正弦定理教学设计重难点
正弦定理教案

正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
正弦定理教案职中

正弦定理教案职中
一、教学目标
1. 理解正弦定理的概念和公式
2. 能够运用正弦定理解决实际问题
3. 培养学生的逻辑思维和数学推理能力
二、教学重点和难点
1. 重点:正弦定理的概念和公式
2. 难点:运用正弦定理解决实际问题的能力
三、教学内容
1. 正弦定理的概念和公式
2. 正弦定理的证明
3. 正弦定理在三角形中的应用
四、教学过程
1. 导入:通过一个实际问题引入正弦定理的概念,激发学生的学习兴趣
2. 讲解:介绍正弦定理的定义和公式,并进行相关的证明,让学生理解其原理和推导过程
3. 练习:设计一些相关的练习题,让学生通过计算和推理来巩固所学内容
4. 拓展:引导学生思考正弦定理在实际问题中的应用,培养他们的数学建模能力
5. 总结:对本节课所学内容进行总结,并强调正弦定理的重要性和实际应用价值
五、教学手段
1. 多媒体课件:用于展示相关的图形和计算过程
2. 板书:整理和归纳相关的公式和推理过程
3. 实物模型:通过三角形模型让学生直观地理解正弦定理的原理
4. 计算工具:让学生通过计算工具进行实际计算和验证
六、教学评价
1. 课堂练习:通过课堂练习来检验学生对正弦定理的掌握程度
2. 作业布置:设计相关的作业题目,让学生在课后进行巩固和拓展
3. 学习反馈:及时对学生的学习情况进行反馈和指导,帮助他们更好地掌握正弦定理的应用
七、教学反思
1. 对本节课的教学效果进行总结和评估
2. 总结学生的学习情况和问题反馈,为下一节课的教学提供参考
3. 不断完善教学内容和方法,提高教学效果。
正弦定理的教案

正弦定理的教案一、教学目标1.理解正弦定理的概念和公式;2.掌握正弦定理的应用方法;3.培养学生的数学思维和解决问题的能力。
二、教学内容1.正弦定理的概念和公式;2.正弦定理的应用方法;3.练习题。
三、教学重点1.正弦定理的概念和公式;2.正弦定理的应用方法。
四、教学难点1.正弦定理的应用方法。
五、教学方法1.讲授法;2.演示法;3.课堂练习。
六、教学过程1. 导入教师可以通过提问的方式,引导学生回忆三角形的基本概念和性质,如三角形的内角和为180度等。
2. 讲解2.1 正弦定理的概念和公式教师可以通过讲解三角形中的正弦函数,引出正弦定理的概念和公式。
正弦定理是指:在任意三角形中,三条边的长度与其对应的角的正弦值成比例。
公式为:a sinA =b sinB =c sinC其中,a 、b 、c 为三角形的三条边,A 、B 、C 为三角形的三个内角。
2.2 正弦定理的应用方法教师可以通过具体的例子,讲解正弦定理的应用方法。
例如,已知三角形ABC 中,AB=5cm ,BC=7cm ,AC=8cm ,求角A 的大小。
解:根据正弦定理,a sinA =b sinB =c sinC代入已知条件,得到5sinA =7sinB =8sinC由于三角形的内角和为180度,因此有A +B +C =180∘又因为sinB =sin (180∘−A −C )=sin (A +C ),所以有5sinA =7sin (A+C )=8sinC 解得sinA =58,因此A =arcsin 58≈38.66∘ 3. 练习教师可以出一些练习题,让学生巩固所学知识。
例如,已知三角形ABC 中,AB=6cm ,BC=8cm ,AC=10cm ,求角A 、角B 、角C 的大小。
解:根据正弦定理,a sinA =b sinB =c sinC代入已知条件,得到6sinA =8sinB =10sinC由于三角形的内角和为180度,因此有A +B +C =180∘又因为sinB =sin (180∘−A −C )=sin (A +C ),所以有6sinA =8sin (A+C )=10sinC 解得sinA =35,sinB =45,sinC =1,因此A =arcsin 35≈36.87∘,B =arcsin 45≈53.13∘,C =90∘4. 总结教师可以通过总结,让学生对正弦定理有更深刻的理解。
《正弦定理》教案(精品)

《正弦定理》教案一、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦 定理。
会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边 与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。
3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生 之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
二、教学重点与难点:1.重点:正弦定理的探索发现及其初步应用。
2.难点:①正弦定理的证明;②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。
三、教学过程: ㈠ 创设情境:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?1671年两个法国天文学家首次测出了地月之间的距离大约为385400km ,你们想知道他们当时是怎样测出这个距离的吗?学习了本章《解三角形》的内容之后,这个问题就会迎刃而解。
㈡ 新课学习:⒈提出问题:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角关系的准确量化的表示呢? ⒉解决问题:回忆直角三角形中的边角关系: 根据正弦函数的定义有:CBAcbasin ,sin a bA B c c ==,sinC=1。
经过学生思考、交流、讨论得出:sin sin sin a b c A B C==,问题1:这个结论在任意三角形中还成立吗?(引导学生首先分为两种情况,锐角三角形和钝角三角形,然后按照化未知为已知的思路,构造直角三角形完成证明。
)①当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得 sin sin abAB =,同理可得 sin sin cbC B =,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.②当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
1.1.1正弦定理教案

1.1.1正弦定理一、教学目标: 1、能力要求:①掌握正弦定理,能初步运用正弦定理解一些斜三角形; ②能够运用正弦定理解决某些与测量和几何有关的实际问题。
2、过程与方法:①使学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系——正弦定理。
②在探究学习中认识到正弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
二、教学重点、难点:重点: 理解和掌握正弦定理的证明方法。
难点: 理解和掌握正弦定理的证明方法;三角形解的个数的探究。
三、预习问题处理:1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。
那么斜三角形怎么办?确定一个直角三角形或斜三角形需要几个条件?2、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即 。
3、一般地,把三角形的三个角C B A ,,和它们所对的边c b a ,,叫做三角形的 ,已知三角形的几个元素求其它元素的过程叫做 。
4、用正弦定理可解决下列那种问题① 已知三角形三边;②已知三角形两边与其中一边的对角;③已知三角形两边与第三边的对角;④已知三角形三个内角;⑤已知三角形两角与任一边;⑥已知三角形一个内角与它所对边之外的两边。
5、上题中运用正弦定理可求解的问题的解题思路是怎样的?四、新课讲解:在ABC Rt ∆中,设90=C ,则1sin ,sin ,sin ===C c b B c a A ,即:C cc B b c A a c sin ,sin ,sin ===, CcB b A a sin sin sin ==。
问题一:对于一般的三角形,上述关系式是否依然成立呢? 设ABC ∆为锐角三角形,其中C 为最大角。
如图(1)过点A 作BC AD ⊥于D ,此时有bADC c AD B ==sin ,sin ,所以C b B c sin sin =,即C c B b sin sin =.同理可得CcA a sin sin =, 所以CcB b A a sin sin sin ==。
正弦定理教学设计最新5篇

正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
正弦定理教案设计-

“正弦定理教案设计-”一、教学目标:1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的证明过程。
3. 让学生能够运用正弦定理解决实际问题。
二、教学内容:1. 正弦定理的定义及公式。
2. 正弦定理的证明过程。
3. 正弦定理在实际问题中的应用。
三、教学重点:1. 正弦定理的定义和公式。
2. 正弦定理的证明过程。
四、教学难点:1. 正弦定理的证明过程。
2. 正弦定理在实际问题中的应用。
五、教学方法:1. 采用讲授法,讲解正弦定理的定义、公式和证明过程。
2. 采用案例分析法,分析正弦定理在实际问题中的应用。
3. 采用小组讨论法,让学生分组讨论正弦定理的证明过程和实际应用。
教学目标:1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的证明过程。
3. 让学生能够运用正弦定理解决实际问题。
教学内容:1. 正弦定理的定义及公式。
2. 正弦定理的证明过程。
3. 正弦定理在实际问题中的应用。
教学重点:1. 正弦定理的定义和公式。
2. 正弦定理的证明过程。
教学难点:1. 正弦定理的证明过程。
2. 正弦定理在实际问题中的应用。
教学方法:1. 采用讲授法,讲解正弦定理的定义、公式和证明过程。
2. 采用案例分析法,分析正弦定理在实际问题中的应用。
3. 采用小组讨论法,让学生分组讨论正弦定理的证明过程和实际应用。
六、教学步骤:1. 引入:通过复习初中阶段学习的三角函数知识,引导学生思考如何将这些知识应用于解决更复杂的问题。
2. 讲解:讲解正弦定理的定义和公式,通过示例解释其意义。
3. 证明:引导学生思考正弦定理的证明过程,分组讨论并展示各自的证明方法。
4. 应用:通过实际问题,让学生运用正弦定理进行求解,分组讨论并分享解题过程。
七、教学评估:1. 课堂提问:检查学生对正弦定理定义和公式的理解程度。
2. 小组讨论:评估学生在讨论正弦定理证明过程中的思维能力和团队协作能力。
3. 课后作业:布置有关正弦定理应用的题目,让学生巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理教学设计
教材分析:
本节知识是必修五第一章《解三角形》的第一课时内容,本节内容与初中学习的三角形的边和角的基本关系、判定三角形的全等都有密切的联系,解三角形问题与与三角函数也紧密相连,两个定理在日常生活和工业生产中有十分广泛的应用,可以说本节既是初中三角形边角关系的延续,又是三角函数知识在三角形中的一个应用,在必修教材中占有十分重要的位置。
教学目标:
(一)知识与技能
1.掌握正弦定理,并能解决一些简单的三角形度量问题。
2.能够运用正弦定理解决一些与测量和几何计算有关的实际问题。
(二)过程与方法
1.学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的一种数量关系——正弦定理。
2.在探究学习的过程中,认识到正弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
(三)情感、态度与价值观
1.通过对三角形边角关系的探究学习,经历数学探究活动的过程,培养探索精神和创新意识。
2.在运用正弦定理的过程中,逐步养成实事求是、扎实严谨的科学态度,学习用数学的思维方式解决问题、认识世界。
3.通过本节的学习和运用实践,体会数学的科学价值,应用价值,进而领会数学的人文价值,美学价值,不断提高自身的文化素养。
教学重点:
正弦定理的猜想与证明;正弦定理的简单应用。
教学难点:
正弦定理的猜想提出过程。
教学过程:
一、创设情景,导入新课
船从港口A 航行到港口B ,测得AB 的距离为6千米,
在港口B 卸货后将继续向港口C 航行,但此时船员
发现仪表坏了,将不能测量距离,如果船上有测角仪,
测得B 60∠=︒,45C ∠=︒,我们能否帮他计算出
AC 的距离?
这是一个实际问题,我们可以将此转化为数学问题:
“在△ABC 中,已知B 60∠=︒,45C ∠=︒, AB = 6千米,求AC 的长.” 老师:这里△ABC 是斜三角形,已知两角一边,求边长AC. 思考能否求出AC ?
学生:过点A 作高 B A C
?6
老师:很好!这位同学是把问题转化到了直角三角形中来解决的。
让学生表述解题思路,教师板书。
解:过A 作A B D C ⊥
在B Rt A D ∆
中,A sin B A AB sin AB D D =⇒=⋅在C Rt AD ∆
中,A A sin C C C sin C D D A A =
⇒== 二、逻辑推理,探究证明
老师:这个问题我们解决了,但我们思考不能停止,探索也不能停止。
这只是一个特例,我们把它转化为一个一般问题,再加以研究,可能更具有价值。
我们把数值去掉得:C sin C sin A
B AB ⋅∴=,在△AB
C 中,一般用小写的字母表示边长。
B a C =,AB c =,你能发现什么? 学生:b c sin B sin C
= 老师:我们看这个等式,b 比上它所对角的正弦值=c 比上它所对角的正弦值,而三角形中有三条边和三个角,你还能猜想出什么? 学生:b c a sin B sin sin A
C == 老师:这只是你合理化猜想,能给出证明吗?
学生:过B 作B A D C ⊥或者过C 作C AB D ⊥即可,过程同上。
老师:很好,同理可证,得b c a sin B sin sin A
C ==。
刚才△ABC 是锐角三角形,对于直角三角形和钝角三角形是否也有这样的关系呢?
A
B C
b
c A B D c b
a A b
老师:这两个都可以证明(有兴趣的同学课后可以证明一下),通过证明,我们发现,在直角和钝角三角形中这个结论都成立。
结论:对任意ABC ∆,总有
sin sin sin a b c A B C
==,我们把这条性质称为正弦定理。
(这就是今天要讲的内容,把课题写在黑板上)
老师:以上我们通过构造直角三角形的方法,分锐角,直角,钝角三种情况 证明了正弦定理,感觉比较麻烦,有没有其他更好的办法证明正弦定理呢? 学生:可以放在坐标系中研究。
(预习过的学生应该知道,如果没人回答,教师引导:我们前面学习了
任意三角比的定义和 cos αβ±()展开式的推导,都是在哪里研究的?学生:放在坐标系中研究的)
老师:我们先来回忆一下任意角的三角比的定义。
我们常利用坐标系研究有关角的问题,那么我们能否利用坐标法证明
正弦定理呢?
如图建立直角坐标系。
老师:你能写出点A 的坐标吗?
学生:A c cos B c sin B ⋅⋅(,)
老师:随着角B 从锐角变到直角在变到钝角,点A
形式会发生变化吗?
学生代表:不会,永远是A c cos B c sin B ⋅⋅(,)。
老师:那么我们可以发现:点A 到BC 的距离是c sin B ⋅,而BC = a ,在三 角形中知道了底边和底边上的高,我们能想到什么呢?
学生:三角形的面积。
老师:ABC 1S BC A 1a csin B 2D 2∆⋅=
⨯=,这里我们得到了一个新的三角形面 积公式。
三角形中有三条边和三个角,他们的地位是等价的,如果轮换A ,B ,C ,我们还可以得到什么
学生:同理可得:ABC ABC 11S a bsin C S b csin A 22
∆∆=⋅=⋅,。
c sin B ⋅
老师:所以ABC 111S b csin A a csin B a bsin C 222
∆=⋅=⋅=⋅ 哪位同学能用文字语言叙述一下这个新的三角形面积公式?
学生:三角形的面积 = 任意两边与他们夹角的正弦的积的一半。
老师:接下来等式的左、中、右同除以1abc 2,即得:sin sin sin a b c A B C
== 这种证明方法的优点是避免了繁杂的分类讨论,但我们同学对坐标法接触不多,不容易想到,在今后学到解析几何后,可以进一步的体会到坐标法解决几何问题的优越性。
三、解读定理,加深理解 正弦定理:sin sin sin a b c A B C
== 老师提问:这个定理在结构上有何特征?
学生:各边与其对角的正弦严格对应,体现了数学的对称美.
老师:哪位同学能用文字语言叙述正弦定理
学生:在一个三角形中,各边和它所对角的正弦的比相等
老师:学习了正弦定理,那它有什么用呢?让我们先来了解一下“解三角 形”的概念 :一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素。
已知,三角形的几个元素,求其他元素的过程叫做“解三角形”。
正弦定理是解三角形的工具之一。
老师:正弦定理:sin sin sin a b c A B C
==可以写成几个等式? 学生:三个:sin sin sin sin sin sin ,,a b a c b c A B A C B C
=== 老师:如果用方程的观点,需要知道几个量,才能求出其他量?
学生:知道三个。
老师:三个方程,每个含有四个量,知其三求其一。
老师:现在大家能不能直接用正弦定理解决引例中提出的问题。
学生马上得出在ABC ∆中,a sin A sin c C = a sin 6sin 45k sin A sin 60C c m ••︒∴===︒
教师:正弦定理可以解决:已知两角和一边,求另外一边的问题。
(一边是任意的)
正弦定理还可以解决什么问题?
学生:已知两边和一角的问题。
教师:是不是任意一个角?(学生思考)
学生:只能是两边和其中一边的对角的问题。
四、求解例题,巩固定理
例:在△ABC 中,已知A=30º,c=8,a=5,求C 、B 和b(结果保留两位小数) 由正弦定理得sin 8sin 30sin 0.85
c A C a === 53.13C =或126.87C =(注意:考虑不周,遗漏钝角)
当53.13C =时,96.87B =,sin 5sin 96.879.93sin sin 30
a B
b A === 当126.87C =时,23.13B =,sin 5sin 23.13 3.93sin sin 30a B b A =
==. 变式1.若将例题中的条件c=8改为c=3,求C 、B 和b(结果保留两位小数). 由正弦定理得sin 3sin 30sin 0.305
c A C a === 17.46C =或162.54C =(舍) (注意:舍的方法)
∴132.54B =,sin 5sin132.547.37sin sin 30
a B
b A === 变式2.若将例题中的条件c=8改为c=11, 求C 、B 和b ?
由正弦定理得sin 11sin 30sin 1.115
c A C a ===>,所以这样的三角形不存在. 教师:通过以上几题的研究,你体会到了什么?归纳正弦定理可以解决的两类三角形的解的情况。
五、归纳小结
1、正弦定理sin sin sin a b c A B C
==,它是解三角形的工具之一。
2、正弦定理可以解决以下两种类型的三角形:
(1)已知两角及任意一边;
(2)已知两边及其中一边的对角.
六、布置作业
1.作业:教科书习题1.1A 组1、2
2.课外探究
在△ABC中,sinA>sinB是A>B的什么条件?。