(完整版)线性代数测试试卷及答案
(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
02198自考线性代数试卷及答案

《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数考试试卷及答案

线性代数试卷一、 填空题(每题3分,共30分)1.5阶行列式中的1423354251a a a a a 的符号是 .2.设0abc ≠;000000a A b c ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -= . 3.若13150122x -=--,则x = . 4. 若n 阶矩阵A 满足224A A I --=O ,则1()A I -+= .5.设C 是m n ⨯矩阵,若有矩阵A,B ,使TAC C B =,则A 的行数⨯列数为 . 6.设有向量组12:,,s A ααα线性无关,向量组12:,,t B βββ线性无关,若向量组A 与向量B 等价,则s 与t 的关系为: .7.设A 为m n ⨯矩阵,若齐次线性方程组0Ax =仅有唯一零解,则()r A = .8.已知向量(1,3,2,4),(,1,3,2)T T k k αβ==-正交,则k = .9.已知1(6,1,3)a α=+,2(,2,2)a α=-,若12,αα线性相关,则a = . 10. 已知三阶矩阵A 的特征值为1,-1,2,则223A A I -+= .二、 单选题(每题3分,共15分)1. 若行列式1112132122233132331a a a D a a a a a a ==,则行列式1111121312121222331313233423423423a a a a D a a a a a a a a -=-=- ( ). A .-12. B.12. C .-24. D.24.2. 设A ,B 均为n 阶矩阵,满足AB =O ,则必有( ) 。
A. 0A B +=B. ()()r A r B =C. A B =O =O 或D. 00A B ==或3. 设A 为n 阶矩阵,且2A =,则TA A ⋅=( ). A .2n. B .12n -. C .12n +. D .4.4. 向量组12,,s ααα线性无关的充分条件是( ) .A. 12,,s ααα均不是零向量B. 12,,s ααα中任意两个向量都不成比例C. 12,,s ααα中任意一个向量均不能由其余1s -个向量线性表示D. 12,,s ααα中有一个部分组线性无关5. 设A,B,C 为n 阶方阵,若ABC I =,则1B -=( ). A. 11A C -- B. CA C. 11C A -- D. AC三、 计算题(每题10分,共40分)1 . 计算行列式121014512313312D ---=-2. 求线性方程组1234123412345231153612426x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩的全部解,并用对应导出组的基础解系表示。
线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数(A 卷)一、选择题(每小题3分,共15分)1 .设A 、B 是任意n 阶方阵,那么下列等式必成立的是() (A) AB BA (B) (AB)2 A 2B 2 (C) (A B)2 A 2AB B 2 (D) A B B A2 .如果n 元齐次线性方程组 AX 0有基础解系并且基础解系含有 s(s n)个解向量,那1 0 0210, A *是A 的伴随矩阵,则(A*)4 .设向量 (1, 1,1)T 与向量 (2,5, t)T 正交,则t5 .设A 为正交矩阵,则A1 11 6 .设a,b,c 是互不相同的三个数,则行列式ab c2,22a b c7 .要使向量组 1 (1, ,1)T , 2 (1,2,3)T, 3 (1,0,1)T 线性相关,则8 .三阶可逆矩阵A 的特征值分别为1, 2, 3,那么A 1的特征值分别为么矩阵A 的秩为((A) n (B) )s (C)n s (D)以上答案都不正确 3 .如果三阶方阵A (a j )3 3的特征值为1,2,5 ,那么ana 22a 33 及A 分别等于()(A) 10, 8(B)8, 10(C)10,8(D)10,4 .设实二次型f(x 1,x 2)2 (X ,X 2)4X 1 X 2的矩阵为A, 那么()2 3(A) A3 1 ⑻(C)1 1(D)5.若方阵A 的行列式A0, 则((A) A 的行向量组和列向量组均线性相关 (C) A 的行向量组和列向量组均线性无关 二、填空题(每小题3分,共30分)(B)A (D)A 的行向量组线性相关,列向量组线性无关 的列向量组线性相关,行向量组线性无关1如果行列式D 有两列的元对应成比例,那么该行列式等于2.设A3.设,是非齐次线性方程组AX b 的解若也是它的解,那么关组和秩. 四、(10分)设有齐次线性方程组X 1 ( 1)X 2 X 3 0, (1)X 1 X 2 X 3 0, X 1 X 2 ( 1)X 3 0.问当 取何值时,上述方程组(1)有唯一的零解;(2)有无穷多个解,并求出这些解. 五、(12分)求一个正交变换X PY ,把下列二次型化成标准形:、222f (X 1,X 2, X 3) X 1 X 2 X 3 4X 1X 2 4X 1X 3 4X 2X 3.六、(6分)已知平■面上三条不同直线的方程分别为11 : ax 2by 3c 0, 12 : bx 2cy 3a 0, 13 : cx 2ay 3b 0.试证:这三条直线交于一点的充分必要条件为a b c 0.线性代数(A 卷)答案1. D2. C3. B4. A5. A■-4*11.02. (A ) A3. 14. 35. 16. (c a)(c b)(b a)7. 08. 1,9.411 t 0 10. A I 5 42、1.解由AX(A I ) 1B . (2分)9 .若二次型 f(X i ,X 2,X 3)X 21 x 22 5x 23 2tX i X 2-2X 1X 3 4X 2X 3 是正定的,则 t 的取值范围10 .设A 为n 阶方阵,且满足A 2 2A 4I 0,这里I 为n 阶单位矩阵,那么A 1三、计算题(每小题9分,共27分)1 .已知A 1 00 1 ,求矩阵X 使之满足AX 0 0X B.2 .求行列式的值.3求向量组 (1,0,1,0), 2 ( 2,1,3, 7), 3 (3, 1,0,3,), 4 (4, 3,1, 3,)的一个最大无或-1由于1 23 4 1 2 3 41 2 3 4 0 1 1 3 r r 0 1 1 3 「3 5r 2 0 1 1 3 1 3 01 UUuLu 0 5 3 3 LuiuiUj2 0 0 2 12 0 73 3 0 733424四、解 方程组的系数行列式卜面求 (A I ) 由于(4分)(A I)所以 (A I) (7分)2.解 10 10 10 1010(9 分)10(4 分)(8160 (9 分)3.解 故向量组的秩是UjuniUr31 2 03 12 0(6分)3是它的一个最大无关组。
(9分)-21)( 2)分)行初等行变换,可得到方程组的一般解为X X 3,X 2 X 3,其中X 3可取任意数;(7 分)X 3 X 3,③当 2时,|A (1)( 2)2 0,方程组的系数矩阵为1 1 1 A 1 1 1 ,1 1 1显然,秩(A ) 1 n (这里n 3),所以方程组也有无穷多个解 .对A 施行初等行变换可得方程组的一般解为五、解二次型的矩阵为(2 分)因为特征多项式为222 ( 1)2( 5),1所以特征值是 1(二重)和5. (4 分)把特征值1代入齐次线性方程组(I2X 1 2X 2 2X 3 0, 2X 1 2X 2 2X 3 0, 2X 1 2X 2 2X 30,①当 |A ( 1)( 2)2 0,即1且 2时,方程组有唯一的零解;(4分)②当1 时,|A (21)( 2) 0,方程组的系数矩阵为它有一个二阶子式3 0,因此秩(A ) 2 n (这里n 3),故方程组有无穷多个解X X 2 X 3 X 2 X 2,X 3,X 3,其中X 2,X 3可取任意数.(10 分)A)X 0 得解此方程组可得矩阵A的对应于特征值1的特征向量为1(1,0, 1) , 2 (0,1, 1).利用施密特正交化方法将 1, 2正交化:1(go g )T , 2(容号骼)T ,(8 分)把特征值5代入齐次线性方程组(I A )X 0得4x 1 2x 2 2x 3 0, 2x 1 4x 2 2X 3 0, 2X 1 2x 2 4x 30,解此方程组可得矩阵 A 的对应于特征值5的特征向量为3(1,1,1〉再将3单位化得3号,章易,.(10分)2 6~2~66 P ( 1, 2, 3)0 至 2 6 3 263则P 是一个正交矩阵,且满足1 0 0P 1AP P T AP1 0 0 0 5所以,正交变换X PY 为所求,它把二次型化成标准形222f(x 1,x 2,x 3) y 1 y 2 5y 3.(12 六、证明:必要性1再将1, 2单位化得1(1,0, 1)T1 (2,1,-3-3 -333分)由l11213交于一点得方程组有解,可知R(A) R(A)1 b c 由于1 c a1 a bax 2by 3c 0bx 2cy 3a 0cx 2ay 3b 0a 2b 3cb 2c 3a 0c 2a 3b1 b c(a b c) 1 c a1 a b1 2 2 2Q(b a) (c b) (a c)]充分性:a b c 0 b (a c)0 (2 分) 0,所以a b c 0 (3分)2b 2c22(ac b2)2[ac (a c)2]2 2 2[a2 c2 (a c)2] 0 a 2b 3c又因为b 2c 3ac 2a 3b a b c6 b c acab1 b c6(a b c) 1 c a 01 a bR(A) R(A) 2, (5 分) 因此方程组ax 2by 3c 0bx 2cy 3a 0cx 2ay 3b 0有唯一解,即l1/213交于一点.(6分)线性代数习题和答案第一部分选择题(共28分)、单项选择题(本大题共 14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是 符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
B. - (m+n) D. m- n1 21 , A *是A 的伴随矩阵,则 A *中位于 A. -6 B. 6 C. 2D. 24.设A 是方阵,如有矩阵关系式 AB=AC ,则必有( )A. A =0B. B C 时 A=0C. A 0 时 B = CD. |A| 0 时 B=C 5.已知3X4矩阵A 的行向量组线性无关,则秩( AT )等于( )A. 1B. 2C. 3D.46 .设两个向量组a 1, a 2 ,…,a s 和3 1, 3 2,…,3 s 均线性相关,则()A.有不全为0的数入1,入2,…,入s 使入iai +入2a2+ •••+A.sa s=0和入1 3 1+入2 3 2+…入s 3 s =0B.有不全为 0 的数入 1,入 2,…,入 s 使入 1 (ai+3i ) +入 2 (a 2+32) +--- + Xs (as+3s ) =0C.有不全为0的数入1,入2,…,入s 使入1 (ai - 3 1) +入2(002-82) +…+Xs (as - 3 s ) =0D.有不全为0的数入1,入2,…,X s 和不全为0的数1,科2,…,(is 使入iai +入2a2+・・・+A.sa s =0 和科 1 [3 1+ |1232+'"+ ^s3 s =01.设行列式a ii a21a i2a22a 13 a ii a21=n,则行列式a ii a 21 a 12 a 13 a 22 a 23A. m+n C. n-1 2.设矩阵A= 0 0 02 0,则A -1等于(A. B.C.1 -00 3 0 1 010 02D. 120 0 13 033.设矩阵A= 1 1, 2)的元素是(7.设矩阵A的秩为r,则A中()8 .所有r- 1阶子式全为0 D.所有r 阶子式都不为0Y] 1,刀2是其任意2个解,则下列结论错误的是(B.-刀1+ —刀2是Ax=b 的一个解 22A.所有r- 1阶子式都不为0 C.至少有一个r 阶子式不等于0 8.设Ax=b 是一非齐次线性方程组, A.刀i +刀2是Ax=0的一个解 C.刀1-刀2是Ax=0的一个解 9 .设n 阶方阵A 不可逆,则必有( A.秩(A )<n C.A=010 .设A 是 D.2刀1-刀2是Ax=b 的一个解)B.秩(A 尸n- 1 D.方程组Ax=0只有零解个n (>3)阶方阵,下列陈述中正确的是(A.如存在数入和向量 a 使Aa=X a ,则a 是A 的属于特征值入的特征向量B.如存在数入和非零向量a,使(入E-A )a=0,则入是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如入1,入2,入3是A 的3个互不相同的特征值,a 1, a 2, a 3依次是A 的属于入1,特征向量,则a 1, a 2, a 3有可能线性相关11.设入0是矩阵A 的特征方程的 3重根,A 的属于入0的线性无关的特征向量的个数为( )A. k w 3B. k<3C. k=3D. k>312 .设A 是正交矩阵,则下列结论错误的是()A.|A|2必为 1B.|A|必为 1C.A -1=A T D.A 的行(列)向量组是正交单位向量组 入2,入3的k,则必有13 .设A 是实对称矩阵,C 是实可逆矩阵,B=C T AC .则( A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( 2 A.3B.1C. 0D.第二部分非选择题(共72分)、填空题(本大题共 10小题,每小题 空格内。