《正弦定理》教案
正弦定理教案

正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
《正弦定理》优秀教案

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
正弦定理教案职中

正弦定理教案职中
一、教学目标
1. 理解正弦定理的概念和公式
2. 能够运用正弦定理解决实际问题
3. 培养学生的逻辑思维和数学推理能力
二、教学重点和难点
1. 重点:正弦定理的概念和公式
2. 难点:运用正弦定理解决实际问题的能力
三、教学内容
1. 正弦定理的概念和公式
2. 正弦定理的证明
3. 正弦定理在三角形中的应用
四、教学过程
1. 导入:通过一个实际问题引入正弦定理的概念,激发学生的学习兴趣
2. 讲解:介绍正弦定理的定义和公式,并进行相关的证明,让学生理解其原理和推导过程
3. 练习:设计一些相关的练习题,让学生通过计算和推理来巩固所学内容
4. 拓展:引导学生思考正弦定理在实际问题中的应用,培养他们的数学建模能力
5. 总结:对本节课所学内容进行总结,并强调正弦定理的重要性和实际应用价值
五、教学手段
1. 多媒体课件:用于展示相关的图形和计算过程
2. 板书:整理和归纳相关的公式和推理过程
3. 实物模型:通过三角形模型让学生直观地理解正弦定理的原理
4. 计算工具:让学生通过计算工具进行实际计算和验证
六、教学评价
1. 课堂练习:通过课堂练习来检验学生对正弦定理的掌握程度
2. 作业布置:设计相关的作业题目,让学生在课后进行巩固和拓展
3. 学习反馈:及时对学生的学习情况进行反馈和指导,帮助他们更好地掌握正弦定理的应用
七、教学反思
1. 对本节课的教学效果进行总结和评估
2. 总结学生的学习情况和问题反馈,为下一节课的教学提供参考
3. 不断完善教学内容和方法,提高教学效果。
正弦定理数学教案优秀5篇

正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
《正弦定理》教案(含答案)

《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理教学设计最新5篇

正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
正弦定理教案

正弦定理教案【教学目标】1. 掌握正弦定理的概念和使用方法。
2. 通过实际问题的训练,培养学生运用正弦定理解决实际问题的能力。
3. 培养学生的合作能力和解决问题的思维能力。
【教学重点】1. 正弦定理的概念和使用方法。
2. 实际问题的训练。
【教学难点】1. 正确理解和运用正弦定理。
2. 解决实际问题。
【教学准备】教师:黑板、粉笔、投影仪学生:教材、习题册【教学过程】Step 1 引入新知识(5分钟)教师通过投影仪展示一张三角形ABC和一些已知的角度和边长,问学生能否求出其他未知的角度和边长。
引导学生思考并观察。
Step 2 正弦定理的推导(10分钟)通过引导学生的思考和讨论,教师引出正弦定理的概念。
然后,教师介绍正弦定理的公式并推导公式的过程。
Step 3 正弦定理的运用(25分钟)教师给出一些简单的三角形问题,引导学生运用正弦定理进行求解。
例如:已知一个三角形的两个边长和它们对应的角度,求第三边的长度;已知一个三角形的两个角度和它们对应的边长,求第三角的角度。
Step 4 巩固练习(25分钟)教师让学生分小组进行练习,运用正弦定理解决各种实际问题。
例如:一个高度为h的杆子倾斜在地面上,角度为α,杆子的投影长度为d,求杆子的实际长度;已知一座塔的高度h,角度α和β,求塔底到塔顶的距离。
Step 5 拓展应用(15分钟)教师给出一些更复杂的问题,让学生进行思考和讨论,运用正弦定理解决问题。
例如:已知一个三角形的两个角度和一边长,求其他两个边长。
Step 6 小结(5分钟)教师对本节课的重点内容进行总结和归纳,确保学生对正弦定理的掌握。
【课后作业】1. 完成课后习题册中的练习题。
2. 预习下节课的内容。
【教学反思】本堂课通过引入实际问题和合作学习的方式,成功地引导学生正确理解和运用正弦定理。
通过举一反三的方法,培养了学生解决实际问题的思维能力。
同时,本节课的重点是正弦定理的概念和使用方法,学生对此部分掌握良好。
高中数学正弦定理教案一等奖

高中数学正弦定理教案一等奖1、高中数学正弦定理教案一等奖(一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的'证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
(2)能力目标:提高学生分析问题、解决问题的能力。
(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。
(三)教学过程教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。
使学生的综合能力得到提高。
教学过程分如下几个环节:教学过程课堂引入1、定理推导2、证明定理3、总结定理4、归纳小结5、反馈练习6、课堂总结、布置作业具体教学过程如下:(1)课堂引入:正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?(2)定理的推导。
首先提出问题:RtΔABC中可建立哪些边角关系?目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:①引导学生从SinA、SinB的表达式中发现联系。
②继续引导学生观察特点,有A边A角,B边B角;③接着引导:能用C边C角表示吗?④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。
这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。
第二步证明定理:①用向量方法证明定理:学生不易想到,设计如下:问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破实践:师生共同完成锐角三角形中定理证明独立:学生独立完成在钝角三角形中的证明总结定理:师生共同对定理进行总结,再认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正弦定理》教学设计
一、教学目标分析
1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析
重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析
本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
在学法上,采用个人探究、教师讲解,学生讨论相结合的方法,让学生在问题情境中学习,自觉运用观察、类比、归纳等思想方法,体验数学知识的内在联系,重视学生自主探究,增强学生由特殊到一般的数学思维能力,形成实事求是的科学态度和严谨求真的学习习惯。
四、学情分析
对于高一的学生来说,已学的平面几何,解直角三角形,三角函数等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。
同时,由于学生目前还没有学习平面向量,因此,对于正弦定理的证明方法——向量法,本节课没有涉及到。
根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。
五、教学工具
多媒体课件
六、教学过程
创设情境,导入新课
兴趣是最好的老师。
如果一节课有个好的开头,那就意味着成功了一半。
上课一开始,我先提出问题:
工人师傅的一个三角形模型坏了,只剩下如图所示的部分,,AB的长为1m,但他不知道AC和BC的长
是多少而无法去截料,你能告诉师傅这两边的长度吗?
教师:请大家思考,看看能否用过去所学过的知识解决
这个问题?(约2分钟思考后学生代表发言)
学生活动一:
(教师提示)把这个实际问题抽象为数学模型——那就是“已知三角形中的两角及夹边,求另外两边的长”,本题是通过三角形中已知的边和角来求未知的边和角的这个过程,我们把它习惯上叫解三角形,要求边的长度,过去的做法就是把未知的边必须要放在直角三角形中,利用勾股定理或三角函数进行求解,即本题的思路是:“把一般三角形转化为直角三角形”,也就是要“作高”。
学生:如图,过点A作BC边上的高,垂直记作D
然后,首先利用题目中的已知数据求出角C的大小,接着把题目中的相关数据和角C的值代入上述等式,即可求出b,即AC的值,然后可利用AC、AB、角B、角C的值和三角函数知识可分别求出CD和BD 的长度,把所求出的CD和BD的长度相加即可求出BC的长度。
教师:这位同学的想法和思路非常好,简直是一位天才
(同时再一次回顾该同学具体的做法)
教师:能否像求AC的方法一样对BC进行求解呢?
学生:可以
教师:那么具体应该怎么做呢?
学生:过点B向AC作高,垂直记作E,如图:
接下来,只需要将相关的数据代入即可求出BC的长度
教师:总结学生的做法
通过作两条高线后,即可把AC、BC的长度用已知的边和角表示出来
接下来,只需要将题目中的相关数据代入,本题便迎刃而解。
定理的发现:
教师:如果把本题目中的有关数据变一下,其中A=50o,B=80o大家又该怎么做呢?
学生1:同样的做法(仍得作高)
学生2:只需将已知数据代入上述等式即可求出两边的长度
教师:还需要再次作高吗?
学生:不用
教师:对于任意的锐角三角形中的“已知两角及其夹边,求其他两边的长”的问题是否都可以用上述两个等式进行解决呢?
学生:可以
教师:既然这两个等式适合于任意的锐角三角形,那么我们只需要记住这两个等式,以后若是再遇见锐角三角形中的这种问题,直接应用这两个等式
并进行代入求值即可。
教师:大家看看,这两个等式的形式是否容易记忆呢?
学生:不容易
教师:能否美化这个形式呢?
学生:美化之后可以得到:(定理)
教师:锐角三角形中的这个结论,到底表达的是什么意思呢?
学生:在锐角三角形中,各边与它所对角的正弦的比相等
教师:那么锐角三角形中的这个等式能否推广到任意三角形中呢?那么接下来就让我们分别来验证一下,看看这个等式在直角三角形和钝角三角形中是否成立。
定理的探索:
教师:大家知道,在直角三角形ABC中:若
则:
所以:
故:
即:在直角三角形中也成立
教师:那么这个等式在钝角三角形中是否成立,我们又该如何验证呢?请大家思考。
学生活动二:验证在钝角三角形中是否成立
教师(提示):要出现sinA、sinB的值
必须把A、B放在直角三角形中
即就是要作高(可利用诱导公式将转化为)
学生:学生可分小组进行完成,最终可由各小组组长
汇报本小组的思路和做法。
(结论成立)
教师:我们在锐角三角形中发现有这样一个等式成立,接下来,用类比的方法对它分别在直角三角形和钝角三角形中进行验证,结果发现,这个等式对于
任意的直角三角形和任意的钝角三角形都成立,那么我们此时能否说:“这
个等式对于任意的三角形都成立”呢?
学生:可以
教师:这就是我们这节课要学习的《正弦定理》(引出课题)
定理的证明教师:展示正弦定理的证明过程
证明:(1)当三角形是锐角三角形时,过点A作BC 边
上的高线,垂直记作D,过点B向AC作高,垂直记作E,如图:
同理可得:
所以易得
(2)当三角形是直角三角形时;
在直角三角形ABC中:若
因为:
所以:
故:
即:
(3)当三角形是钝角三角形时(角C为钝角)
过点A作BC边上的高线,垂直记作D
由三角形ABC的面积可得即:
故:
所以,对于任意的三角形都有成立。
教师:这就是本节课我们学习的正弦定理(给出定理的内容)
(解释定理的结构特征)
思考:正弦定理可以解决哪类问题呢?
学生:在一个等式中可以做到“知三求一”
定理的应用
教师:接下来,让我们来看看定理的应用(回到刚开始的那个实际问题,用正弦
定理解决)(板书步骤)
随堂训练
学生:独立完成后汇报结果或快速抢答
教师:上述几道题目只是初步的展现了正弦定理的应用,其实正弦定理的应用相
当广泛,那么它到底可以解决什么问题呢,这里我送大家四句话:“近测
高塔远看山,量天度海只等闲;古有九章勾股法,今看三角正余弦.”
以这四句话把正弦定理的广泛应用推向高潮)
课堂小结:
1、知识方面:正弦定理:
2、其他方面:
过程与方法:发现推广猜想验证证明
(这是一种常用的科学研究问题的思路与方法,希望同学们在今
后的学习中一定要注意这样的一个过程)
数学思想:转化与化归、分类讨论、从特殊到一般
作业布置:
①书面作业:P527
②查找并阅读“正弦定理”的其他证明方法(比如“面积法”、“向量法”等)
③思考、探究:若将随堂训练中的已知条件改为以下几种情况,结果如何?
板书设计:
1、定理:
2、探索:
3、证明:
4、应用:
检测评估:。