剪切弹性模量的单位

合集下载

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量(Young's Modulus)杨氏模量就是弹性模量,这是材料力学里的一个概念。

对于线弹性材料有公式(T (正应力)=E£(正应变)成立,式中。

为正应力,£为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。

杨(Thomas You ng17791829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。

1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。

钢的杨氏模量大约为2X 1011N-m-2,铜的是X 1011N -m。

弹性模量(Elastic Modulus ) E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。

也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。

弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。

在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。

弹性模量E在比例极限内,应力与材料相应的应变之比。

对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。

根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension ( 杨氏模量)、剪切弹性模量shear modulus of elasticity ( 刚性模量)、体积弹性模量、压缩弹性模量等。

剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。

剪切模数G=剪切弹性模量G=切变弹性模量G切变弹性模量G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊桑比v并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。

其定义为:G=T / 丫,其中G(Mpa)为切变弹性模量;T为剪切应力(Mpa);Y为剪切应变(弧度)体积模量K(Bulk Modulus)体积模量可描述均质各向同性固体的弹性,可表示为单位面积的力,表示不可压缩性。

【工程力学】扭转变形【工程类精品资料】

【工程力学】扭转变形【工程类精品资料】

第四章扭转4.1预备知识一、基本概念 1、扭转变形扭转变形是杆件的基本变形之一,扭转变形的受力特点是:杆件受力偶系的作用,这些力偶的作用面都垂直于杆轴。

此时,截面B 相对于截面A 转了一个角度ϕ,称为扭转角。

同时,杆件表面的纵向直线也转了一个角度γ变为螺旋线,γ称为剪切角。

2、外力偶杆件所受外力偶的大小一般不是直接给出时,应经过适当的换算。

若己知轴传递的功率P(kW)和转速n(r/min),则轴所受的外力偶矩)(9549Nm nPT =。

3、扭矩和扭矩图圆轴扭转时,截面上的内力矩称为扭矩,用T 表示。

扭矩的正负号,按右手螺旋法则判定。

如扭矩矢量与截面外向法线一致,为正扭矩,反之为负;求扭矩时仍采用截面法。

扭矩图是扭矩沿轴线变化图形,与轴力图的画法是相似 4、纯剪切切应力互等定理单元体的左右两个侧面上只有切应力而无正应力,此种单元体发生的变形称为纯剪切。

在相互垂直的两个平面上,切应力必然成对存在且数值相等,两者都垂直于两个平面的交线、方向到共同指向或共同背离积这一交线,这就是切应力互等定理。

5、切应变剪切虎克定律对于纯剪切的单元体,其变形是相对两侧面发生的微小错动,以γ来度量错动变形程度,即称切应变。

当切应力不超过材料的剪切比例极限时,切应力τ和切应变γ成正比,即τ=G γG 称材料的剪切弹性模量,常用单位是GPa 。

6、圆杆扭转时的应力和强度计算(1)圆杆扭转时,横截面上的切应力垂直于半径,并沿半径线性分布,距圆心为ρ处的切应力为ρτρpI T =式中T 为横截面的扭矩,I p 为截面的极惯性矩。

(2)圆形截面极惯性矩和抗扭截面系数图实心圆截面324D I p π=,163D W p π=(D 为直径) 空心圆截面)1(3244a D I p -=π,)1(1643απ-=D W p(D 为外径,d 为内径,D d /=α)(3)圆杆扭转时横截面上的最大切应力发生在外表面处tW T =m ax τ 式中W t =I p /R ,称为圆杆抗扭截面系数(或抗抟截面模量)。

应力与应变间的关系

应力与应变间的关系

22
例题7-7 边长 a = 0.1m 的铜立方块, 无间隙地放入体积较
大, 变形可略去不计的钢凹槽中, 如图 所示。 已知铜的弹 性模量 E=100GPa, 泊松比 =0.34, 当受到P=300kN 的均布 压力作用时, 求该铜块的主应力. 体积应变以及最大剪应力。
P a
y
z
x
23
y
解:铜块上截面上的压应力为
9
3、 特例
(1)平面应力状态下(假设 Z = 0 )
x
1 E
(
x
y)
y
1 E
(
y
x)
z E ( x y)
xy
xy
G
10
(2) 广义胡克定律用主应力和主应变表示时 三向应力状态下:
1
1
E [ 1
(
2
3)]
2
1 E
[
2
(
3
1)]
3
1 E
[
3
( 1
2)]
(7-7-6)
11
平面应力状态下 设 3 = 0, 则
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料的广义胡克定律 (1)符号规定
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
3
(b)三个剪应力分量: 若正面(外法线与坐标轴
dxdydz
dxdydz(1 1 2 3) dxdydz
dxdydz

抗剪模量和剪切模量

抗剪模量和剪切模量

抗剪模量和剪切模量
剪切模量(切变模量):材料常数,是剪切应力与应变的比值。

又称切变模量或刚性模量。

材料的力学性能指标之一。

是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。

它表征材料抵抗切应变的能力。

模量大,则表示材料的刚性强。

剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。

剪切模量G=弹性模量E/(2*(1+μ))式中μ为泊松比,钢材为0.3-0.35左右;氧化铝陶瓷的弹性模量为:310MPa,泊松比为0.2;则它的抗剪模量G=310/(2*(1+0.2))=129.17 GPa,。

弹性模量定义与公式

弹性模量定义与公式

弹性模量开放分类:基本物理概念工程力学物理学自然科学“弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应变”。

材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。

弹性模量的单位是达因每平方厘米。

“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。

所以,“弹性模量”和“体积模量”是包含关系。

编辑摘要基本信息编辑信息模块中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律目录•1定义•2线应变•3体积应变•4意义•5说明•6单位指标定义/弹性模量编辑混凝土弹性模量测定仪图册弹性模量modulusofelasticity,又称弹性系数,杨氏模量。

弹性材料的一种最重要、最具特征的力学性质。

是物体变形难易程度的表征。

用E表示。

定义为理想材料在小形变时应力与相应的应变之比。

根据不同的受力情况,分别有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。

它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。

对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。

对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。

线应变/弹性模量编辑弹性模量图册对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。

线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L)剪切应变:对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。

弹性模量定义与公式

弹性模量定义与公式

弹性模量开放分类:“弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应变”。

材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。

弹性模量的单位是达因每平方厘米。

“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。

所以,“弹性模量”和“体积模量”是包含关系。

中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律混凝土弹性模量测定仪弹性模量modulusofelasticity,又称弹性系数,杨氏模量。

弹性材料的一种最重要、最具特征的力学性质。

是物体变形难易程度的表征。

用E 表示。

定义为理想材料在小形变时应力与相应的应变之比。

根据不同的受力情况,分别有相应的?(杨氏模量)、?(刚性模量)、?等。

它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。

对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。

对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。

线应变/弹性模量?弹性模量?对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。

线应力除以线应变就等于E=(?F/S)/(dL/L) 剪切应变:对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。

剪切应力除以剪切应变就等于剪切模量G=(?f/S)/a体积应变/弹性模量?对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量:?K=P/(-dV/V)在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即。

材料的三大参数

材料的三大参数

剪切弹性模量(elastic shear modulus)G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊松比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。

其定义为:G=τ/γ,其中G(M pa)为切变弹性模量;τ为剪切应力(M pa);γ为剪切应变(弧度)。

剪切模量:材料常数,是剪切应力与应变的比值。

又称切变模量或刚性模量。

材料的力学性能指标之一。

是材料在剪切应力作用下,在弹性变形比例极限范围内,切应力与切应变的比值。

它表征材料抵抗切应变的能力。

模量大,则表示材料的刚性强。

剪切模量的倒数称为剪切柔量,是单位剪切力作用下发生切应变的量度,可表示材料剪切变形的难易程度。

剪切应力shear stress物体由于外因(载荷、温度变化等)而变形时,在它内部任一截面的两方出现的相互作用力,称为“内力”。

内力的集度,即单位面积上的内力称为“应力”。

应力可分解为垂直于截面的分量,称为“正应力”或“法向应力”;相切于截面的分量称为“剪切应力”。

作用在构件两侧面上的外力的合力是一对大小相等,方向相反,作用线相距很近的横向集中力。

在这样的外力作用下,构件的变形特点是:以两力之间的横截面为分界线,构件的两部分沿该面发生相对错动。

构件的这种变形形式称为剪切,其截面为剪切面。

截面的单位面积上剪力的大小,称为剪应力。

剪切应力的计算:在实用计算中,假设在剪切面上剪切应力是均匀分布的。

若以A表示剪切面面积,则应力是τ 与剪切面相切,故称:切应力剪切应变shear strain剪切时物体所产生的相对形变量。

即指在简单剪切的情况下,材料受到的力F是与截面A0相平行的大小相等、方向相反的两个力,在此剪切力作用下,材料将发生偏斜。

偏斜角θ的正切定义为剪切应变γ:即γ=tanθ。

当剪切应变足够小时,γ=θ,相应地剪切应力为τ=F/A。

杨氏弹性模量杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。

弹性模量定义与公式

弹性模量定义与公式

弹性模量开放分类:基本物理概念工程力学物理学自然科学“弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应变”。

材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为弹性模量。

弹性模量的单位是达因每平方厘米。

“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“氏模量”、“剪切模量”、“体积模量”等。

所以,“弹性模量”和“体积模量”是包含关系。

编辑摘要基本信息编辑信息模块中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律目录•1定义•2线应变•3体积应变•4意义•5说明•6单位指标定义/弹性模量编辑混凝土弹性模量测定仪图册弹性模量modulusofelasticity,又称弹性系数,氏模量。

弹性材料的一种最重要、最具特征的力学性质。

是物体变形难易程度的表征。

用E表示。

定义为理想材料在小形变时应力与相应的应变之比。

根据不同的受力情况,分别有相应的拉伸弹性模量(氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。

它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。

对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。

对于有些材料在弹性围应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。

线应变/弹性模量编辑弹性模量图册对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL 除以原长L,称为“线应变”。

线应力除以线应变就等于氏模量E=( F/S)/(dL/L)剪切应变:对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档