活性炭吸附实验方案
活性炭静态吸附实验

1.4 实验步骤
2. 活性炭吸附实验
1)在6个500mL的三角烧杯中分别投加0、50、100、200、300、 500mL的三角烧杯中分别投加 的三角烧杯中分别投加0 50、100、200、300、 400mg粉末状活性炭 再分别加入200mL含酚废水。(含酚废水 400mg粉末状活性炭,再分别加入200mL含酚废水。(含酚废水 粉末状活性炭, 含酚废水。( 的浓度C=10mg/L) 的浓度C=10mg/L) 2)测定水温,将三角烧瓶放在振荡器上震荡,计时1h。 测定水温,将三角烧瓶放在振荡器上震荡,计时1h。 3)将震荡后的水样用漏斗和滤纸过滤,滤出液50mL,倒入50mL 将震荡后的水样用漏斗和滤纸过滤,滤出液50mL,倒入50mL 比色管中。 比色管中。 4)按绘制标准曲线的实验步骤中3)~7)的步骤加药剂,测吸光 按绘制标准曲线的实验步骤中3 ~7)的步骤加药剂, 度。 5)在标准曲线上查出酚的浓度。 在标准曲线上查出酚的浓度。
实验4 实验4
活性炭静态吸附实验
1.1 实验目的
了解活性炭的吸附工艺及性能, 了解活性炭的吸附工艺及性能,并熟悉整个实 验过程的操作。 验过程的操作。 掌握用“间歇”法确定活性炭处理污水的设计 掌握用“间歇” 参数的方法。 参数的方法。
1.2 实验原理
活性炭吸附是利用活性炭固体表面对水中一种或多种 物质的吸附作用达到净化水质的目的。 物质的吸附作用达到净化水质的目的。在温度一定的 条件下, 条件下,活性炭的吸附量随被吸附物质平衡浓度的提 高二提高,两者的变化曲线为吸附等温线。 高二提高,两者的变化曲线为吸附等温线。通过吸附 等温线可以反映活性炭的吸附过程。 等温线可以反映活性炭的吸附过程。
1.4 实验步骤
1. 标准曲线的绘制
吸附实验实验方案

实验方案吸附实验一、实验目的1. 加深对混凝沉淀原理的理解2. 掌握活性炭吸附公式中常数的确定方法3. 掌握吸附实验中各种影响因素二、实验原理活性炭吸附过程包括物理吸附和化学吸附。
其基原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就使其分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述二种吸附综合作用的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,此时的动平衡称为活性炭吸附平衡,而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭吸附能力以吸附容量q表示。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用费兰德利希经验式加以表达。
KC1式中q—活性炭吸附量,mg/g;C—被吸附物质平衡浓度,mg/L;K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的性质有关的常数;K、n 值求法如下:通过间歇式活性炭吸附实验测得q、C 一相应之值,将式(11-2)到对数后变换为下式:lgq=lgk+1/n*lgC (11-3)将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。
三、实验研究内容主要研究的是利用吸附法除去水中异味、色度、某些离子以及难生物降解的有机污染物。
研究PH的高低、温度的变化和被吸附物质的分离程度对吸附效率的影响。
四、实验方法1 、实验水样: 印染水样2、实验仪器和试剂仪器:量筒100ml 2只,烧杯500ml 6只,移液管10ml 1 只容量瓶500ml 一只,100ml 5只,分光光度计,活性炭柱,比色皿,振荡器试剂:亚甲基蓝储存液,活性炭3、实验方法和步骤(一)标准曲线1, 用移液管分别吸取甲基蓝标准溶液5、10、20、30、40ml于100ml容量瓶中,用蒸馏水稀释至100ml刻度处,摇匀,以水为参比。
实验五 活性碳吸附实验

3、取下烧杯,静置15min。
4、取上清液测定吸光度并根据标准曲线计算吸光度。
五、实验数据
表一 确定废水的最大吸收波长
染料的浓度mg/L
吸光度
0
0.000
5
0.086
10
0.156
15
0.216
20
0.283
25
0.343
30
0.415
活性炭的吸附能力以吸附量q(mg/g)表示。所谓吸附量是指单位重量的吸附剂所吸附
的吸附质的重量。本实验采用粉状活性炭吸附水中的有机染料,达到吸附平衡后,用分光光
度法测得吸附前后有机染料的初始浓度C0及平衡浓度Ce,以此计算活性炭的吸附量qe。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,二者之间
的关系曲线为吸附等温线。以lgCe为横坐标,lgqe为纵坐标,绘制吸附等温线,求得直线斜率1/n、截距lgK。
三、实验装置及化学药品
1、可调速搅拌器;2、烧杯1000 ml;3、721型分光光度计;4、pH计或精密pH试纸、温度计;5、大小烧杯、漏斗;6、粉状活性炭;7、:100mg/L活性艳蓝KN-R染料废水;8、0.45微米的滤膜。
0.225
14.89
1.17
0.97
-0.01
12800
0.027
2.96
0.47
1.04
0.02
以lgCe为横坐标,lgqe为纵坐标,绘制曲线如下。
由于最后一组中活性炭浓度过大导致上清液中悬浮部分颗粒物,无法较好测定吸光度,因而取其组的二次滤液偏小。从上图可以看出,误差较大的点应舍弃。故做下图,作为吸附等温线。
活性炭吸附实验报告

活性炭吸附实验报告
引言概述:
本实验旨在研究活性炭材料在吸附过程中的性能和效果。
活性炭是一种具有高孔隙度和高吸附能力的材料,广泛应用于水处理、空气净化、废气处理等领域。
通过实验确定活性炭的吸附性能,可以为其在工业和环境应用中提供科学依据。
正文内容:
1.活性炭的原理和特性
1.1活性炭的制备方法
1.2活性炭的物理特性和表面结构
1.3活性炭的吸附原理
2.实验设计和方法
2.1活性炭的选择和准备
2.2吸附试剂的选择和制备
2.3实验装置和操作流程
3.吸附实验结果与分析
3.1吸附平衡实验
3.1.1吸附剂用量对吸附效果的影响
3.1.2吸附剂颗粒大小对吸附效果的影响
3.1.3吸附剂pH值对吸附效果的影响
3.2吸附动力学实验
3.2.1吸附速率对吸附效果的影响
3.2.2吸附温度对吸附效果的影响
3.2.3吸附剂可重复使用性能的评估
4.吸附实验的结果讨论
4.1吸附平衡实验结果分析
4.2吸附动力学实验结果分析
4.3吸附剂的选择和应用前景
5.实验改进和未来研究方向
5.1实验方法的改进和优化
5.2活性炭的改良和性能提升
5.3活性炭在环境治理中的应用研究
总结:
通过本实验,我们对活性炭吸附过程的性能和效果进行了研究。
实验结果表明,活性炭吸附效果受到吸附剂用量、颗粒大小、pH值、吸附速率和温度等因素的影响。
活性炭作为一种有潜力的吸附材料,在水处理、空气净化、废气处理等领域具有广阔的应用前
景。
未来的研究可以着重于改进实验方法、提升活性炭的吸附性能,并进一步探索其在环境治理中的应用。
实验3活性炭吸附实验报告

实验3 活性炭吸附实验报告一、 研究背景:1.1、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附 质)以去除或回收废水中的有害物质,同时净化了废水。
质)以去除或回收废水中的有害物质,同时净化了废水。
活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。
化而制成的多孔性疏水性吸附剂。
活性炭具有比表面积大、活性炭具有比表面积大、活性炭具有比表面积大、高度发达的孔隙结构、高度发达的孔隙结构、高度发达的孔隙结构、优良的机优良的机械物理性能和吸附能力,械物理性能和吸附能力,因此被应用于多种行业。
因此被应用于多种行业。
在水处理领域,在水处理领域,活性炭吸附通常作为饮用活性炭吸附通常作为饮用水深度净化和废水的三级处理,水深度净化和废水的三级处理,以除去水中的有机物。
以除去水中的有机物。
除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性以上都是基于活性炭优良的吸附性能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
1.2、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。
同时,被吸附物质在溶剂中的溶 解度也直接影响吸附的速度。
此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。
有一定影响。
1.3、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的 有机物。
活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的某些离子以及难以进行生物降解的 有机污染物。
二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理。
加深理解吸附的基本原理。
活性炭吸附实验报告

活性炭吸附实验报告
活性炭吸附实验报告
一、实验目的
掌握活性炭的吸附特性,了解活性炭的吸附能力和吸附速度。
二、实验原理
活性炭是一种具有活化处理的炭材料,具有巨大的比表面积和强大的吸附能力。
通过活性炭的孔隙结构,能够吸附并固定气体、溶液中的有机物、无机物等。
三、实验仪器和试剂
仪器:活性炭吸附仪;
试剂:活性炭,甲苯溶液。
四、实验步骤
1. 准备实验仪器和试剂。
2. 将活性炭样品加入活性炭吸附仪中,调节仪器参数,使系统处于正常工作状态。
3. 将甲苯溶液滴加到活性炭吸附仪内,记录下溶液滴加的时间和滴加的量。
4. 观察活性炭的吸附过程,记录下吸附过程的时间和活性炭的颜色变化。
5. 当活性炭吸附饱和或滴加完甲苯溶液后,关闭吸附仪,取出活性炭样品。
五、实验结果与分析
根据实验结果,记录下甲苯溶液滴加的时间和量,并观察活性炭吸附过程的时间和颜色变化。
六、结论与讨论
通过实验我们可以得到活性炭的吸附能力和吸附速度。
根据实验结果,我们可以发现活性炭对于甲苯具有较好的吸附能力,能够将溶液中的甲苯吸附并固定在其孔隙结构中。
同时,通过观察活性炭的颜色变化,我们也可以了解活性炭的吸附过程和吸附饱和点。
七、实验总结
通过本次实验,我们深入了解了活性炭的吸附特性和吸附能力。
活性炭在工业和环境领域具有广泛的应用价值,例如在水处理、空气净化中的应用。
了解活性炭的吸附能力和吸附速度有助于我们正确选择和使用活性炭材料,提高其吸附效果和利用率。
同时,也为我们今后研究更多类型的吸附材料提供了基础。
实验五 活性炭吸附

实验五活性炭吸附一、实验目的1.了解活性炭吸附装置及其工艺流程,掌握操作方法;2. 测定吸附等温线;3. 加深对吸附理论的理解。
二、实验原理活性炭是用含炭为主的物质(如木材、煤)作原料。
与其他吸附剂相比,活性炭具有巨大的比表面积和特别发达的微孔。
通常活性炭的比表面积高达500~1700m2/g,这是活性炭吸附能力强、吸附容量大的主要原因,其吸附作用是物理吸附和化学吸附综合作用的结果。
当活性炭在溶液中的吸附速度和解析速度相等时,达到动态平衡,此时被吸附物质的浓度不再发生变化,称为平衡浓度。
运行方式由间歇式静态吸附和连续式动态吸附两种,在工程中多采用动态吸附,本实验采用静态吸附方式。
三、实验设备及仪器1.6个500mL三角烧瓶;2.振荡器。
四、实验耗材1.水样采用自配苯酚溶液,浓度100mg/L。
2.吸附剂采用5#、8# 活性炭,经磨细(一般采用通过0.1mm筛孔以下的粒径)并水洗后,在110℃下干燥(烘干1小时)后备用。
五、实验步骤1. 在6个500mL的三角烧瓶中分别投加0、15、30、80、150、300mg 的吸附剂,然后分别加入250mL实验水样,测定水样;在振荡器上振荡30分钟(已接近吸附平衡),用滤纸滤出吸附剂;2.测定原水及滤出液中酚的浓度;3.求出各吸附剂的吸附等温线,并以弗兰德利希方程求出其吸附方程式;4. 如要求含酚溶液浓度去除99%,试选一种吸附剂,并对该吸附剂(用原状颗粒)作动态实验,求平均吸附量A;或作静态实验,求平衡浓度下的单位吸附量A,并作比较。
(因时间关系,第4步可不做)。
六、实验数据记录与分析1.数据记录表表5-1 活性炭吸附实验数据记录表吸附剂投加量M/mg0153080150300平衡浓度/(mg/L)单位吸附量/(mg/g)2.求出吸附方程式并绘制吸附等温线。
七、思考题1.评价各种吸附剂对苯酚的吸附能力。
2.为什么要将吸附剂磨细?其吸附能力及吸附速度与原状吸附剂相同吗?3.静态吸附与动态吸附有何不同?分别在什么情况下采用?4.吸附等温线有何实际意义?。
活性炭吸附实验

实验3 活性炭吸附实验背景材料:活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。
活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。
在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。
除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。
将活性炭作为重要的净化剂,越来越受到人们的重视。
一、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。
希望达到下述目的:(1)加深理解吸附的基本原理;(2)掌握活性炭吸附公式中常数的确定方法。
二、实验原理活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。
有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。
水中所含的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。
当吸附和解吸处于动态平衡状态时,称为吸附平衡。
这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。
如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量e q ,即吸附容量可按下式计算:mx q e = (6-1) e q 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 有关。
一般说来,①当被吸附的物质能够与活性炭发生结合反应,②被吸附物质不易溶解于水而受到水的排斥作用,③活性炭对被吸附物质的亲和作用力强,④被吸附物质的浓度又较大时,e q 值就比较大。
描述吸附容量e q 与吸附平衡时溶液浓度C 的关系有Langmuir 、BET 和Freundlich 吸附等温式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭吸附实验方案
1.实验目的
本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。
2.实验原理
2.1活性炭特性
活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。
其中粉末活性炭应用于水处理在国内外已有较长的历史。
活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。
它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。
活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。
它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。
其孔隙占活性炭总体积的70%~80%,每克活性炭的表面积可高达500 ~1700 平方米,但99.9%都在多孔结构的内部。
活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。
2.2活性炭在水处理中的运用
用活性炭吸附法处理污水或废水就是利用其多孔性固体表面,吸附去除污水或废水中的有机物或有毒物质,使之得到净化。
研究表明,活性炭对分子量500-1000范围内的有机物具有较强的吸附能力。
活性炭对有机物的吸附受其孔径分布和有机物特性的影响,主要是受有机物的极性和分子大小的影响。
同样大小的有机物,溶解度越大、亲水性越强,活性炭对它的吸附性越差,反之,对溶解度小,亲水性差、极性弱的有机物如苯类化合物、酚类化合物等具有较强的吸附能力[3]
活性炭水处理的主要影响因素有: 活性炭的性质、吸附质性质、吸附质的浓度、溶液pH、溶液温度、多组分吸附质共存和吸附操作条件等[4].
3.仪器与药品
仪器
可见分光光度计恒温摇床
药品
亚甲基蓝、粉末活性炭(PAC)、不定型颗粒活性炭(GAC)
4.实验操作
4.1亚甲基蓝标线绘制
1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。
2、用移液管分别移取亚甲基蓝标准溶液5、10、20、30、40ml于100ml容量瓶中,用蒸馏水稀释至100ml刻度线处,摇匀,以水为参比,在波长664nm处,用1cm比色皿测定吸光度,绘出标准曲线。
4.2吸附实验
4.2.1投加量的影响
分别称取0.01、0.02、0.04、0.08、0.09、0.l2gGAC或PAC,加入到100mL浓度为20mg/L的亚甲基蓝溶液中,放入恒温振荡器中振荡,设置转速为130r/min,反应60 min,取上清液测定剩余溶液的吸光度,考察活性炭投加量对亚甲基蓝去除率的影响。
4.2.1吸附时间的影响
分别称取0.05g GAC或PAC,加入到100mL浓度为20mg/L的亚甲基蓝溶液中,放入恒温振荡器中振荡,设置转速为130r/min,分别振荡10、20、30、60、90、120min,在不同时刻取上清液测定剩余溶液的吸光度,考察对吸附时间亚甲基蓝去除率的影响。
4.2.2初始浓度的影响
分别称取0.05g GAC或PAC至一系列250mL的磨口锥形瓶中,然后倒入100mL不同浓度(l0mg/L、20mg/L、30mg/L、40mg/L、50mg/L)的亚甲基蓝溶液,放入恒温振荡器中振荡,设置转速为130r/min,反应60 min,取上清液测定剩余溶液的吸光度,考察亚甲基蓝初始浓度对去除率的影响。
4.2.3吸附等温线
在一系列250mL锥形瓶中分别加入0.05gGAC或PAC之后向瓶内倒入100mL 浓度分别为10、20、30、40、50、60、70、80、90、100mg/L 的亚甲基蓝溶液,此时活性炭的投加量为0.50g/L,放入恒温摇床中振荡,设置转速为130r/min。
吸附饱和后,取上清液测定亚甲基蓝平衡浓度(Ce),根据吸附前后亚甲基蓝浓度差、溶液体积和吸附剂用量计算活性炭对亚甲基蓝的吸附容量(qe)。
对试验数据分别做Langmuir吸附等温线和Freundlich吸附等温线拟合。
4.2.4穿透曲线
从吸附柱(20cm)上口流进100mg/L 的亚甲基蓝溶液,从吸附柱出口接样调节其流量到所需要的值,一定时间间隔后接样,分析其浓度。
直到出口浓度接近初始浓度为止,实验结束。
引用
[1]沈渊玮,陆善忠.活性炭在水处理中的应用[J].工业水处理,2007,04:13-16.
[2]王丁明,曹国凭,贾云飞,刘鹏程.活性炭吸附技术在水处理中的应用[J].北方环境,2011,11:190-191.
[3]郭瑞霞,李宝华.活性炭在水处理应用中的研究进展[J].炭素技术,2006,01:20-24.
[4]王宝庆,陈亚雄,宁平.活性炭水处理技术应用[J].云南环境科学,2000,03:46-49.。