无机纳米材料改性聚丙烯研究进展

合集下载

聚丙烯材料的制备和改性研究进展

聚丙烯材料的制备和改性研究进展

聚丙烯材料的制备和改性研究进展发布时间:2021-05-08T03:30:49.244Z 来源:《中国科技人才》2021年第7期作者:李大鹏王楠[导读] 把聚丙烯粉末加入含交联助剂的溶液中,经烘干、脱除溶剂和热处理后,加入抗氧剂,混炼,挤出或者模压成型,将成型后的聚丙烯进行辐照。

天津渤化化工发展有限责任公司天津市滨海新区 300486摘要:聚丙烯是半透明无色高度结晶体,结构规整,无臭无毒,耐热、耐腐蚀,是综合性能优良的热塑性聚合物,具有质轻、易塑化、保温等优点。

其制品可用蒸汽消毒,自问世以来,聚丙烯便成为业界开发应用的热点,已被广泛应用于汽车、家电、建筑、包装、农业和医药等领域。

聚丙烯材料(简称为PP材料)的制备工艺会影响聚丙烯的应用性能,通过改性可以改善和大大增强聚丙烯的强度、韧性、抗冲击、耐高温、耐化学品性、保水性和抗微生物性等应用功能。

本文就聚丙烯材料的制备和改性研究现状展开论述。

关键词:聚丙烯材料;制备;改性研究聚丙烯属于热塑性的材料,有着非常广泛的应用,而且聚丙烯的制造原料非常多,成本极低,聚丙烯制作的塑料同其他材料制作的塑料相比有着更强的综合性,因此近些年聚丙烯材料已经得到了人们足够的重视。

1. 聚丙烯材料的制备1.1辐射交联制备法把聚丙烯粉末加入含交联助剂的溶液中,经烘干、脱除溶剂和热处理后,加入抗氧剂,混炼,挤出或者模压成型,将成型后的聚丙烯进行辐照。

借助易挥发溶剂混匀原料和助剂,缩短混炼时间,提高交联效率,其耐热性和熔体强度均有所提高,该法辐射交联不使用化学交联剂,交联均匀程度易于控制,环保、能耗低、产率高,电子辐照后的聚丙烯泡沫其耐环境老化性能和耐温性能显著提高。

1.2多牌号调度切换混合优化法建立双环管工艺聚丙烯生产过程多牌号切换的从系统轨迹优化模型和主系统调度序列优化模型,并采用双层递阶混合整数迭代动态优化法优化主从系统模型,通过寻找聚丙烯多牌号生产的最优调度序列及各牌号切换过程中操作变量和产品性能指标变化的最优轨迹来指导生产,灵活满足市场需求,保证聚丙烯生产装置在最少能耗和物耗下经济效益最大。

聚丙烯酸与纳米颗粒复合材料的研究进展

聚丙烯酸与纳米颗粒复合材料的研究进展

聚丙烯酸与纳米颗粒复合材料的研究进展聚丙烯酸(Polyacrylic Acid, PAA)是一种重要的聚合物,其独特的特性使其成为一种理想的材料用于制备纳米颗粒复合材料。

近年来,研究人员对聚丙烯酸与纳米颗粒之间的相互作用进行了深入探究,并取得了显著的研究进展。

本文将从纳米颗粒的制备、聚丙烯酸与纳米颗粒复合材料的性能以及应用领域等方面,探讨聚丙烯酸与纳米颗粒复合材料的研究进展。

首先,纳米颗粒的制备技术是聚丙烯酸与纳米颗粒复合材料研究的关键之一。

目前常用的制备方法包括化学还原法、溶剂热法、溶胶-凝胶法、热解法等。

这些方法可以制备出形貌各异、尺寸可调的纳米颗粒,为后续的复合材料制备提供了基础。

其次,聚丙烯酸与纳米颗粒复合材料的性能也是研究的重点之一。

研究人员通过调节聚丙烯酸与纳米颗粒的比例、交联度以及添加其他功能性材料等方法,改善了复合材料的力学性能、热稳定性和耐候性能等。

同时,聚丙烯酸与纳米颗粒之间的相互作用也被广泛研究,包括静电相互作用、范德华力、氢键等。

这些相互作用对于调控纳米颗粒在复合材料中的分散性和界面结合力具有重要影响。

另外,聚丙烯酸与纳米颗粒复合材料的应用领域非常广泛。

一方面,该复合材料在医药领域中具有潜在的应用前景,如药物传输、组织工程和生物成像等。

纳米颗粒可以为药物提供载体,并增加药物的稳定性和生物可用性。

另一方面,聚丙烯酸与纳米颗粒复合材料在环境保护和能源领域中也有重要应用,如废水处理、催化剂载体和锂离子电池等。

这些应用领域的拓展将为聚丙烯酸与纳米颗粒复合材料的研究提供更多新的挑战和机遇。

另外,聚丙烯酸与纳米颗粒复合材料的研究还面临一些挑战。

首先,如何实现纳米颗粒在复合材料中的均匀分散和稳定固定仍然是一个挑战。

当前主要的方法是通过表面改性或添加分散剂来改善纳米颗粒在聚丙烯酸基质中的分散性。

其次,纳米颗粒与聚丙烯酸之间的界面相互作用机制还不完全清楚,需要进一步研究。

此外,聚丙烯酸与纳米颗粒复合材料的长期稳定性和可持续性问题也需要解决。

纳米材料改性丙烯酸酯涂料研究综述

纳米材料改性丙烯酸酯涂料研究综述

纳米材料改性丙烯酸酯涂料研究综述主要对纳米材料改性丙烯酸酯涂料的研究现状和应用效果作了综合论述,并对丙烯酸酯涂料的发展方向作了展望。

标签:丙烯酸酯涂料;纳米材料;改性;应用对“健康、绿色、环保”理念的深入认识和渴求,使人们逐渐对涂料安全使用方面的要求越来越高,要求也越来越高。

但市面上传统的涂料都含有大约50%的溶剂,其中铅、汞、苯等重金属,长期挥发于室内空气中将直接对人体产生巨大的伤害,降低人体免疫力。

因此。

越来越多的建材涂料厂家开始研发绿色新品,以适应行业需求。

近年来,随着聚合技术的飞速发展和完善,利用纳米材料改性丙烯酸系涂料的研究越来越受到了人们重视。

其中由于纳米材料具有表面效应、光学效应、小尺寸效应、宏观量子尺寸效应等特殊性质,除了可以使丙烯酸涂料改性后的获得防霉抗菌、净化空气、长期释放负离子以外,还具有手感细腻、色彩柔和、遮盖力好的特性以及优异的防水、防油、抗老化、阻透性、热稳定性、抗氧性、拉伸性和抗低温性,而且无毒无味,不含重金属离子和放射性物质。

此外,由于在生产过程中加入了特殊的纳米材料,使得该功能性丙烯酸酯涂料的成膜性能显著改善,大大提高了产品的柔韧性和耐擦洗性。

产品成膜后也不会由于环境的温度、湿度的起伏变化而导致裂开、剥落、脱粉等现象。

1 纳米材料的概念纳米材料是一种超细的固体材料,在涂料、塑料加工、陶瓷化妆品、玻璃等行业的应用非常广泛。

在丙烯酸酯涂料中加入纳米材料可以很大程度的改善涂料的一些性能,如纳米材料紫外线屏蔽功能,提高了耐老化性,长久不褪色,使用寿命可长达十几年;独特的光催化作用、自洁功能,可防霉杀菌,净化空气。

2 各类纳米材料改性丙烯酸酯涂料的研究现状涂料行业因为纳米材料的出现带来了一系列新的变化和挑战,将两者的结合运用,不仅能提高传统涂料的的一些特殊性能,而且能实现涂料涂层功能的一大跨越。

(1)纳米CaCO3改性丙烯酸酯涂料。

作为软质填料的纳米CaCO3广泛应用于各类涂料中,它无毒无味、无刺激,很容易和各类聚合物相容,具有补强、填充、调色、改善加工艺和制品的性能及降低加工成本,是最常用的原料之一,在成膜物中起着骨架作用。

无机填料改性聚丙烯复合材料的流变学研究进展

无机填料改性聚丙烯复合材料的流变学研究进展

P P的粉体 填充技术也 引起 了人们广 泛的关 注 。纳 且对材料 的成 型加 工及 产 品最终 性能 都有 着直 接 因而研究无 机改 性 P P复合 材料 的流变 行 米 二 氧 化 硅 ( a oS0 ) 纳 米 碳 酸 钙 ( a o n n —i 2 、 n n — 的影响 ,
( . c o l f tr l c n ea dE gn eig 1 S h o ei i c n n ier ,He a oyeh i Unv ri , o Ma a S e n n nP ltc nc ies y t
Ja z o 4 4 0 Ch n ; io u 5 0 0, i a
p e it d r dce .
K y wo d : o g n c f lr o y r p ln ;c mp st t r a ;r e l g ;r s a c r g e s e r s i r a i i e  ̄p l p o y e e o o i ma e i l h o o y e e r h p o r s n l e c
摘要
关键词ቤተ መጻሕፍቲ ባይዱ
综述 了近 几年 国内外无机填料 改性 聚 丙烯复合材料 流变学行 为的研 究进展 , 无机 填料 改性聚 丙 为
无机填料 ; 聚丙烯 ; 复合材料 ; 变学 ; 究进展 流 研 文献标志码 : A 文章编 号 :0 95 9 (0 2 0 —0 40 1 0—9 3 2 1 )20 1—6
2 Z ei gS in ea dTeh oo yC n ut gC n e ,Ha g h u3 0 , hn ) . hj n ce c n c n lg o s l n e tr a i n z o 0 4 C ia 1 0

纳米粉体改性聚丙烯材料力学性能研究进展

纳米粉体改性聚丙烯材料力学性能研究进展

d o i :1 0 . 3 9 6 9 / j . i s s n . 1 6 7 2 - 6 2 9 4 . 2 0 1 3 . 0 1 . 0 0 2
Pr o g r e s s i n Me c ha n i c a l Pr o p e r t i e s o f Po l yp r o py l e n e Mo di ie f d b y Na n o — — Po wd e r
p o w d e r ( n a n o — C a C O 3 、 n a n o - S i O 2 、 n a n o - T i 0 2 、 mo n t m0 r i l l 0 n i t e ( MM r r ) 、 c a r b o n n a n o t u b l e s ( C N T ) , e t a 1 . ) w a s s u m-
Zh a o Yun q i
Xi a S h a o x u Da i Ya h u i ’ Ca o Xi n x i n ’
f 1 , S c h o o l o f Ma t e r i a l S c i e n c e a n d E n g i n e e r i n g , He n a n P o l y t e c h n i c Un i v e r s i t y , J i a o z u o , 4 5 4 0 0 0 ;
能高 , 自身极 易 团聚 。 因此 二者 相容性 差l 4 I 。 通过 对 n a n o — C a C O 表 面改性 I 5 - 6 ] , 然后 填充 P P , 可使 P P材
料 力学 性能 得到较 大改 善 。 E i r a s a D a n i e l [  ̄ 将 含 量 分别 为 3 %( 质量分数 , 下 同) 、 5 %、 7 %和 1 0 %的 n a n o — C a C O 3 与 P P在 双

纳米二氧化硅改性丙烯酸酯涂料的研究进展

纳米二氧化硅改性丙烯酸酯涂料的研究进展

第52卷第12期 辽 宁 化 工 Vol.52,No.12 2023年12月 Liaoning Chemical Industry December,2023纳米二氧化硅改性丙烯酸酯涂料的研究进展李 伟(安徽师范大学化学与材料科学学院,安徽 芜湖 241002)摘 要:纳米SiO2改性丙烯酸酯涂料可以改进涂层的光学性能、防腐蚀性能、机械性能等。

纳米SiO2与丙烯酸酯乳液有不同的聚合方法,所得产品性能也不同。

综述了共混法、溶胶-凝胶法、原位聚合法在制备纳米SiO2/丙烯酸酯乳液中的应用,以及三种复合乳液制备方法对涂料性能的影响。

关键词:纳米SiO2;丙烯酸酯;改性;复合方法中图分类号:TQ630.4文献标识码: A 文章编号: 1004-0935(2023)12-1826-04丙烯酸酯单体中的双键经聚合反应生成丙烯酸酯树脂,由丙烯酸酯树脂制得的涂料具有良好的耐候性、耐酸碱等性能,在汽车、家具、机械、建筑等领域得到广泛应用[1-2]。

由于丙烯酸酯单体的多变性,多种酯基在不同介质中的溶解性,以及与其它涂料用树脂的混溶性等特点,丙烯酸酯树脂已成为涂料工业中全能的通用树脂[3]。

丙烯酸酯涂料也有一些缺点,如热稳定性较差,涂膜易返黏,机械加工性能差等。

为改善涂料性能,有机-无机复合技术为涂料改性开辟了新途径,复合改性技术可以将有机聚合物的优异性能与无机材料杰出的刚性,对热、化学、大气的稳定性结合起来,显著提高涂料性能。

纳米科技的发展使得有机-无机复合改性涂料进入了新阶段,纳米材料在分子水平上实现了有机-无机材料的复合。

纳米SiO2呈三维网状结构,表面存在不饱和键以及不同键态的羟基,具有很高的反应活性,而且表面吸附能力强,对紫外光、可见光以及近红外线有较高的反射率,而且纳米SiO2可深入到高分子化合物的π键附近,形成空间网状结构。

纳米SiO2有着广泛的商业应用,如填料、催化、传感、光子晶体和药物递送等[4-5]。

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。

与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。

但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。

为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。

1 橡胶增韧PP橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。

由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。

通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。

传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。

1.1 PP/乙丙橡胶共混体系PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。

由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。

李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。

通常情况下,EPR的增韧效果优于EPDM。

通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。

刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。

结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差异对力学性能不起作用。

纳米粒子改性聚丙烯酸树脂的研究

纳米粒子改性聚丙烯酸树脂的研究
逐级缩小生产装置, 以至最后直接由 人类按需排布原子以制造产品。 这在当时只 是一个美好的梦想。 然而, 随着时间的推移和科学技术的发展, 这个梦想正在逐
步 现实冈 。 9 年, 的伪e r 成为 1 4 8 德国 i 教授首先制成纳米粉金属粒子[ 1 e t j 9 s 9 ; 0
年 7月在美国召开了第一界纳米科学与技术会议 ( 如o a c e N s es n c ic i n ad
川 9 沉 俪cm t a . aoale c b otndl m s r m osI t a 到 sN P c a e b l 全 e a e d . h el n r l n t s a e o vl t h n e
p s t t y t s 一 l e o a ue. h o g p c i o st r e sd, o g m t dw s Tl 卜 e幻 u h l e e h s d ss e r s nl h l o e vv e e
把 u l do加 a o 0 即d加 t l 川 o i ( o udr it 加bt o为t 山t 卫 劝 y i e 加e y o五 sc h l i 毗 住 s ne a dy ) c i cn 石 P S T M , r ue t l e 掀 山 p i i , 劝 bd 皿d o由 o c 阳d E 肥e d n 拓9 。 e a c z d r uo L I s o v t r 怡s ei i n
允 ntno cl e 耐 c 5 o s u0 n ao f o d P 加 扮 l o 石幻助dao s w e P拍 r yU s i h nl l w 拓 确m e 加es 1i n s ’ e W i e n ah 州 he外 】g i P l 由 h g 侧勺 hm gno m ea Te h 以 a宜 加r l o oee s ti u a r 七nt g c g C l e n 月 a n hbd a石 s e 拼 y石 m ea wr 印眼d t is p】 eZtn t s t se s s t l e y e t b h n i o y r i ih yh i d o U m i o n e n ez o r a l 勿 b ni t s s hp f e p】 e d.U. l d g o 初t 此 r d y r icy enhl e o m o ms r C o i l al 助d a a c w it 吐 pr s s c P i s l o d 。a t e l c l i t er r le s t se 丘 mbd l tn y h id 刀 yry 1 o n ez oZ Of a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机纳米材料改性聚丙烯研究进展摘要:综述了聚丙烯经无机纳米材料改性的方法,以及改性后的力学性能、热稳定性能、电性能和流变性能等都得到改善。

并且综述了无机纳米材料改性聚丙烯的研究进展。

因聚丙烯的韧性较差限制了工程化应用,所以利用纳米微粒改性填充聚合物,可有效地改善聚合物的强度、韧性、刚性及耐磨性等性能。

本文侧重讨论了碳纳米管(CNTs)、纳米二氧化硅(nano-SiO2)、纳米碳酸钙(nano-CaCO3)及纳米蒙脱土(MMT)等在聚丙烯改性中的研究进展。

1)碳纳米管可以提高聚丙烯的力学性能、电学性能;2)纳米二氧化硅增强强度、韧性、耐磨性、抗老性;3)纳米碳酸钙改性聚丙烯的刚性、韧性、弯曲强度;4)纳米蒙脱土提高聚丙烯抗冲击、抗疲劳、尺寸稳定性。

并对无机纳米材料改性聚丙烯的应用前景进行了展望。

关键字:聚丙烯;无机纳米材料;改性;研究进展0前言聚丙烯(PP)自1957年工业化以来,发展极其迅速,由于原料来源丰富。

价格便宜,综合性能优良,已成为一种应用广泛的塑料。

聚丙烯密度小(0.89-0.91g/cm3),是塑料中最轻的品种之一。

聚丙烯熔点达165℃,可在100℃-120℃下长期使用。

聚丙烯还具有优良的耐腐蚀性及电绝缘性。

它的力学性能,包括拉伸强度、压缩强度、硬度以及刚性都较优异,而且聚丙烯易加工成型,因此广泛应用于注塑成型、薄膜、纤维、挤出成型等制品。

由于聚丙烯的韧性较差,对缺口十分敏感,低温脆性突出,成型收缩大,耐光及耐氧化性差等,这些都限制了聚丙烯的工程化应用。

因此对聚丙烯的增韧改性一直是聚丙烯的重要研究内容。

目前对聚丙烯进行改性的方法有多种,主要可分为化学改性和物理改性。

化学改性主要包括共聚、接枝、交联、氯化等[1]。

物理改性主要包括共混改性、填充改性、复合增强、表面改性等。

特别是填充改性是最简单方便而又行之有效的方法。

纳米微粒的表面效应、小尺寸效应和量子隧道效应,可以使其具有很高的表面活性及比表面积大等一系列特殊的物理化学性质。

利用纳米微粒填充聚合物可有效地改善聚合物的强度、韧性、刚性及耐磨性等性能。

近年来随着纳米材料理论研究的不断深入,其应用领域正在逐步向工业化的方向发展。

近年来,无机纳米材料改性聚丙烯越来越受到人们的关注,国内外关于无机纳米粒子改性聚丙烯的理论和应用研究表明,无机纳米粒子能够增强增韧聚丙烯。

填充改性的聚丙烯复合材料已广泛应用于汽车、电器、仪表、建材等行业。

本文重点介绍碳纳米管、纳米二氧化硅、纳米碳酸钙及纳米蒙脱土等在聚丙烯改性中的研究进展。

1碳纳米管改性聚丙烯碳纳米管作为一维纳米材料,由于其独特的结构和优异的力学、电学性能而被许多研究者关注。

近年来碳纳米管聚合物复合材料已成为研究热点之一,在提高聚合物基复合材料的力学性能、电学性能及热稳定性能等方面取得了很大的进展。

以下重点讨论CNTs 在聚丙烯改性中的应用。

周桢等[2]采用双螺杆挤出机和模压成型设备制备了含两种不同长径比(分别为75和500)的多壁碳纳米管(S-MWNT和L-MWNT)的PP纳米复合材料(PP/S-MWNT和PP/L-MWNT)。

实验表明,添加体积分数为1%的MWNT, PP的抗蠕变性能就有很大提高。

在23℃、20MPa 的条件下,PP/S-MWNT和PP/L-MWNT复合材料的蠕变寿命分别比纯PP延长了760%和800%。

在23℃、拉伸速率为2mm/min时,PP/S-MWNT和PP/L-MWNT复合材料的成型收缩百分比由纯PP的20.3%分别降至16.9%和14.9%。

马玉玲等[3]采用熔融共混法制备了PP/MWNT复合材料。

实验表明,PP/MWNT复合材料的导电性能很大程度上取决于MWNT在PP基质中的含量和分散程度,并且当CNT含量高时,其电阻率受到温度的影响。

PP/0.22%MWNT(体积分数)复合材料的导电率较纯PP增大了6个数量级,介电常数增大了2个数量级。

在哈克转矩流变仪转速为200r/min时制备PP/MWNT 复合材料的逾渗阈值比60r/min时制备的要小很多,这是由于高剪切速率下MWNT在PP中分布更均匀。

此外,以PP/2.21%MWNT(体积分数)复合材料在25℃时的电导率为标准,低温<40℃下,导电率几乎保持不变,但当温度高于40℃时其导电率随温度的升高而急剧增大。

王俊等[4]用转移自由基(ATRP)法成功地将聚丙烯酸丁酯(PBA)接枝到MWCNTs表面。

对聚丙烯(PP)/MWCNTs复合材料电性能的研究表明:MWCNTs-PBA的添加比MWCNTs-COOH更能降低复合材料的电阻率。

MWCNTs-PBA的加入可使PP从绝缘材料转变为抗静电材料。

MWCNTs-PBA和MWCNTs-COOH加入PP中都能提高材料的电性能,而MWCNTs-PBA比MWCNTs-COOH的作用更加明显。

另外,碳纳米管的质量分数为6%为PPMWCNTs复合材料的导电阈值。

胡静[5]等用溶液混合的方法制备了碳纳米管/马来酸酐接枝聚丙烯复合材料。

实验表明:碳纳米管的加入使聚丙烯晶粒细化,同时晶粒大小比较均一。

当碳纳米管含量为5wt%时,碳纳米管在聚丙烯基体中仍分散较好,没有明显的团聚现象。

拉伸实验结果显示当碳纳米管含量为3%时,拉伸强度可提高50%。

2纳米二氧化硅改性聚丙烯纳米二氧化硅是重要的增强聚合物性能的纳米无机材料。

与SiO2粒子相比,表面缺陷、非配位原子多,与聚合物发生物理或化学结合的可能性大,增强了粒子与聚合物基体的界面结合,可对聚合物起到增强、增韧和提高热稳定性的作用。

因此,PP/nano-SiO2复合材料是PP无机纳米复合材料中备受关注的对象。

鲁萍[6]采用熔融共混的方法,将甲基丙烯酸甲酯(MMA)接枝纳米二氧化硅(SiO2-g-PMMA)填充到PP中,并研究了复合材料的力学性能和结晶性能。

结果表明,当SiO2-g-PMMA的含量为3%时,复合材料的拉伸强度、弯曲强度以及硬度分别比纯PP提高了15.9%、12.5%和9.2%。

差示扫描量热(DSC)结果表明,SiO2-g-PMMA的异相成核效果优于未改性的SiO2,使PP的熔融温度和结晶温度分别提高了2.7℃和3.0℃,扫描电子显微镜(SEM)分析表明,SiO2-g-PMMA具有一定的增韧作用。

周红军[7]以PP为基体,以弹性体(POE,TPU)和nano-SiO2为改性剂,采用熔融共混法制备PP/弹性体/nano-SiO2复合材料。

PP及其复合材料的G `,G``以及η*与频率的关系,如图1、2所示。

从图1、2可见:加入弹性体和nano-SiO2后,复合材料的储能模量图1,PP及其复合材料的G `,G ``与频率的关系图2,PP及其复合材料的η* 与频率的关系G `、耗能模量G ``与物质对动态剪切总阻抗的量度η*均较PP的增大,但各填充体系的G `,G ``与η*没有显著区别;PP及其复合材料的黏度均随角频率加快而降低,即:剪切变稀。

郑艳红等[8]采用熔融共混法制备了PP/硅烷偶联剂改性纳米二氧化硅复合材料,并研究了其力学性能。

结果表明,纳米二氧化硅的加入可同时改善PP的韧性、刚性和强度,且填充量相同时,颗粒越细,复合材料的力学性能越好。

3纳米碳酸钙改性聚丙烯纳米碳酸钙与树脂的相容性好,能有效提高制品的刚性、韧性、弯曲强度及稳定性等,能取代部分价格昂贵的填充料及助剂。

nano-CaCO3与聚合物的共混,能够改善基体的力学性能、流变性能及热稳定性能等。

以下着重介绍nano-CaCO3对聚丙烯基体的影响。

王文一等[9]采用经表面处理的纳米CaCO3。

粒子,可使纳米CaC03粒子在EPR/PP基体中得到较均匀的分散且在纳米CaC03粒子含量为7.7%时效果最佳。

纳米CaC03粒子的加入,不但使冲击强度显著提高,而且使弯曲弹性模量显著提高。

验证了无机剐性粒子增韧塑料可使材料的韧性与刚性同时提高的特点。

张云灿等[10]对PP/EPDM/CaC03体系的研究发现三元体系的拉伸模量为1630MPa,大于PP/CaC03二元体系的拉伸模量(680MPa),也超过均聚PP自身的拉伸模量(1400MPa)。

PP/EPDM/caC03体系协同效应作用于有机弹性体、刚性体、纳米粒子和普通聚合物之间,能较大的促进PP韧性的提高,根本原因在于相界面的扩大和聚合物共混体系相容性的提高。

姜苏俊[11]研究了纳米CaCO3和EPDM接枝马来酸酐对聚丙烯的协同增韧作用,发现当其用量均为5%时,抗冲击性能有很大的提高,是5%纳米Ca-C03增韧改性的聚丙烯纳米塑料的3倍。

俞江华等[12-13]研究发现:浸润速度不同的纳米CaC03以相同的质量分数填充到PP/SBS复合材料中时,浸润速度较大的纳米CaC03所制PP/SBS/纳米CaC03复合材料的力学性能较高。

在PP/SBS/CaC03三元复合体系中,纳米CaC03添加量为16份时,复合材料的缺口冲击强度达到最大值,为56.5kJ/m2,比未添加纳米CaCO3。

的试样提高了27%;纳米CaC03添加量为4份时,复合材料的拉伸强度达到最大值,为31.3MPa,比未添加纳米CaCO3。

的试样提高了23%.研究结果表明纳米CaCO3。

和弹性体SBS主要呈独立分散状态,纳米CaC03的加入可以对弹性体SBS的分散起到剪切细化、均化的作用,使弹性体SBS 分散的更小,更均匀,导致基体层厚度的减小,从而产生协同增韧的效应。

4纳米蒙脱土改性聚丙烯纳米蒙脱土是最具商业用途的无机高分子类增稠剂。

由于其良好的分散性能,广泛应用于聚合物的添加剂,从而提高基体的抗冲击、抗疲劳、尺寸稳定性及气体阻隔等性能。

以下重点介绍MMT在聚丙烯改性方面的研究进展[14]。

杜明辉等[15]对PP/PVC/MMT共混物的性能进行了研究,并讨论了MMT的质量分数对PP/PVC共混物性能的影响。

研究结果表明:随着MMT的质量分数增加,共混物的拉伸强度也逐渐增加。

当PP/PVC共混体系中MMT的质量分数为5%时,PP/PVC共混体系的拉伸强度达到最大值,比未加入MMT时的拉伸强度提高22%。

高俊强等[16]通过熔融共混法制备PP/马来酸酐接枝聚丙烯(PP-g-MAH)/MMT纳米复合材料母粒。

利用“二次开模”法注塑成型制得PP/PP-g-MAH/MMT纳米复合微孔发泡材料。

研究了MMT和PP-g-MAH的质量分数对纳米复合微孔发泡材料发泡质量的影响。

结果表明:质量分数分别为5%的MMT和6%的PP-g-MAH有较好的协同效应,微孔发泡材料的发泡倍率最大,泡孔平均直径最小,泡孔密度较大,泡孔尺寸分布范围较窄。

当MMT的质量分数为5%时发泡样的发泡倍率最大,总体密度下降达13.7%,然后随着MMT的质量分数增大而降低。

相关文档
最新文档