2020年(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

合集下载

聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。

然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。

以下是聚丙烯改性的几种主要方法。

1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。

添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。

2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。

常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。

共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。

3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。

常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。

界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。

4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。

辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。

5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。

常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。

高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。

总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。

这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。

聚丙烯改性技术及其产品应用进展

聚丙烯改性技术及其产品应用进展

聚丙烯改性技术及其产品应用进展发布时间:2023-01-04T05:40:40.555Z 来源:《中国科技信息》2023年17期作者:王海峰[导读] 聚丙烯产品虽然广泛应用于各行业,但国内高端聚丙烯产品主要依赖于进口,这是由于国内产品存在长时间暴露于室外易氧化、高温刚性不足等弊端。

王海峰中国石油庆阳石化公司甘肃庆阳 745000摘要:聚丙烯产品虽然广泛应用于各行业,但国内高端聚丙烯产品主要依赖于进口,这是由于国内产品存在长时间暴露于室外易氧化、高温刚性不足等弊端。

因此,需通过物理改性或化学改性的方式将聚丙烯加工为改性聚丙烯,提升其力学性能、以满足各行业需求。

本文主要分析聚丙烯改性技术及其产品应用进展。

关键词:聚丙烯;物理改性;化学改性;力学性能引言聚丙烯材料是丙烯单体在催化剂及助催化剂作用下,与氢气或乙烯发生聚合反应,将所得聚丙烯粉末与添加剂进行混合,经过挤压机熔融、混炼、造粒所得产物,具有无毒、无害且易加工成型的特性,广泛应用于食品包装、医疗器材、建筑、汽车零部件等各行业中。

1、化学改性化学改性是通过共聚改性、交联改性、接枝改性、添加成核剂等使聚丙烯分子结构或晶体构型发生改变,达到提高其力学性能、耐热性、耐老化性等的目的。

1.1共聚改性共聚改性通常是指丙烯单体与氢气或其他烯烃单体在茂金属催化剂作用下聚合进行的改性,通过添加不同类别催化剂或改变原料配比以生产熔融指数、等规度、抗冲性能各异的聚丙烯产品。

6种不同负载的茂金属催化剂对聚丙烯生产过程及产品质量的影响,发现不同负载的催化剂活性相差较大,其中负载Zr金属中心的茂金属催化剂活性及稳定性较好。

1.2接枝改性接枝改性过程中需添加大量的接枝单体,在聚丙烯分子上插入极性基团,从而达到改性的目的。

常见的接枝单体包括马来酸酐、甲基丙烯酸缩水甘油酯等,为防止加工过程中聚丙烯发生降解,同时添加具备促进接枝效果的助单体苯乙烯。

为避免改性过程中马来酸酐在特定温度下易挥发产生刺激性气味这一问题,选择加入肉桂酸甲酯与马来酸酐共同作用,同时加入少量二乙烯苯可显著降低苯乙烯用量,从而降低成本。

2020年(塑料橡胶材料)塑料材质分类

2020年(塑料橡胶材料)塑料材质分类

(塑料橡胶材料)塑料材质分类热塑型塑料,ABS塑料,常用建筑塑料等等,几种常见塑料简介ABS塑料(丙烯腈-丁二烯-苯乙烯)英文名称:AcrylonitrileButadieneStyrene比重:1.05克/立方厘米成型收缩率:0.4-0.7%成型温度:200-240℃干燥条件:80-90℃2小时物料性能1、综合性能较好,冲击强度较高,化学稳定性,电性能良好.2、和372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理.3、有高抗冲、高耐热、阻燃、增强、透明等级别。

4、流动性比HIPS差壹点,比PMMA、PC等好,柔韧性好。

适于制作壹般机械零件,减磨耐磨零件,传动零件和电讯零件.PP塑料(聚丙烯)英文名称:Polypropylene比重:0.9-0.91克/立方厘米成型收缩率:1.0-2.5%成型温度:160-220℃干燥条件:---物料性能密度小,强度刚度,硬度耐热性均优于低压聚乙烯,可在100度左右使用.具有良好的电性能和高频绝缘性不受湿度影响,但低温时变脆,不耐模易老化.适于制作壹般机械零件,耐腐蚀零件和绝缘零件PS塑料(聚苯乙烯)英文名称:Polystyrene比重:1.05克/立方厘米成型收缩率:0.6-0.8%成型温度:170-250℃干燥条件:---物料性能电绝缘性(尤其高频绝缘性)优良,无色透明,透光率仅次于有机玻璃,着色性耐水性,化学稳定性良好,.强度壹般,但质脆,易产生应力脆裂,不耐苯.汽油等有机溶剂.适于制作绝缘透明件.装饰件及化学仪器.光学仪器等零件PPS塑料(聚苯硫醚)英文名称:Phenylenesulfide比重:1.36克/立方厘米成型收缩率:0.7%成型温度:300-330℃干燥条件:---物料性能1、电绝缘性(尤其高频绝缘性)优良,白色硬而脆,跌落于地上有金属响声,透光率仅次于有机玻璃,着色性耐水性,化学稳定性良好。

有优良的阻燃性,为不燃塑料。

2、强度壹般,刚性很好,但质脆,易产生应力脆裂,不耐苯.汽油等有机溶剂.长期使用温度可达260度,在400度的空气或氮气中保持稳定。

聚丙烯的改性

聚丙烯的改性

聚丙烯管材
早期,聚丙烯管材主 要用作农用输水管,但是 由于早期产品性能还存在 一些问题(抗冲击强度、 耐老化性能较差),市场 未能打开。据报道,目前 韩国开发出一种耐高压给 水管用无规共聚聚丙烯 PP-R 112新牌号,使用该 牌号生产的管材可在20℃ 和11.2MPa的超高压状态 下使用50年。
聚丙烯及聚丙烯的改性
郭萍
一、聚丙烯简介
聚丙烯是由丙烯聚合而制得的一种热塑性 树脂。聚丙烯由于其力学性能优异,耐热性好, 耐应力开裂性和刚性优异,且易于加工成型,具 有广泛的应用价值,但是其韧性较差,尤其是在 低温下易脆断,对缺口敏感,因此应对聚丙烯进 行改性 。 聚丙烯作为通用热塑性塑料中增长最快的品 种,在经济建设和人民生活中的地位日益重要, 在汽车工业、家用电器、电子、包装及建材、家 具等方面具有广泛的应用。
相容技术:相容剂技术是塑料合金开发 研究的核心。由于赋予聚丙烯以极性, 所以 能够与更多极性聚合物共混制成实用合金。 几乎所有常见的大品种树脂与聚丙烯皆不相 容, 因此适用于制备聚丙烯合金的界面相容 剂的开发是聚丙烯高性能化的重要途径。
四、改性技术新进展
反应挤出共混技术:将高分子化学反应与各 组分的共混挤出工艺有机地结合在一起的连续过 程即是反应挤出技术。反应挤出技术可使聚丙烯 这种非极性聚合物获得极性。 各种改性技术的复合化:单纯使用单元技术 也有局限性, 往往是提高单项性能如冲击韧性的 同时, 使其它性能如刚性大幅度下降。为此, 聚丙 烯改性正进入这些单项技术配合起来运用的复合 化阶段。
3.3接枝改性
聚丙烯树脂中加入接枝单体,在引发剂 作用下,加热熔融混炼而进行接枝反应。接 枝反应机理大致为:首先是引发剂在加热时, 分解生成活性游离基与接枝单体接触时,使 之不稳定链打开,生成聚丙烯游离基再进行 链转移反应而终止。 在聚烯烃大分子上利用化学方法接枝马 来酸酐,其目的是在非极性的大分子骨架上 引入极性基团,称为聚烯烃的官能化。

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用概述聚丙烯(Polypropylene,简称PP)是一种常见的塑料材料,具有良好的加工性能、强度和耐化学腐蚀性。

然而,聚丙烯在某些方面的性能还有待改善。

改性聚丙烯通过添加不同的添加剂、改变配方比例或改变加工工艺等方式,改善了聚丙烯的某些性能,扩展了其应用范围。

本文将介绍聚丙烯塑料的改性方法及其在各个领域中的应用。

聚丙烯塑料的改性方法1. 添加剂改性添加剂改性是最常见的一种聚丙烯塑料改性方法。

通过向聚丙烯中添加不同的添加剂,可以改变聚丙烯的物理、化学性能,提高其加工性能和耐候性。

常见的添加剂包括: - 填充剂:如碳酸钙、滑石粉等,可以提高聚丙烯的刚性和抗冲击性; - 阻燃剂:如氯化磷、硫酸铵等,可以提高聚丙烯的阻燃性能; - 稳定剂:如抗氧剂、紫外线吸收剂等,可以提高聚丙烯的耐氧化和耐候性; - 助剂:如流动剂、增韧剂等,可以改善聚丙烯的加工性能。

2. 共混改性通过与其他聚合物进行混合,可以改善聚丙烯的性能。

常见的共混改性方法有物理共混和化学共混两种。

•物理共混:将聚丙烯与其他聚合物机械混合,形成共混体系。

物理共混可以改善聚丙烯的强度、韧性和耐热性。

•化学共混:通过共聚反应或交联反应,将聚丙烯与其他聚合物进行化学结合。

化学共混可以显著改善聚丙烯的力学性能、热性能和耐化学性。

3. 改变配方比例通过改变聚丙烯的配方比例,如增加共聚单体的含量、调节分子量分布等方式,可以改变聚丙烯的结晶度、熔体流动性和力学性能。

•增加共聚单体含量:在聚丙烯的聚合过程中,加入适量的共聚单体,如丙烯酸、丙烯酸酯等,可以改善聚丙烯的柔韧性、降低结晶度。

•调节分子量分布:通过控制聚合反应条件,可以得到不同分子量分布的聚丙烯,从而改善聚丙烯的加工性能和力学性能。

聚丙烯塑料的应用领域聚丙烯的优良性能使其在各个领域都有广泛的应用。

1. 包装行业聚丙烯具有较高的刚性和抗冲击性,被广泛用于包装行业。

聚丙烯制成的塑料包装材料可以应用于食品包装、医药包装、化妆品包装等领域。

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用1. 背景介绍聚丙烯(Polypropylene,简称PP)是一种常见的聚合物材料,具有良好的机械性能、耐热性、耐化学腐蚀性等特点,因此在工业和日常生活中广泛应用。

然而,纯聚丙烯材料在某些方面的性能仍然有待改善,这就需要对聚丙烯进行改性处理。

2. 改性方法2.1 添加剂改性添加剂改性是指向聚丙烯中加入适量的改性剂,以改善其特定性能。

常见的添加剂包括增塑剂、抗氧剂、阻燃剂等。

增塑剂可以提高聚丙烯的可塑性和柔韧性,抗氧剂可以延缓聚丙烯老化速度,阻燃剂可以提高聚丙烯的阻燃性能。

2.2 交联改性聚丙烯的交联改性是指通过物理或化学方法,在聚丙烯分子链之间建立交联,提高聚丙烯的热稳定性和力学性能。

常见的交联改性方法包括辐射交联、热交联和化学交联等。

2.3 接枝改性接枝改性是指将其他具有良好性能的高分子化合物接枝到聚丙烯分子链上,以提高聚丙烯的性能。

接枝改性可以增加聚丙烯的韧性、耐疲劳性和耐磨性等。

3. 改性聚丙烯的应用3.1 包装材料改性聚丙烯在包装材料领域有着广泛的应用。

由于其良好的耐热性和耐化学腐蚀性,改性聚丙烯袋可以用于食品、医药等领域的包装,保证产品的安全性和卫生要求。

3.2 汽车零部件改性聚丙烯在汽车工业中的应用越来越广泛。

其优异的力学性能和耐冲击性使得改性聚丙烯成为制造汽车零部件的理想材料,如汽车内饰件、车身板材、底盘保护装置等。

3.3 电子电器改性聚丙烯具有良好的绝缘性能和抗静电性能,因此在电子电器领域得到了广泛应用。

例如,手机壳、电视机外壳、电器配件等都可以采用改性聚丙烯制造。

3.4 医疗器械由于改性聚丙烯具有良好的耐腐蚀性、生物相容性和低毒性等特点,适用于医疗器械的制造。

例如,输液瓶、注射器、手术器械等都可以采用改性聚丙烯。

4. 结论通过添加剂改性、交联改性和接枝改性等方法,可以显著提高聚丙烯的性能,拓展其应用领域。

改性聚丙烯在包装材料、汽车零部件、电子电器和医疗器械等领域都有着重要的应用价值。

聚丙烯的改性方法及应用

聚丙烯的改性方法及应用

聚丙烯的改性方法及应用-CAL-FENGHAI.-(YICAI)-Company One1聚丙烯的改性方法及应用聚丙烯具有比重小、刚性好、强度高、耐挠曲,以及有高于100℃的耐热温度和良好的耐化学腐蚀性等优点。

通过改性,其耐低温性﹑耐冲击性和耐老化性等有所提高,广泛应用于家电、汽车等领域。

根据产品的要求和用途,聚丙烯可以用共混、填充、增强、添加助剂,以及共聚、共混、交联等方法加以改性。

例如可以添加碳酸钙、滑石粉、矿物质等以提高硬度、耐热性、尺寸稳定性,添加玻璃纤维、石棉纤维、云母、玻璃微珠等以提高拉伸强度、改善低温抗冲击性、耐蠕变性,添加橡胶、弹性体、和其它柔性聚合物等以提高冲击性能、透明性,添加各种特殊助剂可赋予聚丙烯诸如耐候性、抗静电性、阻燃性、导电性、可电镀性、成核性、抗铜害性等等。

改性聚丙烯在家电领域的应用易涂装改聚丙烯材料:直接通过共混改性,引入极性官能团,使其与聚丙烯树脂形成共结晶,规避析出,避免弱界面层的形成,从而整体提升表面张力。

满足无人看守电器要求阻燃改性聚丙烯材料:满足国际电工委员会(IEC)提出的长期无人看管电器用改性PP材料要求:IEC60335标准要求750℃灼热丝接触被测材料或制品30秒内不起火或者燃烧时间≤5秒(即GWIT≥750℃)和漏电起痕指数(CTI)≥250V。

感温变色聚丙烯材料:在聚丙烯材料中通过加入感温变色颜料实现颜色转变,感温变色颜料是由电子转移型有机化合物进行制备,在特定温度下因电子转移使该有机物的分子结构发生变化从而使颜色发生转变,从而在直观上辨别温度。

防蟑螂、防鼠咬材料:通过针对对蟑螂和老鼠的味觉和嗅觉的刺激从而达到防治其对电器的危害。

主要应用于电磁炉等电器。

抗染色聚丙烯材料:内胆材料直接与果汁、食物残渣、食品调料等接触后受到污染引起材料表面颜色的变化,当颜色变化到一定程度后就会显脏,甚至作为污染源污染下一批食物,降低产品的使用品质。

使用抗染色聚丙烯材料可以解决这些问题。

2020年(塑料橡胶材料)常用塑料的注塑工艺参数

2020年(塑料橡胶材料)常用塑料的注塑工艺参数

(塑料橡胶材料)常用塑料的注塑工艺参数常用塑料的注塑工艺参数一、高密度聚乙烯(HDPE)料筒温度喂料区30~50℃(50℃)区1160~250℃(200℃)区2200~300℃(210℃)区3220~300℃(230℃)区4220~300℃(240℃)区5220~300℃(240℃)喷嘴220~300℃(240℃)括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长和壁厚之比为50:1到100:1熔料温度220~280℃料筒恒温220℃模具温度20~60℃注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar);壹些薄壁包装容器除外可达到180MPa(1800bar)保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射压力的30%~60%背压5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料制品螺杆转速高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前就完成塑化过程就能够;螺杆的扭矩要求为低计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的残料量2~8mm,取决于计量行程和螺杆直径预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就能够回收率可达到100%回收收缩率1.2~2.5%;容易扭曲;收缩程度高;24h后不会再收缩(成型后收缩)浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄截面制品已足够机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊(L:D=25:1),直通喷嘴,止逆阀二、聚丙烯(PP)料筒温度喂料区30~50℃(50℃)区1160~250℃(200℃)区2200~300℃(220℃)区3220~300℃(240℃)区4220~300℃(240℃)区5220~300℃(240℃)喷嘴220~300℃(240℃)括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长和壁厚之比为50:1到100:1熔料温度220~280℃料筒恒温220℃模具温度20~70℃注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar);壹些薄壁包装容器除外可达到180MPa(1800bar)保压压力避免制品产生缩壁,需要很长时间对制品进行保压(约为循环时间的30%);约为注射压力的30%~60%背压5~20MPa(50~200bar)注射速度对薄壁包装容器需要高的注射速度(带蓄能器);中等注射速度往往比较适用于其它类的塑料制品螺杆转速高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前完成塑化过程就能够计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的残料量2~8mm,取决于计量行程和螺杆转速预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就能够回收率可达到100%回收收缩率1.2~2.5%;收缩程度高;24h后不会再收缩(成型后收缩)浇口系统点式浇口或多点浇口;加热式热流道,保温式热流道,内浇套;浇口位置在制品最厚点,否则易发生大的缩水机器停工时段无需用其它材料进行专门的清洗工作;PP耐温升料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊(L:D=25:1),直通喷嘴,止逆阀三、聚苯乙烯(PS)料筒温度喂料区30~50℃(50℃)区1160~250℃(200℃)区2200~300℃(210℃)区3220~300℃(230℃)区4220~300℃(230℃)区5220~300℃(230℃)喷嘴220~300℃(230℃)括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长和壁厚之比为50:1到100:1熔料温度220~280℃料筒恒温220℃模具温度15~50℃注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar)保压压力注射压力的30%~60%;相对较短的保压时间背压5~10MPa(50~100bar);在背压太低的地方,熔料中易产生气泡(制品中有灰黑纹路)注射速度普遍较快,多级注射以制品形状为依据;对薄壁的包装容器应该尽可能快,必要时使用蓄能器螺杆转速高螺杆转速(最大线速度为1.3m/s)是允许的;但为取得好的效果,塑化过程应该缓慢同冷却时间壹样计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的残料量2~8mm,取决于计量行程和螺杆转速预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就能够回收率可达到100%回收收缩率0.3%~0.6%浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;相对较小的横截面为足够机器停工时段无需用其它材料进行专门的清洗工作;PS耐温升料筒设备标准螺杆,直通喷嘴,止逆阀四、聚氯乙烯-未增塑(PVC-U)料筒温度喂料区30~50℃(50℃)区1140~160℃(150℃)区2165~180℃(170℃)区3180~210℃(190℃)区4180~210℃(200℃)区5180~210℃(200℃)喷嘴180~210℃(200℃)括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长和壁厚之比为50:1到100:1熔料温度210~220℃料筒恒温120℃模具温度30~60℃注射压力80~160MPa(800~1600bar)保压压力不可设置太高,注射压力的40~60%,以模件和浇口为依据背压鉴于它的热敏感性,正确设置背压是很关键的;螺杆转动摩擦产生的热量(关闭热量输入控制)比从料筒加热圈产生的热量更好;背压不超过30MPa(300bar)注射速度不要设置太高且小心物料产生剪切效应;制品易产生变性或锐边的地方,应绝对需要多级注射速度螺杆转速使用允许的最低设置,最大速度折合线速度为0.2m/s;如果必要,延迟塑化以确保在冷却时间长的情况下,计量操作在低螺杆转速时能在冷却时间结束前完成;需要高扭矩且保持均匀计量行程1.0~3.5D残料量应较小:1~5mm,取决于计量行程和螺杆直径;螺杆在安装料筒时确保最小配合预烘干如果贮藏条件不好,在70℃的温度下烘干1h就可回收率允许在材料没有热分解的状态下再生利用收缩率0.5%~0.7%浇口系统直浇口,片式浇口或圆片式浇口较好,对小的制品也可采用点式浇口;浇口朝着制品的方向应有圆弧过渡机器停工时段关闭加热,无背压塑化,允许熔料驻流2~3mm,然后像挤出机那样缓慢操作机器;重复操作直到料筒温度降到160℃,然后挤出余料,清空料筒料筒设备硬质PVC螺杆;有些需要料筒有加热圈和冷空气吹气装置;螺杆头有螺槽或没有螺槽,直通喷嘴五、增塑聚氯乙烯(P-PVC)料筒温度喂料区30~50℃(50℃)区1140~160℃(150℃)区2150~180℃(165℃)区3160~220℃(180℃)区4160~220℃(190℃)区5160~220℃(190℃)喷嘴160~220℃(200℃)括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长和壁厚之比为50:1到100:1熔料温度200~220℃料筒恒温120℃模具温度30~50℃注射压力80~120MPa(800~1200bar)保压压力注射压力的30%~60%背压5~10MPa(50~100bar)注射速度为了获得好的表面质量,注射不应该太快(如果必要,采用多级注射)螺杆转速设置中等螺杆转速,最大折合线速度为0.5m/s计量行程1.0~3.5D残料量2~6mm,取决于计量行程和螺杆直径预烘干不需要;只有在贮藏条件不好,在70℃的温度下烘干1h就可回收率允许在材料没有热分解的状态下再生利用收缩率1%~2.5%浇口系统对小的制品可采用点式浇口;浇口朝着制品的方向应有圆弧过渡机器停工时段关闭加热,无背压塑化,操作几次挤出循环料筒设备标准螺杆,止逆环,直通喷嘴六、尼龙6(PA6)料筒温度喂料区60~90℃(70℃)区1230~240℃(240℃)区2230~240℃(240℃)区3240~250℃(250℃)区4240~250℃(250℃)区5240~250℃(250℃)喷嘴230~240℃(250℃)括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长和壁厚之比为50:1到100:1喂料区和区1的温度是直接影响喂料效率,提高这些温度可使喂料更平均熔料温度240~250℃料筒恒温220℃模具温度60~100℃注射压力100~160MPa(1000~1600bar),如果是加工薄截面长流道制品(如电线扎带),则需要达到180MPa(1800bar)保压压力注射压力的50%;由于材料凝结相对较快,短的保压时间已足够。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(塑料橡胶材料)聚丙烯塑料的改性及应用(三)热塑性低烟无卤阻燃电缆料性能玻纤增强聚丙烯的抗蠕变性得到改善,能够比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。

此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。

玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但和其它塑料相比,仍然属良好的加工流动性。

提高成型加工温度可使其流动性得到改善。

2改性聚丙烯发展动向聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有壹些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。

2.1透明改性PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,能够得到透明的薄膜,但有壹定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有壹定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。

经壹定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至能够和典型的透明塑料(如PET、PVC、PS等)相媲美。

透明PP更为优越的是热变形温度高,壹般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。

由于透明PP的性能优势明显,近年来在全球都得以迅速发展,应用领域从家庭日用品到医疗器械,从包装用品到耐热器皿(微波炉加热用),都在大量使用。

PP的透明性提高可通过以下三种途径:(1)采用茂金属催化剂聚合出具有透明性的PP;(2)通过无规共聚得到透明性PP;(3)在普通聚丙烯中加入透明改性剂(主要是成核剂)提高其透明性。

4.1.1国内外发展态势据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a之上。

日本透明PP市场以微波炉炊具及家具俩方面的消耗量最大。

日本出光化学X公司制造出和PVC具有同样透明性和光泽性的透明PP,当下能够广泛替代普通透明PVC制作文具、笔记本壹类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200t透明PP。

韩国LGCaitexX公司将透明PP作为PET的替代品推向市场,应用于水瓶、洗涤剂瓶、个人护理品的包装等方面。

FinaX公司市场部声称,他们的透明PP新产品将打人具有300kt/a 市场容量的PS食品包装。

德国BASFX公司的PP无规共聚物Novolen3248TC,具有高流动性(熔体流动速率为48g/l0min)、低翘曲性,透明度达90%,雾度10%,适用于薄壁包装和日用品。

SolvayX 公司研制的PP无规共聚物EltexPKLl76,含有乙烯和透明剂,主要用于制造单层透明瓶和挤压片材,片材可热压成型各种容器及装饰品。

其产品具有玻璃般的光泽、很好的化学稳定性、耐环境应力开裂性和冲击强度。

德国SchneiolerX公司和KleinX公司用透明聚丙烯替代PVC用于透明硬包装。

美国AmocoX公司用透明改性剂生产的聚丙烯树脂经注、拉、吹工艺加工而成的水瓶可替代聚酯水瓶。

MontellPolyolefinsX公司最近推出了α烯烃改性PP树脂,牌号分别为273RCXP和276RCXP,主要用于注塑成型。

俩种牌号的树脂都没有添加成核剂和透明助剂,其中273RCXP树脂的熔体速率为14g/10min,表现出低的气味性以及好的耐应力发白性能。

该树脂的透光性能相当于最好的PP无规共聚物,具有较高的光泽度,可制作成母粒形状用于生产固体或类似于用尼龙做成的半透明色母粒。

276RCXP树脂的熔体流动速率为16g/l0min,透光性和光泽度稍差些,但该树脂却展示出极佳的低温冲击性能,在低温下储藏后能经反复加热且耐冲击,可制作放于微波炉中的容器。

品级为721RCW的树脂,熔体指数为l0g/l0min,主要用于挤吹成型或浇铸成型,树脂具有极佳的透明度、光泽度和低的雾度、宽的热粘着区域以及118~120℃的封合温度。

该树脂用于单层薄膜或在共挤塑结构中的粘接层。

日本IdemitsuPetrochemical有限X公司采用加工技术于1985年研制开发出透明PP片材。

该技术是使PP树脂在熔融状态下挤出后,通过快速冷却结晶、改进热处理技术以及IdemitsuX公司的结晶控制技术和高温表面处理技术来大大提高PP片材的透明度。

该技术已获得发明专利。

随着透明PP的开发和不断改进,市场需求量在快速上升,据悉,世界2001年市场容量总计达1500~1600kt/a,预计2005年市场需求量可达2000-2500kt/a。

国内透明PP的研制及其开发应用较为滞后,但发展却非常迅速。

据初步调研,目前国内透明PP已广泛应用于薄膜、片材、塑杯、微波炉及其他的注塑制品等方面。

使用透明PP的厂家主要集中在东南沿海城市。

1996年我国对透明PP的需求量为5kt,且全部依赖进口,2000年市场需求量在100kt/a左右,随着应用领域的进壹步开拓,到2005年国内需求量达到200~300kt/a。

透明PP需求量的不断扩大刺激了国内PP生产厂家的开发热情。

扬子石油化工股份有限X公司研究院以PPF401及其相近牌号的PP为基料,采用DBS系列成核剂进行了透明PP制备技术开发和市场推广应用工作,取得了较好的进展,相关产品已进入市场。

另外,基于本X公司生产的普通PP,通过添加适量的透明剂及其他相关助剂,优化配方设计,调整加工工艺,在工业装置上生产透明PP专用料PPJ301G,该专用料不仅具有普通PP质轻、耐高温、易加工成型等特点,其透明性、表面光泽度可和其他壹些透明高分子材料相媲美,而且热变形温度、弯曲弹性模量等力学性能指标也明显提高。

2001年,扬子石化又开发出PIYF680、PFF700俩种透明专用料。

洛阳石化总厂研究所以均聚聚丙烯PPF401为基础树脂,通过添加透明剂和自制母粒A、B,制得了透明PP片材专用料。

实验表明,用双螺杆挤出和后加透明剂的工艺制得的物料性能好,透明剂显著提高了专用料的透明性和光泽度,添加特殊的母粒改善了专用料的抗冲击、防老化等性能。

上海石化X公司推出的新催化剂体系聚合而成的双峰分子量分布聚丙烯,具有高刚性、高透明度和较好的热稳定性,PP的挠曲模量可提高45%,从1500MPa提高到2200MPa。

这种透明PP可用于生产高温下使用的食品容器和壹些需要光泽度及挺括度都好的制品,如洗涤剂瓶、矿泉水瓶等。

此外仍开发了高熔体流动速率的无规共聚产品,具有高流动性、高透明度、高光泽度和抗静电等特点,特别适用于对透明度要求高的注塑成型容器和薄壁包装盒等。

4.1.2加入成核剂提高透明度改性原理在已经聚合好的聚丙烯中加入成核剂,能够改变其结晶行为,从而提高其透明性,这是目前最为常用的方法。

PP在从熔融状态逐渐冷却时,其结晶行为能够分为均相成核和异相成核俩种情况。

均相成核:仅靠PP大分子链段自主运动,在温度低到某壹范围时,某壹部分率先形成结晶的核心,再逐渐扩展成为有序排列的结晶区。

异相成核:PP的大分子链依附于除PP以外的其它物质上进行有序排列。

这些物质能够是残存在聚合物中的催化剂或丙烯单体中就已夹杂的杂质,也能够是有意加入的有机或无机物。

在PP中加入透明改性剂——成核剂,使其起到晶核的作用,使PP大分子在冷却过程中,均相成核减弱,异相成核增强,而且随着晶核数目的增加,PP结晶形成的微晶数量增多,晶体尺寸变细,就有利于提高其透光性。

加入的成核剂能够分为不熔物透明改性剂和可熔物透明改性剂俩大类。

前者如滑石粉、苯甲酸钠、有机磷酸盐等,后者如山梨醇缩合物等,可事先熔化且和熔融的PP形成均相物,而在体系冷却时,透明改性剂先结晶成纤维状网络,纤维直径只有10nm左右,小于可见光波长。

PP的大分子以这些网络纤维为核逐步结晶,即可得到微细的结晶。

4.1.3透明PP的性能[25]另据资料报导,添加0.25%的某种成核剂和0.4%的有机胺制成的PP其透光率可达71.9%,拉伸强度、拉伸模量和冲击强度都提高20%之上,断裂伸长率能够达到300%,维卡软化温HMSPP的另外壹个特点是具有较高的结晶温度和较短的结晶时间,从而允许热成型制件能够在较高温度下脱模,以缩短成型周期,能够在普通热成型设备上制成较大拉伸比、薄壁的容器。

HMSPP在恒定应变速率下,熔体流动的应力开始呈现逐渐增加,然后成指数级增加,表现出明显的应变硬化行为。

发生应变时,普通聚丙烯的拉伸粘度随即下降,而HMSPP则保持稳定。

HMSPP的应变硬化能力能够保证其在成型拉伸时,保持均匀变形,而普通PP在受到拉伸时总是从结构中最薄弱的或最热的地方开始变形,导致制品种种缺陷,甚至不能成型。

目前,HMSPP的制备方法主要有俩种:壹种是将聚丙烯和其他化合物进行反应性改性,另壹类是聚丙烯和其他聚合物进行共混改性,具体的实施方法主要有射线辐射法、反应挤出法、聚合过程中引发接枝法等。

在制备HMSPP的过程中,面临着俩大难题:聚丙烯的降解和凝胶问题,同时存在着聚合物接枝和单体均聚的竞争、聚合物主链β断键和交联和支化的竞争。

影响高聚物熔体强度的主要因素是其分子结构。

就聚丙烯而言,相对分子质量及其分布和是否具有支链结构决定其熔体强度。

壹般相对分子质量越大,相对分子质量分布越宽,其熔体强度越大,长支链可明显提高接枝聚丙烯的熔体强度。

HMSPP专用树脂解决了普通聚丙烯热成型困难的问题,可在普通热成型设备上成型较大拉伸比的薄壁容器,加工温度范围较宽,工艺容易掌握,容器壁厚均匀。

能够用于制作微波食品容器和高温蒸煮杀菌容器。

混有HMSPP的普通聚丙烯比纯普通聚丙烯具有较高的加工温度和加工速度,制成的薄膜透明性也好于普通聚丙烯。

这主要是由于HMSPP具有拉伸应变硬化的特点,它的长支链具有细化晶核的作用。

HMSPP的应变硬化行为是取得高拉伸比和涂覆速度快的关键因素。

使用HMSPP可获得较高的涂覆速度和较薄的涂层厚度。

HMSPP具有较高的熔体强度和拉伸粘度,其拉伸粘度随剪切应力和时间的增加而增加,应变硬化行为促使泡孔稳定增长,抑制了微孔壁的破坏,开辟了聚丙烯挤出发泡的可能性。

高熔体强度聚丙烯的研究虽然起自20世纪80年代末,但它的各种优异性能、合理的价格优势以及广泛的应用范围已经获得世界范围的认同,且有逐步取代传统的PS、ABS,向工程塑料发展的趋势,其开发利用前景广阔。

我国HMSPP的研究现仍处于起始阶段,制备工艺壹般均采用后加工过程中的交联或部分交联。

如扬子石化X公司研究院新近就使用动态硫化技术研制出了热成型用HMSPP。

工艺过程采用有机过氧化物交联剂,和聚丙烯、聚乙烯组合物在混炼挤出过程中进行微交联,材料可用于热成型,加工各种制品,用于汽车、家电、家具和建筑等行业。

相关文档
最新文档