正弦定理教案
正弦定理教案

正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
《正弦定理》优秀教案

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
正弦定理的教案

正弦定理的教案一、教学目标1.理解正弦定理的概念和公式;2.掌握正弦定理的应用方法;3.培养学生的数学思维和解决问题的能力。
二、教学内容1.正弦定理的概念和公式;2.正弦定理的应用方法;3.练习题。
三、教学重点1.正弦定理的概念和公式;2.正弦定理的应用方法。
四、教学难点1.正弦定理的应用方法。
五、教学方法1.讲授法;2.演示法;3.课堂练习。
六、教学过程1. 导入教师可以通过提问的方式,引导学生回忆三角形的基本概念和性质,如三角形的内角和为180度等。
2. 讲解2.1 正弦定理的概念和公式教师可以通过讲解三角形中的正弦函数,引出正弦定理的概念和公式。
正弦定理是指:在任意三角形中,三条边的长度与其对应的角的正弦值成比例。
公式为:a sinA =b sinB =c sinC其中,a 、b 、c 为三角形的三条边,A 、B 、C 为三角形的三个内角。
2.2 正弦定理的应用方法教师可以通过具体的例子,讲解正弦定理的应用方法。
例如,已知三角形ABC 中,AB=5cm ,BC=7cm ,AC=8cm ,求角A 的大小。
解:根据正弦定理,a sinA =b sinB =c sinC代入已知条件,得到5sinA =7sinB =8sinC由于三角形的内角和为180度,因此有A +B +C =180∘又因为sinB =sin (180∘−A −C )=sin (A +C ),所以有5sinA =7sin (A+C )=8sinC 解得sinA =58,因此A =arcsin 58≈38.66∘ 3. 练习教师可以出一些练习题,让学生巩固所学知识。
例如,已知三角形ABC 中,AB=6cm ,BC=8cm ,AC=10cm ,求角A 、角B 、角C 的大小。
解:根据正弦定理,a sinA =b sinB =c sinC代入已知条件,得到6sinA =8sinB =10sinC由于三角形的内角和为180度,因此有A +B +C =180∘又因为sinB =sin (180∘−A −C )=sin (A +C ),所以有6sinA =8sin (A+C )=10sinC 解得sinA =35,sinB =45,sinC =1,因此A =arcsin 35≈36.87∘,B =arcsin 45≈53.13∘,C =90∘4. 总结教师可以通过总结,让学生对正弦定理有更深刻的理解。
正弦定理数学教案优秀5篇

正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理教案 (3)

正弦定理教案一、教案背景正弦定理是初中数学中的重要内容,它是解决三角形中未知边长和角度的关系的一个定理。
掌握正弦定理的原理和应用,对于学习数学和解决实际问题都有很大的帮助。
本教案旨在通过教学活动,帮助学生理解正弦定理的概念和用法。
二、教学目标1.理解正弦定理的概念和原理;2.能够应用正弦定理解决实际问题;3.培养学生的逻辑思维和解决问题的能力。
三、教学准备1.教师准备:–教学课件和投影设备;–关于正弦定理的教学素材和练习题。
2.学生准备:–学生书本和笔记;–三角形的相关知识和公式。
四、教学过程步骤一:导入新知1.教师通过提问和展示图片引入正弦定理的概念,让学生回忆并复习三角形的相关知识。
2.教师给出正弦定理的定义和公式,解释其中的符号意义和用法。
正弦定理:在一个三角形中,任意两边的比值等于这两边对应角的正弦值的比值。
公式:$\\frac{a}{\\sin A} = \\frac{b}{\\sin B} = \\frac{c}{\\sin C}$步骤二:示例分析1.教师通过具体的示例,演示如何应用正弦定理解决三角形中未知边长和角度的问题。
示例1:已知三角形的两边和夹角,求第三边的长度。
示例2:已知三角形的两条边和一个角度,求另外两个角的大小。
2.教师引导学生参与示例分析,共同探讨解决问题的步骤和思路。
步骤三:小组活动1.教师组织学生分成小组,分发练习题和考察题。
2.学生在小组内合作解决问题,通过讨论和交流来加深对正弦定理的理解和应用。
3.教师巡视指导,鼓励学生主动思考和提出问题。
步骤四:讲评和总结1.教师引导学生讲解和分享解题思路和方法,梳理正弦定理的应用要点和注意事项。
2.教师总结本节课的主要内容和学习收获,强调正弦定理在实际问题中的应用。
五、教学延伸1.学生可以通过练习题和考察题进一步巩固和拓展对正弦定理的应用能力。
2.学生可以通过研究和解决实际问题,发现和探索正弦定理的更多应用场景。
六、课后作业1.完成课堂上未能完成的练习题和考察题,加深对正弦定理的理解和熟练应用。
正弦定理教学设计最新5篇

正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
高中数学正弦定理教案全套

高中数学正弦定理教案全套
一、教学目标:
1. 理解正弦定理的含义和应用;
2. 掌握正弦定理的推导过程;
3. 能够运用正弦定理解决相关问题。
二、教学重点:
1. 正弦定理的概念和推导过程;
2. 正弦定理解决问题的方法。
三、教学难点:
1. 正弦定理的应用;
2. 正弦定理与三角函数的关系。
四、教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔;
3. 视频资料。
五、教学过程:
1. 导入:
1)复习:回顾三角函数的基本概念和性质;
2)引入:介绍正弦定理的概念和应用。
2. 学习:
1)概念:讲解正弦定理的定义和表述;
2)推导:通过几何图形和三角函数的关系,推导正弦定理的公式; 3)应用:讲解如何运用正弦定理解决三角形的边长和角度问题。
3. 实践:
1)练习:布置一些练习题,让学生独立解答;
2)讲评:讲解练习题的解题过程和方法。
4. 总结:
总结正弦定理的概念、公式和应用,并与学生共同讨论解题方法。
六、作业:
1. 完成课堂练习题;
2. 阅读相关资料,了解正弦定理的历史和发展。
七、课后反思:
1. 教学内容安排是否合理;
2. 学生的学习情况和反馈;
3. 下节课的教学准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§2.1.1正弦定理
教学目标:
1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2. 能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
教材版本:北师大必修5
教学课时:1
教学过程:
一、新课引入:
如左图,在ABC Rt ∆中,有
sin ,sin ,sin 1a b A B C c c ===。
经过变形有,,sin sin sin a b c c c c A B C =
==,
所以在ABC Rt ∆中有:c C c B b A a ===sin sin sin 思考:在其他任意三角形中是否也有
sin sin sin a b c A B C ==等式成立呢,这个时候
?sin sin sin ===C c B b A a
观察下图,无论怎么移动B ’,都会有角B ’=B,所以在C AB '∆中,c B b B b ==sin sin ',
c
C 是ABC Rt ∆,C AB '
∆外接圆的直径。
所以对任意ABC ∆,均有R C c B b A a 2sin sin sin ===(R 为ABC ∆外接圆的半径)
这就是我们这节课所探讨的内容:正弦定理
二、新课讲解
(一)正弦定理及变形:
R
C c B b A a 2sin sin sin ===
定理变形:⑴C R c B R b A R a sin 2,sin 2,sin 2===
⑵R c C R b B R a A 2sin ,2sin ,2sin ===
⑶C B c b C A c a B A b a sin :sin :,sin :sin :,sin :sin :=== (二)定理应用
例1、在△ABC 中,BC =3,A =45°,B =60°,求AC ,AB,c
解:【分析】 由三角形内角和定理得
B A
C --=0180 由正弦定理A BC B AC C AB sin sin sin =
=
得A B BC AC sin sin =
,A C BC AB sin sin =
【点评】:已知两角一边,通过正弦定理求剩下的三个量:两边一角。
例2、已知:△ABC 中,a =3,b =2,B =45°,求A 、C 及c.
解:【分析】 根据正弦定理,得 sin A =asin B b =3sin 45°2
=32, ∵b<a ,∴B<A ,∴A =60°或120°.
①当A =60°时,C =180°-(60°+45°)=75°,
∴c =bsin C sin B =2sin 75°sin 45°=2sin(45°+30°)=6+22
②当A =120°时,C =180°-(A +B)=15°,
∴c =bsin C sin B =2sin 15°sin 45°
=2sin(45°-30°)=6-22
, ∴A =60°,C =75°,c =6+22
, 或A =120°,C =15°,c =
6-22. 【分析】已知两边及一边所对角,由正弦定理,可求剩下的两角一边。
但是,一定要注意解的多种性。
如何判断解的个数呢,它的依据是:(1)大边对大角,大角对边;(2)三角形内角和定理
【试思考】:已知:△ABC 中,a =3,b =2,A =60°,求B 、C 及c.这题解的个数问题。
(三)课堂总结
1、正弦定理的推导以及式子变形
2、正弦定理解决问题的类型:
①已知两角一边,求两边一角
②已知两边及一边所对角,求两角一边
(四)作业布置:导学与评估P62---64
板书设计。