[数学]抽样估计与样本量确定

合集下载

抽样方法与样本量估计

抽样方法与样本量估计
实用文档
概率抽样与非概率抽样间作抉择
决择考虑方面
研究的性质 抽样误差与非抽样误差的相对大小 总体的变异程度 统计上的考虑 操作上的考虑
实用文档
常用的抽样方法
抽样方法
概率抽样
非概率抽样
单纯 系统 分层 整群 方便 滚雪球 配额 典型
另外:不等概率抽样方法(probability proportional to size , PPS)
实用文档
便利抽样
以研究者或访问者方便来选择被访者,通常被访者由 于碰巧在恰当的时间正处在恰当的地点而被选中
实用文档
滚雪球抽样
通常是先选出一组最初的调查对象,通常是随机选出的, 在访谈之后,要求这些被访者推荐一些属于目标总体的其他 人,根据这些推选出后面的被访者。与随机的方式相比,被 推举的人将具备与推荐人更为翔实的人口及心理特征。 优点是:主要目的是估计总体中非常稀少的某些特征。 缺点是:这种方式非常耗时。
• 使用学生以及社会组织成员;
• 医院拦截患者;
• “街上的行人”访谈。
优点:便利抽样在所有抽样技术中成本最低、耗时最少,抽样 单位易于接近;
缺点:不能代表总体。
实用文档
配额抽样
配额抽样可以被看成两阶段有约束的判断抽样 • 第一阶段,由确定总体中的个体的控制类别或者配额组成,
配额确保了样本的组成与总体的组成在特定特征方面相同; • 第二阶段,样本个体在便利或者判断的基础上被选择出来 缺点是: 缺乏对总体的代表性,无法计算抽样误差; 优点是: 低成本,为每个配额选择个体对访谈人员而言较为容易。
实用文档
对抽样误差认识与使用的误区
一些研究者甚至部分官员不愿意或不习惯接受数据的误差范 围,一谈到误差,惟恐别人说数据不准,将数据误差绝对。由 于对数据误差的认识存在着误区,在如何使用数据上也存在着 误区。抽样调查的数据拿来就用,不谈抽样误差和调查误差, 认为调查数据就是总体的真值。在进行工作政绩考核或进行地 区间的数据对比时,调查指标数据的高低变成了地区之间排队、 政绩评比的依据,忽视了对数据误差的评估。现有的调查数据 不仅没有正确地使用,反而还带来地区之间数据高低的相互攀 比,同时也影响了以后抽样调查的数据质量。

抽样样本量的确定_图文

抽样样本量的确定_图文

除了估计值的精度以外,调查实际操作的限制条件 也许是影响样本容量的最大因素。
客户提供的经费能支持多大容量的样本 整个调查持续的时间有多长 调查需要多少访员 能招聘到的访员有多少
1.给定精度水平下样本容量的确定
样本容量的大小与调查估计值所要求的精度紧密相关
数据是通过抽样而不是普查收集的,就会产生抽样误差。 精度是由抽样方差来测量的。 随着样本容量的增加,调查估计值的精度也会不断提高。
表3: 显示了不同规模的总体在P=0.5时,使用简单随机 抽样,且以误差界限为0.05、置信度为95%的标准估计P 所需的样本容量
总体规模 50 100 500
1,000 5,000 10,000 100,000 1,000,000 10,000,000
所需的样本量 44 80 222 286 370 385 398 400 400
抽样方差的几种计量方法
标准误差 误差界限 变异系数
抽样调查中样本容量的确定,也经常会使 用一种或多种这样的计量方法来对精度进行说 明。
非抽样误差
非抽样误差会对调查估计值的精度产生显著的影响 非抽样误差的大小与样本容量的大小却没有很大的关系 确定样本容量,就不必将这些误差作为影响因素加以考虑 为确保调查结果的准确性,应该消除非抽样误差,至少应尽 可能使之最小化
对于小规模总体,通常必须调查较大比 例的样本,以取得所期望的精度。因此,实 际操作中,对小规模总体经常采用普查而不 是抽样调查。
6.样本设计和估计量
计算样本容量时,通常假定采用的抽样方式为简单随 机抽样(SRS)。所以,如果样本容量计算公式假定为简单随 机抽样。
分层抽样得到的估计值通常比相同规模的简单随机抽 样更精确,或者至少 一样精确。 整群抽样得到的估计值,其精度通常低于使用同一估 计量进行估计时的简单随机抽样的估计值的精度

第10章 抽样估计与样本量确定

第10章 抽样估计与样本量确定

19
10.4 参数估计

参数估计就是根据从样本中收集的信息对总体参数进行推 断的过程。根据中心极限定理等推断理论所阐明的抽样分 布与总体分布之间的关系,由样本统计量的具体值(估计 值)估计总体参数。 点估计 区间估计


20

点估计

用样本的估计量直接作为总体参数的估计量。 存在抽样误差。 在点估计的基础上,对总体参数的区间或范围 进行估计(样本统计量加减抽样误差),点估计 值落在该区间范围内的概率为置信度或置信系 数或置信水平。
26
举例P227
已知:n 36,1 95%, 2 0.025,1 2 0.975. 根据样本计算得: x 39.5, s 2 60.37.
2 查 2分布表得知: , 12 2 n 1 20.6120 . 2 n 1 53.1604
课后思考与训练题 P237-238 第4、5、7题

28
10.5 样本量的确定


样本量的确定问题,首先涉及对总体参数估计值的精度要 求,同时也涉及与各种运作限制(如可获得的预算、资源 和时间)之间的平衡问题。 抽样调查估计值的精度是对抽样误差大小的度量。因此确 定样本量是为控制抽样误差,而不是非抽样误差。
该银行信用卡年龄方差 2在95%置信度下的置信区间为 : 53.1604 20.6120 即, 39.75 2 102.51
36 -1 60.37 2 36 -1 60.37
结论是:在95%的置信度下,信用卡用 户年龄标准差为 6.3 ~ 10.1岁.
27
练习题

12
10.3 抽样分布与抽样误差

总体分布:总体各单位的观测值所形成的频数分布。 样本分布:一个样本中各个观测值形成的频数分布。 抽样分布:样本统计量的抽样分布是一种理论分布,是指 在重复抽取容量为n的样本时,由该统计量的所有可能取 值形成的相对频数分布。

MRAF-C10 抽样估计与样本量确定

MRAF-C10 抽样估计与样本量确定
• 点估计是容易做到的,但是,点估计没有 给出估计值接近总体参数程度的信息。
• 当样本均值与总体均值不全相同时,样 本均值与实际总体均值就存在着差距,形 成抽样误差。
16
調查分析預測
MRAF
总体参数的区间估计
• 区间估计:在点估计的基础上,对总体参数的区 间或范围进行估计。
• 区间估计不仅要说明区间大小,还要说明点估计 值在区间内的概率,即置信度。置信度是一个百 分比,用来说明结果正确的长期概率。被估计的 区间则被称为置信区间。
27
調查分析預測
MRAF
设计权数的调整
• 上述等概率抽样的加权和不等概率抽样的 加权都是加权的基本形式。
• 权数估计常会遇到更真实和复杂的情况:
– 考虑无回答的情况,然后对权数做出调整;
– 考虑来自其他渠道的、更具权威性的某些辅助 信息,将它们合并到权数中。
28
調查分析預測
MRAF
对无回答的权数调整
– 另外, PPS等也可以设计为一个自加权抽样。
• 对于自加权抽样设计,如果无需对权数调整, 则在计算比例、均值等估计量时可将其忽略, 对总值估计也仅需将样本总值乘上某个倍数。 (例P215)
26
調查分析預測
MRAF
不等概率抽样的加权
• 自加权设计并不总是可行的。如,在使用分层抽样进行 一个全国调查时,可能需要采用纽曼分层。
18
調查分析預測
MRAF
训练题
• 5.一家电器连锁商店正在进行空调的季节性降价促销。被抽取的10个 样本商店销售出的空调数量如下(单位:台):82,113,2,41, 71,83,99,52,84,30。那么,根据这些数据能否说明这次促销 期间每家商店平均销售空调数量多于50台(95%)?

抽样误差与样本量

抽样误差与样本量
2P
重复 抽样
NZ 2P1 P
不重复抽样
n N2x Z 2P1 P
例如,抽查检验某产品的质量,产品的合
格率90%,要求估计值与实际值之间的误
差最大不超过4%,置信度为95.45%,那 么
应抽取多少件产品进行检查?
已知t 2:p(p1=0p.9) t=2 Δ=4%
n=
2p
=225
即所抽取的产品数至少为225件。
市场调查
抽样误差与样本量
一、抽样误差 二、样本容量的确定
一、抽样误差
1.定义:抽样估计量与被估计的总体参数之间的差值。 抽样平均误差,即样本估计量的标准差。
2. 影响抽样误差的因素
总体各单位的差异程度(即标准差的大小) 样本单位数的多少 抽样方法:不重复抽样的抽样误差比重复抽样的抽样
误差小 抽样组织方式:简单随机抽样、分类抽样、机械抽样
等。
3.抽样误差的计算
❖ 抽样平均数的抽样误差
重复抽样时
x

n
s n
不重复抽样时
x
2 1 n 或
n N
s2 1 n n N
•抽样成数的抽样误差
重复抽样时
p
p
n

p1 p
n
不重复抽样时
p
2 p
1
n

n N
p1 p 1 n
n N
4.抽样极限误差
指在一定的概率保证程度下,抽样 指标与总体指标之间的误差范围。
样本平均数的 z
极限误差:
x
x
样本成数的极限 误差:
p z p
Z 为概率保证程度.
二、样本容量的确定
1.总体均值样本容量的确定

抽样样本量的确定

抽样样本量的确定
培训访员,等等),这样做可能更有效率
SSI
精品
第21页
4.总体的变异程度
调查总体中,我们所研究的项目或指标,对于不 同的个人、住户或企业,得到的估计结果可能会有很 大的不同。虽然我们不能控制这种变异性,但它的大 小却影响到了给定精度水平下,研究项目所必需的样 本容量。
SSI
精品
第22页
我们来看假设有一个首次开展的调查,试图估 计对某企业提供的服务持满意态度的顾客比例。对 “顾客满意”这一指标,设置两个可能的值:满意 或者不满意。
SSI
精品
第5页
除了估计值的精度以外,调查实际操作的限制条件 也许是影响样本容量的最大因素。
客户提供的经费能支持多大容量的样本 整个调查持续的时间有多长 调查需要多少访员 能招聘到的访员有多少
SSI
精品
第6页
1.给定精度水平下样本容量的确定
样本容量的大小与调查估计值所要求的精度紧密相关
数据是通过抽样而不是普查收集的,就会产生抽样误差。 精度是由抽样方差来测量的。 随着样本容量的增加,调查估计值的精度也会不断提高。
精品
第3页
分层抽样分配样本的标准
1. 总的样本容量事先确定 2. 估计值要求达到的精度预先给定
SSI
精品
第4页
影响调查样本容量的因素
调查估计值所希望达到的精度 调查估计值所能允许的误差。 估计量的抽样方差较小,估计值是精确的 估计值的精度越高,所需的样本容量就越大 影响精度的因素也同样影响着样本容量的大小 所研究指标在总体中的变异程度 总体的大小 样本设计和所使用的估计量 无回答率
SSI
精品
第23页
SSI
表2 列出了持满意和不满意态度的顾客可能占的比例的组合

样本量的确定方法及公式

样本量的确定方法及公式

样本量的确定方法及公式在统计学和实证研究中,样本量的确定对于获得可靠的结果非常重要。

一个足够大的样本量可以减少统计误差和提高研究的可信度。

样本量的确定需要考虑多个因素,包括所需的可靠性水平,总体大小和总体变异性等。

以下是一些常用的样本量确定方法和公式。

一、样本量计算方法:1. 参数估计方法(Parameter Estimation):用于计算总体均值、总体比例等参数的估计。

通常使用的方法有点估计和区间估计。

在参数估计方法中,一般需要考虑总体的平均数、标准差、置信水平和误差容忍度等因素。

2. 假设检验方法(Hypothesis Testing):用于检验两个总体之间差异是否显著。

常用的假设检验方法有t检验、方差分析等。

在假设检验方法中,需要考虑所需的显著性水平、效应大小、标准差等因素。

3. 相关分析方法(Correlation Analysis):用于研究两个或多个变量之间的关联关系。

常用的相关分析方法有皮尔逊相关系数、斯皮尔曼等级相关系数等。

在相关分析方法中,需要考虑相关系数、显著性水平等因素。

二、样本量计算公式:1.参数估计中的样本量计算公式:a.总体比例(Proportion):n = [(Z * Z) * P * (1-P)] / E^2其中,n表示样本量,Z表示所需的置信度对应的Z值,P表示总体比例的估计值,E表示误差容忍度。

b.总体均值(Mean):n = [(Z * s) / E]^2其中,n表示样本量,Z表示所需的置信度对应的Z值,s表示总体标准差的估计值,E表示误差容忍度。

2.假设检验中的样本量计算公式:a.均值差异(Mean Difference):n = [(Z * s) / E]^2其中,n表示样本量,Z表示所需的显著性水平对应的Z值,s表示总体标准差的估计值,E表示效应大小。

b.总体比例差异(Proportion Difference):n = [(Z * Z) * (P1* (1-P1) + P2 * (1-P2))] / E^2其中,n表示样本量,Z表示所需的显著性水平对应的Z值,P1和P2分别表示两个总体比例的估计值,E表示效应大小。

如何确定抽样方法与样本量

如何确定抽样方法与样本量

如何确定抽样方法与样本量在设计一个抽样调查时,我们通常需要做的工作是:定义总体及抽样单元、确定或构置抽样杠、选择样本量的大小、制定实施细节并实施。

在这本小册子中我们着重介绍一下定量研究的抽样和样本量这两个技术环节。

最基本的定量研究的抽样方法分为两类,一类为非概率抽样,一类为概率抽样。

一.非概率抽样非概率抽样是不能计算抽样误差的,因为它是靠调研者个人的判断来进行的抽样。

它包括偶遇抽样或者方便抽样、判断抽样、配额抽样、雪球抽样等。

偶遇抽样(方便抽样)常见的未经许可的街头随方或拦截式访问、邮寄式调查、杂志内问卷调查等都属于偶遇抽样的方式。

偶遇抽样是所有抽样技术中花费最小的(包括经费和时间)。

抽样单元是可以接近的、容易测量的、并且是合作的。

但尽管有许多优点,这种形式的抽样还是有严重的局限性。

许多可能的选择偏差都会存在,如被调查者的自我选择、抽样的主观性偏差等。

这种抽样不能代表总体的推断总体。

因此,当我们在进行街头访问或邮寄调查时,一定要谨慎对待调查结果。

判断抽样判思抽亲是基于调研者对总体的了解和经验,从总体中抽选“有代表性的”“曲型的”单位作为样本,例如从全体企业作为样本,来考察全体企业的经营状况。

如果判断准,这种方法有呆取得具有较好代表性的样本,但这种方法受主观因素影响较大。

配额抽样配额抽样是根据总体的结构特征来给调查员分派定额,以取得一个与总体结构特征大体相似的样本,例如根据人口的性别、年龄构成来给调查员规定不同性别、年龄的调查人数。

配额保证了在这些特征上样本的组成与总体的组成是一致的。

一旦配额分配好了,选择样本元素的自由度就很大了。

唯一的要求闵是所选取的元素要适合所控制的特性。

这种抽样方法的目的是使样本对总体具有更好的代表性,但仍不一定能保证样本就是有代表性的。

如果与问题相关联的某个特征是十分困难的。

另外,用这种方法进行选择严格控制调查员和调查过度程的条件下,可使配额抽样获得与某些概率抽样非常接近的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• [例10.3] 从一个 N=100人的总体 中抽取一个n=25 人的简单随机样本。 记回答单元的数量 为nr,结果显示只 有20个人提供了所 需的信息。那么, 此时无回答的调整 权数是多少?
w nr w d
n 4 1.25 5 nr
8
調查分析預測
MRAF
对无回答的权数调整(STR)
MRAF
设计权数的调整
• 上述等概率抽样的加权和不等概率抽样的 加权都是加权的基本形式。 • 权数估计常会遇到更真实和复杂的情况:
– 考虑无回答的情况,然后对权数做出调整; – 考虑来自其他渠道的、更具权威性的某些辅助 信息,将它们合并到权数中。
6
調查分析預測
MRAF
对无回答的权数调整
• 单元无回答是指一个样本单元几乎所有的数据都缺失。 简单的处理办法是忽略它。然而,如果发现忽略单元 无回答是不适当的,则应该对权数进行调整。即,
調查分析預測
开篇案例
“百脑汇”调研中的样本计划问题
MRAF
• “百脑汇”在中国华北几个省市经营连锁电脑超市,它希 望获得更多关于其现有客户特点方面的信息。接受调研委 托的李文博士指派班上的王洪同学为样本计划小组的负责 人。 • 通过与“百脑汇”的市场部经理乔兰的初次会谈,王洪了 解到调研的一个主要目的是分别按人口和心理因素来估计 “百脑汇”的客户构成和比例。此外,确认总体估计值不 超过实际值的±5.0%,可靠度为95%。 • 为了达到这些要求,王洪和他的小组正努力寻找计算所需 样本容量的方法。
表10-2 公交系统调查的分层数据 层 城市 农村 总体大小 N1=1000 N2=100 样本量 n1=200 n2=50 回答者数量 nr,1=150 nr,2=40
• [例10.4] 对于一项公共交通 系统调查,总体由1100人组成, 并按城乡分为两个层。分层及 样本数据如表10-2所示。那么, 回答者的权数是多少?
3
調查分析預測
MRAF
等概率抽样的加权
• 当每个单元都有相同的入样概率时,所有样 本单元的设计权数都相同,这种抽样就是自 加权设计。
– SRS抽样和SYS抽样都属于自加权设计,比例分 层抽样也是自加权设计。 – 另外, PPS等也可以设计为一个自加权抽样。
• 对于自加权抽样设计,如果无需对权数调整, 则在计算比例、均值等估计量时可将其忽略, 对总值估计也仅需将样本总值乘上某个倍数。 (例P215)
步骤1:计算设计权数。 入样概率p为:P=n/N=25/100=1/4 故,每个样本单元的设计权数为4。 步骤2:计算无回答调整因子。 由于在n=25人中只有nr=20人提供了 所需的信息,最终样本量应为20。假定回 答单元不仅能代表回答单元且能代表无回 答单元,计算无回答调整因子为: n / nr = 25/20 = 1.25 步骤3:计算无回答的调整权数。 无回答的调整权数wnr等于设计权数与 无回答调整因子的乘积:
– 设计权数×无回答调整因子=无回答的调整权数
• 无回答调整因子是原样本单元的权数和与给出回答的 单元的权数和的比值。对于自加权设计,该比值可用 原样本的单元数与给出回答的单元数的比值来表示。 • 无回答权数调整应区分两种不同情况:
– 等概率抽样 – 不等概率抽样
7
調查分析預測
MRAF
对无回答的权数调整(SRS)
城市层:
农村层:
w nr,1 w d,1
w nr,2
n1 5 1.33 6.67 n r,1 n w d,2 2 2 1.25 2.5 n r,2
9
調查分析預測
MRAF
使用辅助信息调整权数
• 为什么要使用辅助信息来调整权数呢?
– 首先,使调查的估计值与已知总体总值相匹配。例如, 使用最新的人口普查数据来调整估计值,以确保这些 估计值(如年龄、性别分布等)的一致性。 – 二是为了提高估计值的精度。将辅助信息与抽样设计 相结合,将有助于提高估计的精度。
1
調查分析預測
MRAF
10.1 引言
• 估计就是根据从样本中收集的信息对 总体未知量进行推断的过程。 • 抽样估计涉及的重要问题:
– 一个样本单元的设计权数问题。 – 抽样估计,包括总体总量、均值和比例以及抽 样误差的估计。 – 样本量的确定构成抽样设计程序的重要步骤和 内容。同时,样本量的确定与样本估计值的精 度密不可分。
收入层次 高收入层 中收入层 低收入层 各层单位数 2000 12000 6000 样本数量 33.3 133.3 33.3 设计权数 wd,1=N1/n1=2000/33.3=60.1 wd,2=N2/n2=12000/133.3=90.0 wd,3=N3/n3=6000/3查设计阶段使用辅助信息,抽样框中的所有单元都 必须具备这个辅助信息。否则,就只能在数据收集上来后, 在估计阶段利用辅助信息提高估计值的精度。
4
調查分析預測
MRAF
不等概率抽样的加权
• 自加权设计并不总是可行的。如,在使用分层抽样进行 一个全国调查时,可能需要采用纽曼分层。 • 当所采用的抽样设计不是等概率时,正确地使用设计权 数就显得尤为重要。 • [例10.2] 有关各层总体数和样本数资料见表10-1。对 于这项调查,被调查者的设计权数是多少呢?
步骤1:各层的设计权数为: 城市层 wd,1=N1/n1==5 农村层 wd,2=N2/n2==2 步骤2:调整以弥补无回答。各层的无回答调整因子计算如下: 城市层:n1 / nr,1==200/150==1.33 农村层:n2 / nr,2==50/40==1.25 步骤3:无回答的调整权数等于设计权数与无回答调整因子的乘积:
2
調查分析預測
MRAF
10.2 加权及权数调整
• 设计权数
– 设计权数是指每个样本单元所代表的调查总体的单元 数,它是由抽样设计所决定的,通常以wd表示。确定 设计权数是估计的第一步。
• 加权估计
– 设计权数其实就是样本单元的入样概率的倒数。假如 入样概率是1/10,那么每个入选样本代表总体中的10 个单元,此时设计权数即为10。 – 不同样本单元的设计权数可能不同,这取决于抽样设 计。因此,加权估计应区分等概率抽样的加权和不等 概率抽样的加权。
相关文档
最新文档