七年级数学《绝对值》教案【优秀6篇】
初中七年级数学上册《绝对值》教学设计

初中七年级数学上册《绝对值》教学设计一、教学目标1.理解绝对值的概念及其表示方法;2.掌握绝对值与数轴之间的关系;3.能够灵活使用绝对值进行计算和求解问题。
二、教学重点和难点•教学重点:绝对值的概念和表示方法;•教学难点:绝对值与数轴之间的关系及应用。
三、教学内容和步骤1. 引入通过一个生活实例引入绝对值的概念,让学生理解一个数到另一个数的距离不一定是正数,也可以是负数。
2. 绝对值的概念•定义绝对值的概念:对于任意实数a,称其绝对值为a的绝对值,记作|a|,表示a与0之间的距离。
若a大于0,|a| = a;若a小于0,|a| = -a。
•提示学生绝对值的计算方法,即将a的绝对值看作a与0的距离,不考虑其正负。
3. 绝对值的表示方法•引导学生通过绝对值的定义,了解绝对值可以用数轴上的点表示。
即,数a 在数轴上的位置与点0之间的距离就是|a|的值。
•通过数轴上的实例,让学生练习用数轴表示绝对值。
4. 绝对值的性质•反对称性:|a| = |-a|•非负性:对于任意实数a,|a| ≥ 05. 绝对值的计算•导入绝对值的计算方法,让学生通过练习计算绝对值加深理解。
例如,|3| = 3,|-5| = 5。
6. 绝对值的应用•通过生活中的例子,让学生了解绝对值在求解问题过程中的应用。
例如,温度计的读数、海拔的计算等。
7. 绝对值的解析式•提示学生绝对值的解析式:当x ≥ 0时,|x| = x;当x < 0时,|x| = -x。
四、教学方法和策略1.情境教学法:通过生活实例引导学生理解绝对值的概念。
2.演示法:通过数轴上的点示例,引导学生理解绝对值与数轴之间的关系。
3.练习法:通过练习计算和解答问题,巩固学生对绝对值的理解和应用。
五、教学评价与反馈教师可以通过组织小测验和讨论,以及课堂练习等方式对学生进行评价。
针对学生掌握情况,及时进行反馈和指导,帮助他们进一步理解和应用绝对值的概念与方法。
六、拓展与延伸1. 拓展•引入负数的概念和表示方法,进一步探讨负数的绝对值;•探究绝对值与加减法、乘除法的关系,引导学生理解绝对值在计算中的应用。
《绝对值》教案(优秀10篇)

【《绝对值》的课标要求】《绝对值》教案(优秀10篇)绝对值教案篇一绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?①千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
七年级数学《绝对值》教案

七年级数学《绝对值》教案教学内容:P11-12教学重点:绝对值的意义,求一个数的绝对值。
教学难点:绝对值的概念,求一个数的绝对值。
教学目标:1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
一、板书课题,揭示目标1.今天,我们一起来学习1.2.3绝对值。
2.学习目标(1)能借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用。
二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。
下面,请同学们按照指导(手指投影屏幕)自学。
自学指导自学P11-P12的内容后,思考并回答:(1)在数轴上描出2与-2,3与-3(2)什么叫做这个数的绝对值?1、(3)求下列各式的绝对值12,-25,0,1/2,-1/3(4)正数的绝对值是;负数的绝对值是它的;0的绝对值是。
三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。
四、检验学生自学情况。
1、一生上黑板画数轴并描点。
2、一个数的绝对值等于数轴上的点与原点的距离。
3、正数的绝对值是他本身;负数的绝对值是它的相反数;0的绝对值是 0 。
五、引导更正,指导运用1.学生训练。
(1)布置任务:看完了的同学,请举手。
(学生举手)好!下面请XX做第12页练习第1题,其余的同学在座位上练习……请XX做第12页练习第2、3题……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。
观察板演,找错误。
请大家看黑板,找错误。
找到的请举手。
2.学生更正。
3.学生讨论,评判。
(1)先看第一位同学做的(再看第二位同学做的……)[若对,则师:认为对的举手,师判“√”][若有错,则引导学生错误的原因及更正的道理][估计出现的错误](2)第1题中,不会表示一个数的绝对值。
引导学生说出错因,并更正。
(3)第2题中,把-|—2010|当成了-2010的相反数。
绝对值教案初中

绝对值教案初中教学目标:1. 理解绝对值的定义和性质;2. 学会求一个数的绝对值;3. 能够应用绝对值解决实际问题。
教学重点:1. 绝对值的定义和性质;2. 求一个数的绝对值的方法。
教学难点:1. 绝对值的应用。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引入绝对值的概念,让学生思考绝对值是什么。
2. 引导学生思考绝对值与数轴的关系。
二、讲解绝对值的定义和性质(15分钟)1. 讲解绝对值的定义:绝对值是一个数在数轴上与原点的距离。
2. 讲解绝对值的性质:a. 任何数的绝对值都是非负数;b. 正数的绝对值是它本身;c. 负数的绝对值是它的相反数;d. 零的绝对值是零。
三、练习求绝对值(15分钟)1. 让学生练习求一些数的绝对值,如:3, -5, 0,2.5等。
2. 让学生解释求绝对值的方法和步骤。
四、绝对值的应用(15分钟)1. 让学生思考绝对值在实际问题中的应用,如:距离、温度等。
2. 给出一些实际问题,让学生应用绝对值解决,如:两地之间的距离、温度差等。
五、总结和复习(10分钟)1. 让学生总结绝对值的定义和性质。
2. 让学生复习求绝对值的方法。
六、布置作业(5分钟)1. 让学生做一些练习题,巩固所学的内容。
教学反思:本节课通过讲解绝对值的定义和性质,让学生掌握了绝对值的基本概念和方法。
通过练习求绝对值和应用绝对值解决实际问题,让学生加深了对绝对值的理解和应用。
在教学中,要注意引导学生思考绝对值与数轴的关系,以及绝对值在实际问题中的应用。
同时,也要注重学生的练习和巩固,提高学生的解题能力。
人教版初中七年级数学上册《绝对值》教案

绝对值第一课时教学目标借助数轴初步理解绝对值的概念,能求一个数的绝对值. 1. 通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.探索一个数的绝对值与这通过观察实例及绝对值的几何意义,3. 个数之间的关系,培养学生语言描述能力.培养学生积极参与探索活动,体会数形结合的方法. 4.教学重、难点正确理解绝对值的概念,能求一个数的绝对值..重点:1正确理解绝对值的几何意义和代数意义..难点: 2教学过程一、复习提问,新课引入 1 .什么叫互为相反数?.在数轴上表示互为相反数的两个点和原点的位置关系怎样? 2二、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.,回答:2-5.1页图11.观察课本第 1 )两辆汽车行驶的路线相同吗?1()它们行驶路程的远近相同吗?2(但行驶的路程的远近•,这两辆车行驶的路线不同(方向相反)• •。
绝对值教案(优秀6篇)

绝对值教案(优秀6篇)七年级数学《绝对值》教案篇一教学目标1、了解绝对值的概念,会求有理数的绝对值;2、会利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。
关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的。
,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。
这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。
此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构绝对值的定义;绝对值的表示方法;用绝对值比较有理数的大小。
三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。
可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。
“非负数”的概念视学生的情况,逐步渗透,逐步提出。
四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。
3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。
(4)两个相反数的绝对值相等。
五、运用绝对值比较有理数的大小1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
七年级数学《绝对值》教案

七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。
这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。
七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。
这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。
绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。
(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。
(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。
教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。
三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。
演示法中需要的教具有多媒体和温度计。
四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。
所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。
五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
七年级数学绝对值教案【三篇】

七年级数学绝对值教案【三篇】###小编整理了七年级数学绝对值教案【三篇】,希望对你有协助!绝对值教案1●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1.知识与水平目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作­__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存有这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念­———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这个工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。
[温度上升了5度,用+5表示的话,那么下降了5度,就用-5 表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。
银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。
](通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。
)三、应用深化知识1、例题求解例1、求下列各数的绝对值-1.6 ,,0, -10, +102、根据上述题目,让学生归纳总结绝对值的特点。
(教师进行补充小结)特点:1、一个正数的绝对值是它本身2、一个负数的绝对值是它的相反数3、零的绝对值是零4、互为相反数的两个数的绝对值相等3、出示题目(1)-3的符号是_______,绝对值是______;(2)+3的符号是_______,绝对值是______;(3)-6.5的符号是_______,绝对值是______;(4)+6.5的符号是_______,绝对值是______;学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。
现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。
那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?5、练习3:回答下列问题①一个数的绝对值是它本身,这个数是什么数?②一个数的绝对值是它的相反数,这个数是什么数?③一个数的绝对值一定是正数吗?④一个数的绝对值不可能是负数,对吗?⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?(由学生口答完成,进一步巩固绝对值的概念)6、例2.求绝对值等于4的数(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。
)分析:①从数字上分析∵|+4|=4,|-4|=4 ∵绝对值等于4的数是+4和-4画一个数轴(如下图)②从几何意义上分析,画一个数轴(如下图)因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M所以绝对值等于4的数是+4和-4.6、练习:做书上12页课内练习1、2两题。
四、归纳小结1、本节课我们学习了什么知识?2、你觉得本节课有什么收获?3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
绝对值教案篇二1、教学目标(一)知识与能力1、助数轴初步理解绝对值的概念及表示方法;2、体会绝对值的作用与意义;3、能熟练掌握有理数绝对值的求法和有关的简单计算。
(二)过程与方法通过观察,分析,思考,归纳,探索绝对值的几何意义,代数意义和性质,渗透数形结合和分类的数学思想,培养学生分析问题和解决问题的能力。
(三)情感态度与价值观让学生在探索活动中产生对数学的好奇心,体验探索的乐趣和成功的快乐,增强学好数学的兴趣与信心。
二、教学重难点(一)教学重点正确理解绝对值的概念,能求一个数的绝对值。
(二)教学难点正确理解绝对值的几何意义和代数意义。
三、教学准备多媒体、刻度尺四、教学方法创设情境法、讲述法五、教学过程(一)提出问题,创设情境甲乙两辆车从城站火车站同时开出,甲车向东行驶5千米到达一候车亭,乙车向西行驶5千米到达另一候车亭。
问:(1)如何用有理数表示他们的行驶情况(2)这两个有理数有什么关系?(3)在数轴上把这两个有理数表示出来。
设计意图:通过提问,复习用有理数表示具有相反意义的量,相反数的意义,在数轴上表示有理数等有关内容,为学习新知识做准备。
(二)交流对话,探究新知1、引入:(1)若每辆车行驶每千米耗油0.2升,则甲乙两辆车各耗多少升油?(2)计算汽车耗油量的过程中,只与什么有关?而与什么无关?耗油量的计算只与汽车行驶的路程有关,而与方向无关,在实际生活中不注重方向的量还有很多,本节我们将学习一个新的不注重方向的量——绝对值。
2、引导学生从数轴上认识绝对值的几何意义。
师:+6和-6是相反数,它们只有符号不同,它们什么相同呢?生:思考讨论师:在数轴上标出到原点距离是6个单位长度的点。
引导学生观察:数轴上表示+6和-6两点,虽然分居在原点的两旁,符号不同,但与原点之间都是相隔6个单位长度。
指出:在数轴上表示+6和-6的点与原点的距离都是6,我们就说+6的绝对值是6,-6的绝对值也是6.归纳:绝对值的几何意义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做∵a∵。
3、探究绝对值的代数意义及性质师:一个正数的绝对值是什么?0的绝对值是什么?负数呢?生:学生小组交流、讨论,小组代表汇报讨论结论。
师:同学们说的对,但这只是绝对值意义的文字叙述,事实上,这意义还可以用数学式子来表达。
大家知道怎样用数学式子来表达吗?生:学生分组讨论,分析思考,得到三个相应的表达式。
即:(1)如果a0,那么│a│=a;(2)如果a=0,那么│a│=0;(3)如果a0,那么│a│=-a。
归纳:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
师:不论有理数a取何值,它的绝对值是什么数?生:正数或0,即∵a∵∵0归纳:由此可知,不论a取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a而言,总有:a∵0。
这是一条非常重要的性质,即绝对值的“非负性”。
补充:(1)绝对值等于0的数只有一个,就是0;(2)绝对值等于同一个正数的数有两个,这两个数互为相反数;(3)互为相反数的两个数的绝对值相等。
(三)应用迁移,巩固提高例1.-5的相反数是______;|-5|=______,不小于-2的负整数是______。
例2.若x0,y0,求|x-y+2|-|y-x-3|的值。
例3.绝对值不大于4的整数有______个。
(四)梳理概括,形成结构一个数的绝对值就是数轴上表示数a的点到原点的距离,要注意一个数的绝对值不可能是负数,而是非负数。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值就是零。
本节课的教学过程注重创设情境,遵循从特殊到一般的认知规律,给学生充分的思考空间,让他们自主探究,主动学习,体会小组合作及分析思考的过程,从而培养学生浓厚的学习兴趣。
七年级数学《绝对值》教案篇三各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。
首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。
在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。
绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:1 、知识目标:1) 使学生了解绝对值的表示法,会计算有理数的绝对值。
2) 能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。
3) 能利用分类讨论思想来理解绝对值的代数定义;理解字母a 的任意性。
2 、能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3 、思想目标:通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a 的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法与学法上谈谈:二、教学策略(说教法)(一)、教学手段:由于七年级学生的理解能力与思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定非常深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法与师生互动式教学模式,注意师生之间的情感交流,并教给学生“ 多观察、动脑想、大胆猜、勤钻研” 的研讨式学习方法。