技术迎来了前所未有的飞速发展时机.再者,精密与特种加工技术的产生也是为了解决以下一系列机械制造业所面临的瓶颈问题。

(1)各种难切削材料的加工问题.如硬质合金、钛合金、耐热钢、淬火钢、不锈钢.金刚石、石英、锗、硅等各种高硬度、高强度、高韧度、脆性强的金属及非金属材料的加工。

(2)各种特殊复杂型面的加工问题。

如喷气涡轮机叶片、整体涡轮、发动机机匣、锻压模等的立体成形表面,各种冲模、冷拔模等特殊断面的型孔,以及炮管内膛线、喷油嘴等的加工。

(3)各种超精密、光整零件的加工问题.如表面质量和精度要求很高的航空航天陀螺仪、精密光学透镜、激光核聚变的曲面镜、高灵敏度的红外传感器等零件的精细表面加工,该类零件的形状和尺寸精度要求在0。

1微米以上,其表面粗糙度Ra口值要求在0.01微米以下。

(4)特殊零件的加工问题.如大规模集成电路、光盘基片、复印机和打印机的感光鼓、微型机械和机器人零件,以及细长轴、薄壁零件、弹性元件等低刚度零件的加工。

1.2 精密与特种加工技术的特点精密与特种加工技术是一门多学科综合的高级技术,精密加工的范畴包括微细加工、光整加工和精整加工等,-与特种加工技术关系密切,而且很多精密加工是由特种加工技术实现的。

特种加工(又称非传统加工)是第二次世界大战后发展起来的一类有别于传统切削与磨削加工方法的总称.特种加工方法将电、磁、声、光等物理量及化学能量或其组合直接施加在工件被加工的部位上,从而使材料被去除、累加、变形或性能改变等。

用特种加工方法可以完成用传统加工方法难以实现的加工,如高强度、高韧度、高硬度、高脆性、耐高温材料和工程陶瓷、磁性材料等难加工材料的加工,以及精密、微细、复杂形状零件的加工等。

特种加工技术有以下五个特点。

(1)加工方法主要不是依靠机械能,而是用其他能量(如电能、光能、声能、热能、化学能等)去除材料.(2)传统加工方法要求刀具的硬度必须大于工件的硬度,即“以硬切软”,而对于特种加工,由于工具不受显著切削力的作用,特种加工对工具和工件的强度、硬度和刚度均没有严格要求。

(3)加工没有明显的切削力作用,一般不会产生加工硬化现象,又由于工件加工部位变形小、发热少,或发热仅局限于工件表层加工部位,工件热变形小,由加工产生的应力也小,易于获得好的加工质量,且可在一次安装中完成工件的粗、精加工(4)特种加工中能量易于转换和控制,有利于保证加工精度和提高效率。

(5)特种加工方法的材料去除速度一般低于常规加工方法,这也是目前常规加工方法在机械加工中仍占主导地位的主要原因.1。

3精密与特种加工技术的分类及课程体系1。

3。

1 基于加工成形原理的分类精密与特种加工技术从加工成形的原理和特点来分类,可以分为去除加工、结合加工、变形加工三大类。

(1)去除加工又称分离加工,是从工件上去除多余材料的加工,例如金刚石刀具精密车削、精密磨削、电火花加工、车铣加工等。

(2)结合加工它是利用物理和化学方法将不同材料结合(bonding)在一起的加工方法,按结合的机理、方法、强弱等又可分为附着( deposition)、注入(injection)、连接(jointed)三种。

附着加工又称沉积加工,是在工件表面上覆盖一层物质,为弱结合,例如电镀、气相沉积等。

注入加工又称深入加工,是在工件的表层注入某些元素,使之与工件基体材料产生物理、化学反应,以改变工件表层材料性质及力学性能,属于强结合,例如表面渗碳、离子注入等。

连接加工是将两种相同或不同的材料通过物理、化学方法连接在一起,例如焊接、黏结等。

(3)变形加工又称流动加工,是利用力、热、分子运动等手段使工件产生变形,改变尺寸、形状和性能,例如锻造、铸造等。

从材料在加工过程中的流动来分析,去除加工是使工件材料逐步减少、一部分工件材料变成切屑的加工,这种流动称为分散流。

结合加工是使工件材料在加工过程中逐步增加的加工,这种流动称为汇合流.变形加工是指在加工过程中工件材料基本不变的加工,这种流动称为直通流。

此外,近年来,提出和发展了电铸、晶体生长、分子束外延、快速成形加工等加工方法,突破了传统加工大多局限于分离去除加工和表面结合加工的概念。

特别是快速成形加工,它是一种利用离散、堆积成形技术的分层制造方法:将一个三维空间实体零件分散为在某个坐标方向上的若干层有很小的三维实体,由于厚度很小,可按二维实体成形,再叠加而得到所需零件的原型。

1。

3。

2基于加工方法机理的分类从加工方法的机理来分类,精密与特种加工技术可分为传统加工、非传统加工、复合加工。

(1)传统加工它是指使用刀具进行的切削加工以及磨削加工。

(2)非传统加工它是指利用机、电、声、热、化学、磁、原子能等能源来进行的加工。

(3)复合加工它是指采用多种加工方法的复合作用进行加工,其中包括传统加工和非传统加工的复合、非传统加工与非传统加工的复合,因而,此种加工方式是一种多加工方法优势互补、相辅相成的加工方式.目前,在制造业中,占主要地位的仍然是传统加工,而非传统加工和复合加工是加工制造业中极其重要的发展方向.1.3。

3精密与特种加工技术的课程体系精密与特种加工技术是一门涉及面广、更新快的机械类专业课程。

近年来,随着微电子技术、计算机技术、自动控制技术等技术的发展飞速,精密与特种加工技术也发生了飞跃式的发展,因而,该课程对于机械工程专业本科生专业素养的培养和专业知识面的拓展也异常重要。

但该课程的课程体系较为分散,逻辑联系不是很紧密,因而,课程体系的改革至关重要。

本书提出了如图1。

1所示的课程体系,该体系分为宏观课程体系和微观课程体系,其中宏观课程体系表征了该课程的重点及教学核心,微观课程体系将课程内容根据精密与特种加工技术的分类方法及工艺机理进行了归类。

从图1.1中可见,该体系结构紧密,课程主线清晰,在教育改革的背景下,在缩减学时的同时而不减少主要教学内容,有利于提高授课的效率,也便于学生复习,适应了科技飞速发展的数字化新时代对机械工程专业的教学要求。

同时,所有的精密与特种加工工艺均可用工艺功能设计方法来分析、解释,应用该方法还可构思新的精密与特种加工工艺,因而,本书在以上微观课程体系基础上介绍了工艺功能设计方法。

1.4精密与特种加工技术的应用现状及发展趋势1。

4。

1 精密与特种加工技术的应用现状在航空航天、武器装备及发动机的设计中,整体构件设计被越来越多地采用如图1.2所示的整体叶轮、整体径向扩压器、整体机匣等。

整体构件的设计制造逐渐成为航空航天、武器装备及发动机设计制造的发展方向,对于实现武器装备轻量化、小型化、自动化、精确打击、全寿命可靠、高性能价格比等目标,具有重要推动作用.另外,在现代高速列车、大型船舶、先进涡轮机械等工业产品中,整体构件设计也逐渐获得应用,对于提高功率、提高速度、提高产品可靠性,以及节能减排、改善环境,都具有重大意义。

然而,由于整体构件的几何构形复杂并且材料难以加工,其整体制造已经成为世界性制造技术难题,各先进工业国都在努力研究开发相关制造技术,以求优质、高效、低成本、快速地制造整体构件.对于一般由不锈钢、锅合金、甚至部分由钛合金材料制成,加工可达性较好的敞开式整体构件,利用传统加工工艺(如数控铣削、精密铸造等)已经能够较好地完成加工,即便如此,国外发达国家仍在大力研究新工艺、新方法,以求降低生产成本、提高加工精度;但对于如图1.2所示的出高温合金等难切削材料制成,加工可达性很差的闭式、半闭式薄壁整体构件的整体制造,采用传统加工工艺存在较多问题,特种加工技术将是解决其加工问题的首选工艺方法,尤其在实现真正的整体制造(非传统上的先进行分体加工,然后再装配连接或焊接成整体构件的制造)中将占有重要地位。

密与特种加工技术已经广泛应用于军工生产,其中整体叶轮的电解加工是目前比较成功的应用案例。

整体叶轮的叶形呈弯扭态,叶身超薄,叶片进、排气边曲率变化急剧,两相邻叶片间通道狭窄,同时广泛采用高温合金、钛合金等难加工材料,精度、表面质量等方面的技术要求也十分苛刻,这些特点给其制造带来了极大困难.根据德国最大的航室发动机制造集团——MTU的分析,在今后的10~15年,整体叶轮的主要制造方法有三种,分别是:电解加工、数控铣削和线性摩擦焊.其中线性摩擦焊占不到10%的份额(现有份额不足1%),电解加工和高速切削各占45%左右,而对于军用航空发动机,电解加工所占比例更大。

图1.3所示为南京航空航天大学研制的数控电解加工设备和利用该设备加工的整体叶轮。

精密与特种加工技术在生产应用中有很多种类,根据其工作机理大致可以分为以下四种类别。

1)电气特种加工它是利用金属在直流电场和电解液中产生阳极溶解的电化学原理对工件进行成形加工的一种方法,通常称为电化学加工或电解加工。

它包括电解液冲刷加工、成形管电解加工、电化学抛光、电解磨削、电化学削平加工等方法.它适用于磨削、成形、去毛刺、车削、抛光,以及复杂型腔、型面及型空等的加工。

(2)机械特种加工它不同于传统切削加工方法,是用机械能或间接用声能、热能、电化学能进行加工,可分为磨料流动加工、磨料喷射加工、高速流体加工、阳极机械切割、低应力磨削、热辅助加工、超声波加工、全成形加工等方法。

它适用于切割、穿孔、研磨、去毛刺、蚀刻、磨削、拉削、锉削和套料等加工。

(3)化学特种加工化学特种加工是指利用化学溶液酸、碱、盐等使金属发生化学反应,使金属腐蚀、溶解而改变工件尺寸和形状的一种加工方法。

相关文档
最新文档