聚丙烯塑料的改性跟运用(三)
聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。
然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。
以下是聚丙烯改性的几种主要方法。
1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。
添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。
2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。
常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。
共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。
3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。
常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。
界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。
4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。
辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。
5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。
常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。
高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。
总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。
这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。
聚丙烯改性技术及其产品应用进展

聚丙烯改性技术及其产品应用进展发布时间:2023-01-04T05:40:40.555Z 来源:《中国科技信息》2023年17期作者:王海峰[导读] 聚丙烯产品虽然广泛应用于各行业,但国内高端聚丙烯产品主要依赖于进口,这是由于国内产品存在长时间暴露于室外易氧化、高温刚性不足等弊端。
王海峰中国石油庆阳石化公司甘肃庆阳 745000摘要:聚丙烯产品虽然广泛应用于各行业,但国内高端聚丙烯产品主要依赖于进口,这是由于国内产品存在长时间暴露于室外易氧化、高温刚性不足等弊端。
因此,需通过物理改性或化学改性的方式将聚丙烯加工为改性聚丙烯,提升其力学性能、以满足各行业需求。
本文主要分析聚丙烯改性技术及其产品应用进展。
关键词:聚丙烯;物理改性;化学改性;力学性能引言聚丙烯材料是丙烯单体在催化剂及助催化剂作用下,与氢气或乙烯发生聚合反应,将所得聚丙烯粉末与添加剂进行混合,经过挤压机熔融、混炼、造粒所得产物,具有无毒、无害且易加工成型的特性,广泛应用于食品包装、医疗器材、建筑、汽车零部件等各行业中。
1、化学改性化学改性是通过共聚改性、交联改性、接枝改性、添加成核剂等使聚丙烯分子结构或晶体构型发生改变,达到提高其力学性能、耐热性、耐老化性等的目的。
1.1共聚改性共聚改性通常是指丙烯单体与氢气或其他烯烃单体在茂金属催化剂作用下聚合进行的改性,通过添加不同类别催化剂或改变原料配比以生产熔融指数、等规度、抗冲性能各异的聚丙烯产品。
6种不同负载的茂金属催化剂对聚丙烯生产过程及产品质量的影响,发现不同负载的催化剂活性相差较大,其中负载Zr金属中心的茂金属催化剂活性及稳定性较好。
1.2接枝改性接枝改性过程中需添加大量的接枝单体,在聚丙烯分子上插入极性基团,从而达到改性的目的。
常见的接枝单体包括马来酸酐、甲基丙烯酸缩水甘油酯等,为防止加工过程中聚丙烯发生降解,同时添加具备促进接枝效果的助单体苯乙烯。
为避免改性过程中马来酸酐在特定温度下易挥发产生刺激性气味这一问题,选择加入肉桂酸甲酯与马来酸酐共同作用,同时加入少量二乙烯苯可显著降低苯乙烯用量,从而降低成本。
塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍聚丙烯概述聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。
聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。
聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。
而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。
聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。
PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。
然而,通过添加冲击改性剂,可以提高其抗冲击性能。
一、聚丙烯的特性(1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。
成型性好,但因收缩率大,厚壁制品易凹陷。
制品表面光泽好,易于着色。
(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。
PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。
(3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。
脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。
(4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
聚丙烯化学改性方法

聚丙烯化学改性方法
聚丙烯化学改性是一种通过化学方法,使聚丙烯改性,其性能大幅改变的工艺。
改性后的聚丙烯具有更优异的力学性能,耐热性和耐化学性,并可以提高材料的分散稳定性、外观质量和耐候性等,在21世纪以来,聚丙烯改性受到越来越多的关注。
1、聚丙烯改性原理
聚丙烯是一种特殊的增韧塑料,改性原理是为了改变原材料的力学性能而引入有机活性基团。
当把有机活性基团嵌入聚丙烯链条中后,能使聚丙烯的玻璃转变温度,拉伸率,弯曲弹性模量和动态力学特性,耐化学性能以及热稳定性得到极大改善。
2、聚丙烯改性方法
(1)物化改性。
物化改性通常将无机物引入聚丙烯材料,进而改善其力学性能和
动态力学特性。
目前常用的物化改性方法有热变形、拉伸处理和磷化、氯化等。
3、聚丙烯改性应用
由于聚丙烯改性材料具有更加优异的力学和高温性能,因此它得到了广泛的应用。
如用来改性汽车部件,能使汽车耐磨性提高,使汽车更耐久;也可以用来生产建筑材料,使墙壁更耐火,更不易发霉;还可以用来生产电线电缆,使电缆更耐火、抗拉性更加优异。
同时,改性的聚丙烯还可以用于工业制品的生产,比如汽车零件、电子元器件等,而且具有耐泡和耐开裂性能。
总之,聚丙烯改性手段多样、性能优异,它的应用非常广泛,可以改变很多建筑、工业制品、汽车零部件等材料的物理性能,使其具备更优异的力学性能,耐热性和耐化学性能,有助于提高现代工业产品的性能和使用寿命,是可持续发展的重要手段。
聚丙烯表面改性技术及应用

聚丙烯表面改性技术与应用0. 引言聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,表面与极性聚合物、无机填料及增强材料等相容性差,导致其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广和应用。
聚丙烯的表面改性和功能化处理技术是一种重要的改性方法,研究主要集中在接枝极性单体,如马来酸酐和丙烯酸等,以及带有第二官能团单体,如甲基丙烯酸缩水甘油脂等;是改善PP表面性状性的主要手段,可以提高PP材料与其他极性的界面作用力,增强其亲水性、染色性能、黏结性能和共混高聚物之间的相容性等。
本文主要就聚丙烯材料的表面处理方法以及改性聚丙烯的应用作简单地介绍。
1. 高能辐照表面处理法辐照接枝法是用高能射线照射产生自由基,自由基再与活性单体反应生成接枝共聚物。
与其它接枝法比较,辐照接枝法的优点在于适合各种化学、物理性质稳定的树脂,能够快速且均一地产生活性自由基,而且不需加化学引发剂,不过该方法成本较高。
根据利用辐照获得接枝活性点的方式可以将其分为同时辐照和预辐照两种方法,同时辐照法是将反应单体和PP接枝基体同时放置在辐照环境中,这样在基体上形成活性点的同时就可以进行接枝反应。
预辐照法就是首先辐照PP,使其表面带有活性点,然后再和单体反应。
比较两种方法,预辐照技术更能减少单体均聚物的生成。
辐照接枝法在改善膜或纤维的表面极性方面应用广泛[1]。
除了对基材进行辐照引发接枝反应外,通过异相引发接枝[2]还有学者研究出利用预辐照对聚乙烯进行处理,再使用经过辐照处理的聚乙烯作为聚丙烯的熔融接枝反应的引发剂来引发聚丙烯接枝丙烯酸,经反应挤出制备出高性能的聚丙烯接枝丙烯酸共聚物。
这种异相引发接枝反应很好的控制了聚丙烯在熔融接枝中的降解副反应,极大的保存了基材优异的力学性能。
1.1 γ-射线辐照接枝法γ-射线辐照属于高能物理法,利用60Co-γ射线对原纤维基材进行处理,进而与单体进行接枝反应得到所需要的接枝产物。
(整理)聚丙烯表面改性技术及应用

聚丙烯表面改性技术与应用周清 6120805020530. 引言聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,表面与极性聚合物、无机填料及增强材料等相容性差,导致其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广和应用。
聚丙烯的表面改性和功能化处理技术是一种重要的改性方法,研究主要集中在接枝极性单体,如马来酸酐和丙烯酸等,以及带有第二官能团单体,如甲基丙烯酸缩水甘油脂等;是改善PP表面性状性的主要手段,可以提高PP材料与其他极性的界面作用力,增强其亲水性、染色性能、黏结性能和共混高聚物之间的相容性等。
本文主要就聚丙烯材料的表面处理方法以及改性聚丙烯的应用作简单地介绍。
1. 高能辐照表面处理法辐照接枝法是用高能射线照射产生自由基,自由基再与活性单体反应生成接枝共聚物。
与其它接枝法比较,辐照接枝法的优点在于适合各种化学、物理性质稳定的树脂,能够快速且均一地产生活性自由基,而且不需加化学引发剂,不过该方法成本较高。
根据利用辐照获得接枝活性点的方式可以将其分为同时辐照和预辐照两种方法,同时辐照法是将反应单体和PP接枝基体同时放置在辐照环境中,这样在基体上形成活性点的同时就可以进行接枝反应。
预辐照法就是首先辐照PP,使其表面带有活性点,然后再和单体反应。
比较两种方法,预辐照技术更能减少单体均聚物的生成。
辐照接枝法在改善膜或纤维的表面极性方面应用广泛[1]。
除了对基材进行辐照引发接枝反应外,通过异相引发接枝[2]还有学者研究出利用预辐照对聚乙烯进行处理,再使用经过辐照处理的聚乙烯作为聚丙烯的熔融接枝反应的引发剂来引发聚丙烯接枝丙烯酸,经反应挤出制备出高性能的聚丙烯接枝丙烯酸共聚物。
这种异相引发接枝反应很好的控制了聚丙烯在熔融接枝中的降解副反应,极大的保存了基材优异的力学性能。
1.1 γ-射线辐照接枝法γ-射线辐照属于高能物理法,利用60Co-γ射线对原纤维基材进行处理,进而与单体进行接枝反应得到所需要的接枝产物。
改性PP的性能与应用

改性PP的性能与应用PP(聚丙烯)材料是一种优点和缺点都比较明显的材料,虽然PP 和ABS都是常用塑胶材料之一,但它不像ABS那样性能比较均衡,所以,在一些常见的产品外壳应用上,纯PP材料显然没有ABS好用。
先看看PP的优缺点:优点:1. 密度低,是现有的树脂塑胶中密度最小的,所以在轻量化应用的优势明显。
2. 无毒性,为食品级材料,可应用于食品储存包装领域。
3. 良好的化学稳定性,能耐酸、碱、盐液及多种有机溶剂的腐蚀。
4. 耐热性好,能在100℃左右的高温下连续使用。
6. 韧性好,耐冲击,耐折性优良,俗称“百折胶”,常应用于连体的塑胶合页产品上。
7. 价格相对低廉,因此在批量的情况下可以实现大幅降本。
缺点:1. 收缩率大,尺寸稳定性差,因此不适合应用在有尺寸精度要求的产品上。
2. 强度、模量较低,因此难以应用于有强度要求的场合。
3. 耐低温冲击强度差,容易在低温环境下变脆。
4. 耐候性差,容易老化,不耐紫外线,容易黄化,因此不适合长期应用于室外环境。
我们知道,不可能有十全十美的材料,就像不可能有十全十美的人,各方面性能优良的材料价格相对较高,比如PC,除了流动性差、缺口敏感性、高温易水解等缺点外,其他性能都很优异,其价格自然比其他常用塑胶贵,价格便宜的材料,可能某些缺点就比较明显,当然价格不单单是性能决定的,还有其他因素决定,本文暂不讨论,所以在不同的场景下选择合适的材料尤为重要。
有些时候,在选择材料时,我们明明知道某种材料的某一性能非常适合应用在目前产品上,但是对其中的某一缺点又无法接受,简直是又爱又恨,怎么办?有没有解决方案?当然有,通过对塑胶进行改性。
本文,通过PP塑胶的改性,来说明改性可以实现材料应用的最大化。
当然,改性并不是变性(男的变成女的),而是在保持原有优势性能的基础上,改善其劣势性能或增强其原有性能,比如,矿物质的加入,在PP材料本身较高的耐热温度的基础上,使其耐热温度得到进一步的提高。
PP改性指南(含配方)

PP改性指南(含配方)1. 简介本指南旨在介绍PP改性的基本原理和常用的改性方法,并提供一些常见的PP改性配方供参考。
2. PP改性原理PP(聚丙烯)是一种常用的塑料材料,具有优异的物理和化学性质。
然而,PP在某些方面仍存在一些不足之处,例如耐热性、抗冲击性和抗紫外线性能。
通过改性,可以有效提高PP的性能,使其适用于更广泛的应用领域。
3. 常用的PP改性方法3.1 增强剂- 玻纤增强剂:通过添加适量的玻璃纤维,可提高PP的强度和刚度。
- 碳纤维增强剂:添加适量的碳纤维可提升PP的强度和导电性能。
- 矿物填料:添加矿物填料(如滑石、氧化铝等)可改善PP的阻燃性能和导热性能。
3.2 功能性添加剂- 抗氧化剂:添加适量的抗氧化剂可提高PP的耐热性和抗老化性能。
- 紫外线吸收剂:通过添加紫外线吸收剂,可增强PP对紫外线的抵抗能力。
- 扩链剂:通过添加扩链剂,可提高PP的韧性和冲击性能。
3.3 共混改性将PP与其他改性塑料进行共混,可以改善PP的各项性能,如增强强度、改善耐热性等。
4. 常见的PP改性配方以下为一些常见的PP改性配方供参考:- PP-玻纤复合材料配方- PP-碳纤维复合材料配方- PP-矿物填料复合材料配方- PP-抗氧化剂配方- PP-紫外线吸收剂配方- PP-扩链剂配方请注意,具体配方应根据实际需求和使用条件进行微调和优化。
5. 结论通过PP改性,可以显著提高PP的性能,使其具备更广泛的应用性。
本指南介绍了PP改性的基本原理、常用的改性方法和一些常见的PP改性配方。
希望能给您的PP改性工作带来一些参考和启示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a以上。
日本透明PP市场以微波炉炊具及家具两方面的消耗量最大。
日本出光化学公司制造出与PVC具有同样透明性和光泽性的透明PP,现在可以广泛替代普通透明PVC制作文具、笔记本一类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200 t透明PP。
韩国LG Caitex公司将透明PP作为PET的替代品推向市场,应用于水瓶、洗涤剂瓶、个人护理品的包装等方面。
Fina公司市场部声称,他们的透明PP新产品将打人具有300kt/a市场容量的PS食品包装。
德国BASF公司的PP无规共聚物Novolen3248 TC,具有高流动性(熔体流动速率为48g/l0min)、低翘曲性,透明度达90%,雾度10%,适用于薄壁包装与日用品。
Solvay公司研制的PP无规共聚物EltexPKLl76,含有乙烯和透明剂,主要用于制造单层透明瓶和挤压片材,片材可热压成型各种容器及装饰品。
其产品具有玻璃般的光泽、很好的化学稳定性、耐环境应力开裂性和冲击强度。
德国Schneioler公司和Klein公司用透明聚丙烯替代PVC用于透明硬包装。
美国Amoco公司用透明改性剂生产的聚丙烯树脂经注、拉、吹工艺加工而成的水瓶可替代聚酯水瓶。
Montell Polyolefins公司最近推出了α烯烃改性PP树脂,牌号分别为273RCXP
和276RCXP,主要用于注塑成型。
两种牌号的树脂都没有添加成核剂和透明助剂,其中
273RCXP树脂的熔体速率为14g/10min,表现出低的气味性以及好的耐应力发白性能。
该树脂的透光性能相当于最好的PP无规共聚物,具有较高的光泽度,可制作成母粒形状用于生产固体或类似于用尼龙做成的半透明色母粒。
276RCXP树脂的熔体流动速率为16g/l0min,透光性和光泽度稍差些,但该树脂却展示出极佳的低温冲击性能,在低温下储藏后能经反复加热且耐冲击,可制作放于微波炉中的容器。
品级为721RCW的树脂,熔体指数为
l0g/l0min,主要用于挤吹成型或浇铸成型,树脂具有极佳的透明度、光泽度和低的雾度、宽的热粘着区域以及118~120℃的封合温度。
该树脂用于单层薄膜或在共挤塑结构中的粘接层。
日本Idemitsu Petrochemical有限公司采用加工技术于1985年研制开发出透明PP 片材。
该技术是使PP树脂在熔融状态下挤出后,通过快速冷却结晶、改进热处理技术以及Idemitsu公司的结晶控制技术和高温表面处理技术来大大提高PP片材的透明度。
该技术已获得发明专利。
随着透明PP的开发和不断改进,市场需求量在快速上升,据悉,世界2001年市场容量总计达1500~1600kt/a,预计2005年市场需求量可达2000-2500kt/a。
国内透明PP的研制及其开发应用较为滞后,但发展却非常迅速。
据初步调研,目前国内透明PP已广泛应用于薄膜、片材、塑杯、微波炉及其他的注塑制品等方面。
使用透明PP的厂家主要集中在东南沿海城市。
1996年我国对透明PP的需求量为5kt,且全部依赖进口,2000年市场需求量在100kt/a左右,随着应用领域的进一步开拓,到2005年国内需求量达到200~300kt/a。
透明PP需求量的不断扩大刺激了国内PP生产厂家的开发热情。
扬子石油化工股份有限公司研究院以PPF401及其相近牌号的PP为基料,采用DBS系列成核剂进行了透明PP制备技术开发和市场推广应用工作,取得了较好的进展,相关产品已进入市场。
另外,基于本公司生产的普通PP,通过添加适量的透明剂及其他相关助剂,优化配方设计,调整加工工艺,在工业装置上生产透明PP专用料PPJ301G,该专用料不仅具有普通PP质轻、耐高温、易加工成型等特点,其透明性、表面光泽度可与其他一些透明高分子材料相媲美,而且热变形温度、弯曲弹性模量等力学性能指标也明显提高。
2001年,扬子石化又开发出PIYF680、PFF700两种透明专用料。
洛阳石化总厂研究所以均聚聚丙烯PPF401为基础树脂,通过添加透明剂和自制母粒A、B,制得了透明PP片材专用料。
实验
(7)可像一般PP膜一样进行热合、层压、涂覆等二次加工。
微孔形成机理:结晶高聚物在拉伸聚向过程中会出现冷拉伸现象,这时其结构具有高度规整性,并且所有微晶都沿应力方向取向排列,称之为再结晶。
对结晶制品在熔点下缓慢地进行热处理(退火),这时体积较小,不完整的微晶在较低温度下熔化,立即又重新结晶,从而调整链段排列使结晶结构趋于均匀化。
在结晶—取向—再结晶的过程中,有效控制材料非晶区和晶区的取向分布,调整拉伸温度、拉伸强度、拉伸方法、热定型温度、冷却速率等工艺条件,就可得到微孔膜。
微孔膜属高技术含量、高附加值产品,在电池领域可用做隔膜,在医疗领域因其无毒、阻隔细菌但可透气,可用于人工肺膜、杀菌包装物等。
此种膜还可用于制造无菌水、无菌空气、废水过滤、烟尘分离、气体浓缩、卫生用品、花草、树苗栽培等等,用途十分广阔。
3 结语
聚丙烯是重要的通用塑料之一,无论是从绝对数量上,还是从应用的广度与深度上都属发展最快的品种。
作为改性塑料行业,聚丙烯的高性价比、多功能化和工程化始终是摆在面前的重要任务。
聚丙烯的改性可以在由小分子化合物聚合成大分子化合物时实现,如嵌段共聚(PPB)或无规共聚(PPR),但更多地是在聚合物已经形成之后,通过物理的、机械的、化学的方法,有针对性地进行改性。
现已知晓并实际应用的技术与手段几乎都可以用于聚丙烯的改性,填充、增强、共混、交联、接枝、成核……。
我们相信还会有更新、更好的改性方法出现。
前面提到的一些改性技术和产品仅仅是大海中的几滴水,但可以给我们以足够的启示——任重道远前景广阔,充分利用PP的优势,扬长避短,占领更多的应用领域,始终是我们今后面对的重要课题!
作者:中国塑料加工工业协会改性塑料专业委员会刘英俊。