直流屏选型方法和技术参数

直流屏选型方法和技术参数
直流屏选型方法和技术参数

专业的直流屏生产厂家:QQ:2514939347

网站:https://www.360docs.net/doc/216567812.html,/Product-8-1.html

目录表

一、产品简介 (1)

二、使用环境 (1)

三、技术指标 (1)

四、安装及开机前的准备 (2)

五、开机操作 (2)

六、主要部件介绍 (3)

七、保养维护 (3)

八、运输、贮存及保证期 (3)

九、附录(S型模块操作) (4)

GZDW智能直流屏使用手册

(S型模块系统)

1.产品简介

GZDW智能直流电源屏设计参照了电力部《DL/T5044-2004》、《JB/5777.2-2002》及《JB/5777.3-2002》等相关技术标准制作,能可靠满足输配电系统正常或非正常状态下的直流控制电源和高低压开关分合闸的供电需求。它广泛适用于500KV以下的变配电站和60万KW以下发电厂的直流操作电源需求。

2.使用环境

2.1 海拨高度不超过于1000米。

2.2 环境温度-10~+50℃。

2.3 日平均相对湿度不大于95%,月平均相对湿度不大于90%。

2.4 无强烈振动和冲击,无强烈电磁场干扰。

2.5 周围无严重尘土、爆炸危险介质、腐蚀金属和破坏绝缘的有害气体、导电微粒和严重的霉菌。

2.6 垂直倾斜度不大于5度。

3.技术指标

3.1 三相交流输入电压380V(+15%,-10%),频率50 HZ。

3.2 控制母线直流输出电压:220V。

3.3 控制母线直流输出电流额定值:4A。

3.4 免维护全密封铅酸蓄电池的电池容量额定值:40AH。

3.5 直流屏在0.5秒内瞬时输出电流值2C:80A。

3.6 控制母线电压稳定度≤±2%。

3.7 控制母线电压纹波系数≤±0.1%。

3.8 恒流精度≤±0.5%。

3.9 合闸母线电压≤+15%,-10%。

3.10 最大限流输出电流(A):1.2I N。

3.11 效率≥90%。

3.12 功率因数>0.92。

3.13 响应速度:0.2ms。

3.14 整机噪声≤50dB。

3.15 均流方式:自动均流。

3.16 谐波:无干扰。

4.安装及开机前的准备

4.1 安装

4.1.1 直流屏外形尺寸: 800×600×2260mm(长×宽×高)。

4.1.2 柜体结构: 前玻璃门,后百页窗双开门。

4.1.3 进线方式:下进线下出线,柜底板备有敲落孔若干。

4.1.4 安装孔:柜底四角备有φ14安装孔四个,孔中心尺寸为 750×550mm。

4.2开机前的准备

4.2.1 断开熔断器:电池组与高频模块连接之前,应先断开熔断器(FU1、FU2),可用专用拉手拔出两个熔芯(NT00)。

4.2.2 连接电池组:明确电池极性后,将各电池以串联方式(分层)连接,构成电池组。

下以18节电池(五层排放)为例图示:

图一电池连接图

4.2.3 电池组与高频模块连接:电池组首电池正极和末电池负极分别与充电柜内熔断器(FU1、FU2)连接。

注意电池组的正极与熔断器座的正极(+)相连,电池组的负极与熔断器座的负极(-)相连,待熔芯(NT00)合入熔断器座,电池组就与高频模块相连。(连接时极性错误,将会烧坏模块)。

4.2.4 外部交流进线接驳:按接线图,将二路交流进线分别接到柜内交流进线接线端子上(U1、V1、W1和U1、V2、W2)。

4.2.5 外部直流负载接驳:按接线图,将各路直流负载(控母、合母、闪光等)分别接到柜内直流馈出接线端子上(KM、HM、GM、SM)。

4.2.6 接地:连接柜内接地螺钉,按标准可靠接地(GND)。

5.开机操作

5.1 开机先用专用拉手将两个熔芯(NT00)合入熔断器座(RT16-00),使电池组与柜内高频模块连接,系统进入自动控制运行状态。

5.2 将柜内交流断路器(QF1、QF2)合上,将外部交流引入直流屏内,高频模块显示窗点亮,高频开关电源模块开始工作。

5.3 将直流屏下门的直流馈出开关分别合上,指示灯点亮表示直流屏开始对外提供直流电源,开机完成。

6、主要部件介绍

6.1高频开关电源模块

高频开关电源提供高品质的直流电源,按电池特性曲线对电池进行充电,型号为:E22010(S)

6.2 降压硅链

降压硅链调节控母电压,型号为UDL,20A/30V/5级。

6.3 蓄电池组

蓄电池采用40AH铅酸免维护电池,由12V/块共18块电池组成。

7 保养维护

7.1.1 高频模块故障(报警)

模块面板上数码显示窗显示“ERR”或指示灯熄灭、窗口无显示。检查三相交流是否正常,热插拔插头是否牢靠连接,直流输出是否断路。

7.1.2 绝缘不良(报警)

检查母线和支路漏电情况。

7.1.3 坚固螺钉。

设备运行半年后,应坚固所有连接螺钉,尤其是主回路连接螺钉。

7.1.4 电池活化(无此功能除外)

7.1.5 维修更换高频模块

在线拉开高频模块后面的热插拔插头,使模块与系统脱离,松开模块面板上紧固螺钉,从正面抽出模块。

7.1.6 更换电池

用专用拉手工具拔出NT00二个熔芯,使电池组与系统分开,然后更换电池。

7.1.7 直流屏关机

断开全部直流馈出开关,断开交流进线QF1和QF2,用专用拉手工具拔出NT00二个熔芯,直流屏关机。

8.运输、贮存和保证期

8.1 运输

本产品运输时,蓄电池应单独包装,必要时高频电源模块也要单独包装。运输中不得倒置,不得碰撞和强烈振动,防止日晒雨淋。

8.2 贮存

本产品贮存时周围空气温度为+25~55℃,月平均相对湿度不大于90%,周围空气中无腐蚀性和可爆炸气体。

半年以上不使用直流屏,注意电池应及时充电一次。

8.3 保证期

产品在现场调试后,除使用不当原因外,保证期为12个月;产品发货后包括贮存期为18个月。

9 系统应用及参数设置

9.1 采用模块独立组成电池充电系统

1)参考图1对系统进行连线。

2)设置模块工作方式为F-A方式。

3)设置模块台数为并联模块的实际台数。

4)从模块面板,设定模块的均充电压值、浮充电压值、0.1C、0.02C、均充延时、均充限时等参数。

5)上电试验。模块能自动根据不同情况判断,

对电池进行恒流、均充、浮充等充电管理,

这个过程自动完成,不需人工参与或外接

监控器控制。

9.2 采用外接监控器控制模块组成充电系统

1)设置模块工作方式为F-E方式。

2)按照Z型和E型系列的通用型模块的使用方法,组成电池充电系统。9.3 按键及功能菜单操作

9.3.1 操作按键

和通用型模块一样,前面板上有2个轻触按键,分别为菜单键和修改键。

1)菜单键:面板标识“ ”。第1功能,选择操作菜单时使用;第2功能,配合 键操作模块开/关机及保存数据。

2)修改键:面板标识“ ”。第1功能,修改各项菜单的值时使用;第2功能,配合 键操作模块开/关机及保存数据,第3功能,切换主画面。

9.3.2 操作图解

s机型模块面板操作流程见图2。菜单内容图解说明见图3。

9.3.3 开/关机操作

模块关机状态下,按住 和 双键,保持6s,模块开机,显示屏进入开机默认主画面,显示模块的输出电压值;模块开机状态下,按住 和 双键,保持6s,模块关机,显示屏显示“OFF”。

9.3.4 切换主运行画面操作

模块上电初始化完成后,模块显示屏进入开机默认主画面,显示模块的输出电压实际值。按一次 键,主画面显示的模块输出电流的实际值,再按一次 键,主画面显示模块的充电状态(均/浮充),循环显示。

9.3.5 菜单退出操作

1)数据保存退出

在任一菜单状态下,先按住 键,再按 键,显示屏将退回开机默认主画面,修改的参数生效,修改的参数被保存。

2)数据不保存退出

在显示菜单标号的状态下,按 键,显示屏将退回开机默认主显示屏,修改的参数无效,修改的参数不被保存。

9.3.6 菜单项目内容的补充说明

1)地址值(00~31)。工作中,模块地址是模块身份识别标志。一组模块中,不得有相同的模块地址存在。

2)均充电压值:220V系统198~286;110V系统99~150;48V系统44~64。 3)浮充电压值:220V系统198~286;110V系统99~150;48V系统44~64。 4)充电均充点(0.1C):5A模块0.5~5;10A模块1~10;20A模块,2~20。 5)充电浮充点(0.02C):5A模块0.5~5;10A模块1~10;20A模块,2~20。 6)模块台数值(1~3)。最大模块并联台数为3台。在F-E方式不受此限制。 7)均浮充状态值(P-L、P-H和P-E)。值P-L为浮充状态,模块输出浮充电压(其值由第Uf.项菜单设定);值P-H为均充状态,模块输出均充电压(其

值由第Ue.项菜单设定)。(注:值P-E,为监控器控制模块时,强制输出

状态,菜单不可操作)。

9.4 关于均充点和浮充点设定的参考说明

9.4.1 在设置均充点电流值时,因模块检测的均充电流即为模块的输出电流,

因此在充电系统中如果连接有常规性负荷时:

Imk=Ifz+Icd

式中,Imk —模块输出电流(是模块调节自身输出均浮充、限流状态

的判据之一,其最大值等于均充点电流);

Ifz —系统中,常规负荷电流;

Icd —模块对蓄电池的充电电流

由式中可知,在设置模块的均充点、浮充点电流值时,最好要考虑Ifz的因素。

9.4.2 例1,单模块、65AH、常规负荷为1A的系统

模块的均充点(菜单中Ie项)可以设置为7.5(6.5+1)A,浮充点(菜单中If 项)可设置为2.3(1.3+1)A。

9.4.3 例2,2台模块、65AH、常规负荷为1A的系统

每台模块的均充点(菜单中Ie项)可以设置为3.8(7.5/2)A,浮充点(菜单中If项)可设置为1.2(2.3/2)A。多模块并联使用时,建议用户不选择S型模块独立组成系统而选择通用型模块+外接监控组成系统的方案。

图3 菜单内容说明

主画面:输出电压/输出电流/均浮充状态

地址菜单项目标号,按 键退回主画面

按 键,修改地址。默认值为000。没有单位。

均充电压菜单项目标号,按 键退回主画面

按 键,修改均充电压到实际要求的值。单位V。

浮充电压菜单标号,按 键退回主画面

按 键,修改浮充电压到实际要求的值。单位V。

均充点(0.1C)菜单标号,按 键退回主画面

按 键,修改均充点到实际要求的值。单位A。

浮充点(0.02C)菜单标号,按 键退回主画面

按 键,修改浮充点到实际要求的值。只在F-A

方式有效。单位A。

均充延时菜单标号,按 键退回主画面

按 键,修改均充延时时间到实际要求的值。只

在F-A方式有效。单位分钟。

均充限时菜单标号,按 键退回主画面

按 键,修改均充限时时间到实际要求的值。只

在F-A方式有效。单位分钟。

模块台数设定菜单标号,按 键退回主画面

按 键,修改模块台数到实际并联模块台数的值。

只在F-A方式有效。单位台。

输出电压显示校准菜单标号,按 键退回主画面

当显示电压值有偏差时,按 键修改显示数据等

于实际输出电压值。单位V。

输出电流显示校准菜单标号,按 键退回主画面

当显示电流值有偏差时,按 键修改显示数据等

于实际输出电流值。单位A。

工作方式菜单标号,按 键退回主画面

按 键修改工作方式,F-A:独立充电曲线管

理方式;F—E:外接监控管理方式。没有单位。

均浮充手动切换菜单标号,按 键退回主画面

按 键修改状态,P-L为:浮充;P-H:均充。

没有单位。

工厂调试菜单标号,按 键退回主画面

工厂调试的值,用户修改无效。

LED路灯规格参数汇总和照度计算

LED路灯规格参数灯具技术指标:

单个光源技术指标: 说明:(E,e)=当灯 杆为表中的高度时(机 动车道平均照度,人行 道平均照度)(L×D×d)= 当灯杆为表中的高度时 (灯杆间距×机动车道路面宽度×人行道路面宽度)(单位米) LED路灯灯具技术要求:

(1)LED路灯采用优质铝合金材料制成,灯体表面做喷塑处理,表面应能承受机械压力和盐雾、汽车废气、及清洗剂的腐蚀等。 (2)LED路灯外壳防护等级:IP65以上。 (3)良好的蝠翼配光设计,反光系统采用立体光源或透镜导光设计,透镜须采用非成像二次光学透镜以便保证路面亮度和均匀度,加大辐射范围。 (4)LED灯具必须通过广东省LED路灯产品评价标杆体系检测机构的检验并提供检验报告(LED灯具须为投标人本次投标采用LED 产品所属生产厂家的产品) (5)LED路灯的使用环境温度应能满足-20℃~+50℃,适合广东地区使用。同时应满足具体使用地的环境温度、湿度和腐蚀性等其它特殊要求。 (6)LED灯具的功率因数:≥0.95,灯具驱动电源效率≥90%。 (7)LED路灯工作交流电压范围:85V~265V(在此电压范围内LED灯具仍能正常工作) (8)LED路灯具有浪涌抑制性能(抗雷击),输入端过电压保护,当电压恢复正常时能恢复工作。 (9)LED路灯灯具必须具备下半夜自动调节灯具功率的功能。 (10)灯具需具备仰角角度调节功能,以保证路面达到最大面积的照度效果。 4.LED光源技术要求 (1)LED光源晶片要求选用国际知名品牌,(美国科瑞 CREE、普瑞 BRIDGELUX、德国欧司朗Osram和荷兰飞利浦Philips)并且采用低热阻、散热良好、低应力的封装技术。

网络分析仪选型指南

是德科技 网络分析仪选型指南

目录 Keysight 矢量网络分析仪解决方案 (4) 有源器件评测 (5) 无源器件评测 (7) 通用、教育 (9) 制造 (12) 高速串行互连分析 (14) 安装和维护 (15) 相关的网络分析仪产品和附件 (16) 关键性能和功能比较 (18) 过渡和升级 (21) 相关文献 (22) 网络资源 (23)

获得更高的置信度 无论您是测试有源器件还是无源器件,速度和性能的适当组合可为您增添竞争优势。 在研发过程中,是德科技矢量网络分析仪(VNA)提供出色的测量完整性,帮助您把深 层次的理念转换为更出众的设计。产品线上经济高效的 VNA 提供您所需的吞吐量和 可重复性,并将部件转变为具有竞争力的元器件。每一个 Keysight VNA 都能很好地体 现是德科技在线性和非线性器件表征方面的专业水平。在工作台、机架上或在现场, 我们能够帮助您获得更高的信心。 物理测量生态系统 放大器 点对点通信雷达 雷达军事通信 诊断系统和元器件诊断 医疗和工业流程

Keysight VNA 解决方案是德科技提供各种不同测量频率范围、性能和功能的矢量网络分析仪,能够满足用户 不同的测量需求。 这份选型指南概要介绍了是德科技所有的网络分析仪产品,并提供同类产品间的比 较,以帮助用户选择最能满足解决方案要求的产品。此外,资料中还简要地介绍了网络 分析仪的典型应用、 各种测量需求以及是德科技网络分析仪如何满足这些需求。

有源器件的评测 测量挑战 是德科技网络分析仪能够用来表征和测试有源组件,例如放大器、混频器和频率转换器。它们可轻松进行放大器的常规参数测量,例如增益、增益和相位压缩、隔离度、回波损耗和群时延。谐波失真常用于了解放大器的非线性行为,接收机有时需要工作在与激励源不同的频率上。由于频率转换器件的输入频率和输出频率不同,例如混频器和频率转换器,因此,精确地对频率变换器件进行测量具有很大的挑战性。用于测量这些器件的网络分析仪必须具有频偏模式(FOM ),才能够胜任测量这种输入频率和输出频率不相同的器件的任务。有时,可能还需要使用其他仪器和信号调节器件来进行双音测量、大功率器件测量、噪声系数测量、ACP 和 EVM 等其他类型的测量。因此,测量系统变得越来越复杂或者完成一个放大器的测量需要多个不同的测量工位。 是德科技解决方案 是德科技提供广泛的使用灵活、价格经济的测试解决方案,对有源元器件进行矢量网络分析。Keysight VNA 专为线性和非线性表征而设计,具有极高的精度。除了高性能优势之外,多款测量应用软件可简化设置、缩短测试时间并提高测量精度。 主要特性 –放大器增益、匹配和隔离:S 参数测量 –AM-AM 和 AM-PM 转化:功率扫描,信号源和接收机校准 –大功率/脉冲可配置性:可配置的测试座、大输出功率、信号源和接收机衰减器、内置脉冲发生器、外部脉冲发生器控制、内置脉冲调制器 –频率转换器转换增益/损耗:FOM 、信号源和接收机校准、标量混频器校准 –频率转换器转换相位/群时延:FOM 、幅度和相位校准、矢量混频器校准 –LO 驱动/测量:第二个内部信号源、外部射频源控制、三端口校准和测量、LO 功率校准 –混频器拓扑:扫描射频、扫描/固定 LO (固定 IF/扫描 IF )、双级变频器、配有内置 LO 的变频器 –精确的信号源输出功率和绝对功率测量:信号源和接收机校准、功率传感器失配校正、接收机电平调节 –谐波失真:FOM 、信号源和接收机校准、较低的信号源谐波、接收机衰减器 –互调失真(IMD ):FOM 、第二个内部信号源、外部信号源控制、内置信号合成网络、扫描 IMD –噪声系数测量 –Hot-S22 测量:FOM 、第二个内置信号源、内置信号合成网络 –功率附加效率:直流输入和/或直流电表控制 –直流偏置:内部直流偏置源/直流源控制/内置直流偏置电路 –非线性矢量网络分析(NVNA ):波形分析、X 参数

直流屏直流系统介绍

一.直流系统的概念 直流系统是应用于水力、火力发电厂,各类变电站和其它使用直流设备的用户,为给信号设备、保护、自动装置、事故照明、应急电源及断路器分、合闸操作提供直流电源的电源设备。直流系统是一个独立的电源,它不受发电机、厂用电及系统运行方式的影响,并在外部交流 电中断的情况下,保证由后备电源—蓄电池继续提供直流电源的重要设备。直流屏的可靠性、安全性直接影响到电力系统供电的可靠性和安全性。直流系统是以电池容量标称如 65AH100AH常用名称:GZDW-65AHGZDW-100AH。 二.直流系统的用途 广泛应用于水力、火力发电厂,各类变电站和其它使用直流设备的用户(如发电厂、变电站、配电站、石化、钢铁、电气化铁路、房地产等),为信号设备、保护、自动装置、事故照明及断路器分、合闸操作提供直流电源,它也同样广泛的应用于通信部门、计算机房、医院、矿井、宾馆,以及高层建筑的可靠应急电源,用途十分广泛。还有直流系统的心脏是蓄电池, 对蓄电池进行科学的维护是直流系统的核心工作。 三.直流系统的组成 直流系统主要由两大部份组成。一部份是电池屏,另一部份是直流充电屏(直流屏)。电池 屏就是一个可以摆放多节电池的机柜(800×600×2260)。电池屏中的电池一般是由2V-12V 的电池以9节到108节串联方式组成,对应电的电压输出也就是110V或220V。目前使用的 电池主要是阀控式密封免维护铅酸电池。直流屏主要是由机柜、整流模块系统、监控系统、 绝缘监测单元、电池巡检单元、开关量检测单元、降压单元及一系列的交流输入、直流输出、电压显示、电流显示等配电单元。 1.整流模块系统: 电力整流模块就是把交流电整流成直流电的单机模块,通常是以通过电流大小来标称(如2A 模块、5A模块、10A模块、20A模块等等),按设计理念的不同也可以分为:风冷模块、独 立风道模块、自冷模块、自能风冷模块和自能自冷模块。它可以多台并联使用,实现了N+1 冗余。模块输出是110V、220V稳定可调的直流电压。模块自身有较为完善的各种保护功能如:输入过压保护、输出过压保护、输出限流保护和输出短路保护等。 2.监控系统: 监控系统是整个直流系统的控制、管理核心,其主要任务是:对系统中各功能单元和蓄电池 进行长期自动监测,获取系统中的各种运行参数和状态,根据测量数据及运行状态及时进行 处理,并以此为依据对系统进行控制,实现电源系统的全自动管理,保证其工作的连续性、 可靠性和安全性。监控系统目前分为两种:一种是按键型还有一种是触摸屏型。:监控系统 提供人机界面操作,实现系统运行参数显示,系统控制操作和系统参数设置。 3.绝缘监测单元: 直流系统绝缘监测单元是监视直流系统绝缘情况的一种装置,可实时监测线路对地漏电阻, 此数值可根据具体情况设定。当线路对地绝缘降低到设定值时,就会发出告警信号。直流系 统绝缘监测单元目前有母线绝缘监测、支路绝缘监测。 4.电池巡检单元: 电池巡检单元就是对蓄电池在线电压情况巡环检测的一种设备。可以实时检测到每节蓄电池 电压的多少,当哪一节蓄电池电压高过或低过设定时,就会发出告警信号,并能通过监控系

怎么计算直流屏容量

一般来说,老式的电操用电量比现在一般的弹操要大的多。 普通双电源带两个变压器的系统40AH就可以了,因为直流屏主要是倒闸操作,并且是瞬时的,容量选的大只是因为系统庞大,如果高压柜的数量增加,就65AH。 真要去计算的话,有很多种计算方法,不怎么统一,给你介绍个简单的: 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0.1~0.5S)合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择直流操作电源容量的重要依据。据此可得: 蓄电池最大瞬时负荷:Imax=Izc+Isg+Ihz 蓄电池容量:C=Imax/C率(AH) C率是蓄电池放电倍率(A) 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0.1~0.5S)合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择

直流操作电源容量的重要依据,据此可得蓄电池最大瞬时负荷:Imax=Izc+Isg+Ihz则蓄电池容量:C=Imax/C率(AH) C率是蓄电 池放电倍率(A).

你提的这个问题没说清楚,你仅仅说了高压采用直流保护和操作,但没有说是否还有别的直流负荷种类,直流屏通常说来可以分为动力负荷和控制负荷。动力负荷包括直流电动机、UPS电源、事故照明、直流变换电源等,控制负荷包括保护和自动装置电源、控制操作电源、计算机电源以及热工控制和远动装置电源。所以我们要做的工作首先是统计这两种负荷。通常计算蓄电池有两种方法,一种是容量法,源于原苏联,是过去我国工程设计中通用的计算法,这种计算方法对恒定放电的负荷计算简单快捷、准确,一般用于放电时间为1小时的放电过程。另一种是电流法在我国八十年代开始使用,起源于美国。在给定的事故放电电流I和事故放电时间t的情况下计算蓄电池容量时:电流法是用放电电流I和电流系数Kc=I/C10;容量法是用放电容量It=Cs和容量系数Kcc=Cs/C10计算,其基本计算式为:蓄电池容量系数:Kcc=Cs/C10=I*t/C10=Kct 蓄电池容量:Cc=Krel*Cs/Kcc=Krel*I*t/Kc*t=Krel*I/Kc 具体介绍可看《现代电力工程直流系统) 根据你提到的情况估计你使用的场所是在配电所中,这往往考虑的情况较为简单,因为你的负荷并不复杂,主要是保护和自动装置电源、控制操作电源、计算机电源和事故照明。通常不存在较大的冲击性,但有一种情况,就是仍然采用电磁操作系统的高压断路器,它的合闸电压相当大,以CD10型为例,它的合闸电流瞬间就高大147A,比起

直流屏使用说明书(4)

第一章概述 1、产品用途: PGD系列直流电源屏广泛用于电站、变电所、城乡电网、铁道系统、工矿企业、邮电通信等场所的直流电源系统;供给: *断路器正常的分、合闸等操作电源; *仪器仪表、继电保护等控制电源; *事故时的应急电源(事故油泵、事故电机、应急照明等); *通讯电源; *载波电源; *交流UPS等。 2、产品型号及其分类: 合闸母线电压 控制母线电压 电池组数×容量 设计序号 产品编号 浙江三辰公司直流屏 举例说明: 如:PGD6-IV-2×100-220/220 为:浙江三辰电器公司免维护电池直流屏,高频开关电源方案,微机控制,触摸屏或液晶显示;设计方案采用IV方案,电池采用双组100AH,合闸母线电压220V,控制母线电压220V。 产品编号说明: PGD1:镉镍电池直流屏,无微机控制方案; PGD2:免维护电池直流屏,无微机控制方案; PGD3:通讯电源直流屏,无微机控制方案; PGD4:免维护电池直流屏,电抗器方案,微机控制; PGD5:免维护电池直流屏,电抗器方案,微机控制,触摸屏或液晶显示; PGD6:免维护电池直流屏,高频开关电源方案,微机控制,触摸屏或液晶显示; PGD7:免维护电池直流屏,高频开关电源方案,微机控制,触摸屏或液晶显示,总线式结构。

3、直流电源屏的组成: 图1-1 直流电源屏系统图 由上图可以看出,直流屏主要由交流电源输入单元、整流器单元、电池充放电控制单元、蓄电池组、直流馈出、母线监察(电压测量、绝缘、闪光)等几个部分组成。带微机控制的直流屏,增加了中央监控单元,使直流屏的介面更友好、操作、控制更简单。 上图中直流系统所采用的整流器是由一个或多个高频开关电源模块所组成整流。高频开关电源模块具有体积小,重量轻,效率高,输出纹波低,动态响应快,控制精度高,模块可叠加输出等优点,近年来已被大规模应用在直流电源系统中,取代了原来直流系统中的“干式工频变压器+硅整流系统”成为直流系统整流器的主流。 上图中控制母线所采用的调压装置的组成形式为“降压二极管模块+自动调压装置”。降压二极管模块由于其性能可靠、易维护等优点,已取代传统降压硅链成为直流系统中应用最多的降压元件。(注意:该单元是选装件,220V系统电池数量选102-104只或110V系统电池数量选51-52只时,该单元不选装) 说明:由于不同使用场合的差异性,直流系统的具体设计方案详见我公司所配的图纸。

直流屏设计原则及部分设备选型原则

直流屏设计原则及部分设备选型原则 本设计原则的制定是根据:DL/T 5044-2014 电力工程直流电源系统设计技术规程。 DL/T 720-2013 电力系统继电保护及安全自动装置柜(屏) 通用技术条件 DL/T 459-2000 电力系统直流电源柜订货技术条件 一、充电机的选型原则: 1、1组蓄电池配置1套充电机装置时,应按额定电流选择高频开关电源基本模块。当基本模块数量为6个及以下时,可设置1个备用模块;当基本模块数量为7个及以上时,可设置2个备用模块。 1.1每组蓄电池配置一组高频开关电源时,其模块选择应按下式计算: n =1n +2n 基本模块的数量按下式计算: 1n = me r I I 附加模块的数量应按下列公式计算: 2n =1(当1n ≤6时) 2n =2(当1n ≥7时) 1.2一组蓄电池配置两组高频开关电源或两组蓄电池配置三组高频开关电源时,其模块选择应按下式计算: n me r I I 式中:n —高频开关电源模块选择数量,当模块选择数量不为整数时,可取邻近值;

1n —基本模块数量 2n —附件模块数量 r I —充电装置电流(A ) me I —单个模块额定电流(A ) 2、高频开关电源模块数量根据充电装置额定电流和单个模块额定电流选择,模块数量控制在3个~8个。 3、充电装置回路断路器额定电流应按充电装置额定输出电流选择,且应按下式计算: n I ≥k K rn I 式中:n I —直流断路器额定电流(A ); k K —可靠系数,取1.2; rn I —充电装置额定输出电流(A ) 表1 充电机装置回路设备选择表

直流屏的作用及说明

编辑词条 直流屏 目录[隐藏] 2.直流屏技术指标: 3.直流屏工作条件: 1.直流屏含义及作用: 直流屏是直流电源操作系统的简称。通用名为智能免维护直流电源屏,简称直流屏,通用型号为GZDW,而直流屏就是用来供应这种直流电源的。发电厂和变电站中的电力操作电源现今采用的都是直流电源,它为控制负荷和动力负荷以及直流事故照明负荷等提供电源,是当代电力系统控制、保护的基础。直流屏由交配电单元、充电模块单元、降压硅链单元、直流馈电单元、配电监控单元、监控模块单元及绝缘监测单元组成。主要应用于电力系统中小型发电厂、水电站、各类变电站,和其他使用直流设备的用户(如石化、矿山、铁路等),适用于开关分合闸及二次回路中的仪器、仪表、继电保护和故障照明等场合。 直流屏是一种全新的数字化控制、保护、管理、测量的新型直流系统。监控主机部分高度集成化,采用单板结构(All in one),内含绝缘监察、电池巡检、接地选线、电池活化、硅链稳压、微机中央信号等功能。主机配置大液晶触摸屏,各种运行状态和参数均以汉字显示,整体设计方便简洁,人机界面友好,符合用户使用习惯。直流屏系统为远程检测和控制提供了强大的功能,并具有遥控、遥调、遥测、遥信功能和远程通讯接口。通过远程通讯接口可在远方获得直流电源系统的运行参数,还可通过该接口设定和修改运行状态及定值,满足电力自动化和电力系统无人值守变电站的要求;配有标准RS232/485串行接口和以太网接口,可方便纳入电站自动化系统。 直流屏的组成: 充电柜-充电模块-监控模块-电池组 直流屏主要特点: 系统特点 高可靠性: 采用开关电源的模块化设计,N+1热备份。 充电模块可以带电热插拔,平均维护时间大幅度减少。 动力母线和控制母线可以由充电模块单独直接供电,可以通过降压装置热备份。 硬件低差自主均流技术,模块间输出电流最大不平衡度优于5%。 可靠的防雷和电气绝缘措施,选配的绝缘监测装置能够实时监测系统绝缘情况,确保系统和人身安全。 系统设计采用IEC(国际电工委员会),UL等国际标准,可靠性与安全性有充分保证。 高智能化: 监控模块采用大屏幕液晶汉字显示,声光告警。

直流屏容量计算

给楼主提供一套方法。举例如下: 1)首先统计直流220V的负荷 2)按最大事故放电容量来选择 计算公式: ======================== 设直流屏所处环境平均温度为25度,于是有:K t=1-0.008(t-20)=1-0.008(25-20)=0.96代入表达式中,得到: C e=(3.23+17.93)x1/(0.75x0.8x0.96)=36.74(Ah) 故取直流屏容量为40Ah 3)校验事故放电后的冲击电流 计算公式如下:

由前计算确定Ce=40,代入电池内阻计算式,得: Re=0.04/40=0.001Ω 由于无法知道实际使用的电池,我姑且认为此直流屏电池组中单个电池的电压是2V的,其放电终止电压 U ac=1.2V 我们先确定直流屏放电倍率K: K=I ac/C e=(3.23+17.93)/40=21.16/40=0.529 再来确定电池放电容量C ac: Cac=I ac t=(3.23+17.93)x1=21.16(Ah) 已知U ac=1.2V,所以有: I max=(U ac-U en)/R e=(1.2-1)/0.001=200A 我们用第一个式子来校核: I max≥I ac+I ba=(3.23+17.93)+120=141.16A 可见此40Ah的直流屏完全满足要求 蓄电池的额定容量C,单位是安时(Ah),它是放电电流(A)和放电时间(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah是不同的,所以电池容量被定义为:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积 首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小时等不同时率,写做C20、C10和C2等等。其中的C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放电到设定电压的小时数。于是用容量除以小时数即得出额定放电电流 容量相同而放电时率不同的电池,它们的标称放电电流却相差甚远。比如,一个电动自行车用的电池容量10Ah、放电时率为2小时,写做10Ah2,它的额定放电电流为10(Ah)/2(h)=5A;而一个汽车启动用的电池容量为54Ah、放电时率为20小时,写做54Ah20,它的额定放电电流仅为54(Ah)/20(h)=2.7A!这两种电池如果分别用5A和2.7A的电流放电,则分别能持续2小时和20小时才下降到设定的电压 上述所谓设定的电压是指终止电压Uac(单位V)。终止电压可以简单的理解为:放电时电池电压下降到不至于造成损坏的最低限度值。终止电压值不是固定不变的,它随着放电电流的增大而降低,同一个蓄电池放电电流越大,终止电压可以越低,反之应该越高。也就是说,大电流放电时容许蓄电池电压下降到较低的值,而小电流放电就不行,否则会造成损害 电池工作中的电流强度还常常使用倍率来表示,写做NCh 。N是一个倍数,C代表容量的安时数,h表示放电时率规定的小时数。在具体描述某个时率的电池时,倍率常常写成NC的形式。倍数N乘以容量C就等于

几款网络分析仪的介绍

ENA射频网络分析仪 Agilent E5071C 9 KHz至8.5 GHz 详细说明: Agilent E5071C ENA系列网络分析仪 频率范围: 频率范围端口选件 E5071C 9KHz-4.5GHz 2/4 240/440 9KHz-8.5GHz 2/4 280/480 100KHz-4.5GHz 2/4 245/445 100KHz-8.5GHz 2/4 285/485 系统动态范围: 频率IF 带宽技术指标 SPD

主要特性: ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 选件: E5071C—008 频率偏置模式 E5071C—010 时域分析能力 E5071C—790 测量向导助手软件 E5071C—1E5 高稳定度时基 E5071C—240 双端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—245 双端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—440 4端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—445 4端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—280 双端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—285 双端口测试仪100KHz-8.5GHz 带偏置T型接头 E5071C—480 4端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—485 4端口测试仪100KHz-8.5GHz 带偏置T型接头 附件: 校准件 HP85033D/E (3.5mm) 校准件HP85032B (N型) ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 ?提供频率选件:从9 kHz/100 kHz(带有偏置T型接头)到4.5 GHz/8.5 GHz E5071C网络分析仪具有广泛的频率范围和众多功能,在同类产品中具有最高的射频性能和最快的测试速度。它是制造工程师和研发工程师测量9 kHz至8.5 GHz射频元器件和电路的最佳工具。

直流屏容量计算

直流屏的容量怎么确定 直流屏容量确定: 1、根据操作机构选择,如:高压合闸机构为 CD系列,其合闸电流为120A左右,按电力部标准,应满足瞬时两台同时合闸电流即 240A,电池容量=240/放电倍率(一般取4) =60AH,所以选大于65AH的。 2、根据自定负荷选择。 普通双电源带两个变压器的系统 40AH就可以了,因为直流屏主要是倒闸操作,并且是瞬时的,容量选的大只是因为系统庞大,如果高压柜的数量增加,就65 AH。 真要去计算的话,有很多种计算方法,不怎么统一,给你介绍个简单的: 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0. 1~0.5S )合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择直流操作电源容量的重要依据。据此可得: 蓄电池最大瞬时负荷:Imax=Izc+Isg+Ihz 蓄电池容量:C=lmax/C 率(AH) C率是蓄电池放电倍率(A) 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击

负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0. 1~0.5S )合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择直流操作电源容量的重要依据,据此可得蓄电池最大瞬时负荷:Ima x=lzc+lsg+lhz 则蓄电池容量:C=lmax/C 率(AH) C率是蓄电池放电倍率(A). 你提的这个问题没说清楚,你仅仅说了高压采用直流保护和操作,但没有说是否还有别的直流负荷种类,直流屏通常说来可以分为动力负荷和控制负荷。动力负荷包括直流电动机、UPS电源、事故照明、直流变换电源等,控制负荷包括保护和自动装置电源、控制操作电源、计算机电源以及热工控制和远动装置电源。 所以我们要做的工作首先是统计这两种负荷。通常计算蓄电池有两种方法,一种 是容量法,源于原苏联,是过去我国工程设计中通用的计算法,这种计算方法对恒定放电的负荷计算简单快捷、准确,一般用于放电时间为1小时的放电过程。另一种是电流法在我国八十年代开始使用,起源于美国。在给定的事故放电电流 I和事故放电时间t的情况下计算蓄电池容量时:电流法是用放电电流I和电流系数Kc=I/C10 ;容量法是用放电容量It=Cs和容量系数Kcc=Cs/C10计算,其基本计算式为: 蓄电池容量系数:Kcc=Cs/C10=l*t/C10=Kct 蓄电池容量:Cc=Krel*Cs/Kcc=Krel*l*t/Kc*t=Krel*l/Kc 具体介绍可看《现代电力工程直流系统)根据你提到的情况估计你使用的场所是在配电所中,这往往考虑的情况较为简

节能照明设计与灯具的选型

节能照明设计及灯具的选型(第1页) 来源:中国照明网作者:施云琼浏览:1115人次发布:2010-03-03 注:其他网站转载须注明出处,转载而不注明出处者,一经查实,将追究其法律责任 《建筑照明设计标准》GB50034-2004颁布实施以来,其中关于照明节能一节内容多以强制性条文形式出现,对设计人员提出了相当的要求。由于设计阶段照度计算和灯具选型具有一定的特殊性和不确定性,本文拟就此情况对工民建常规设计中的光源、灯具作一定的分析比较,以方便设计人员选用。 《建筑照明设计标准》GB50034-2004颁布实施以来,其中关于照明节能一节内容多 以强制性条文形式出现,对设计人员提出了相当的要求。由于设计阶段照度计算和灯具选型 具有一定的特殊性和不确定性,本文拟就此情况对工民建常规设计中的光源、灯具作一定的 分析比较,以方便设计人员选用。正确与否,恳请指正。 一、光源的分类及特性 1.电光源分类:

2.主要电光源特性比较(见表1) 表1常用的光源数据 功率范围光效寿命电压影响环境影响 光源类型 Wlm/Wh 光通光通10~10008~221000大小白炽灯 500~200014~201500大小卤钨灯 75~9610000较大大 T5灯-14W-865 85~10010000较大大 T5灯-21W-865 89~10410000较大大 T5灯-28W-865 87~10410000较大大

T5灯-35W-865 668000~12000较大大T8灯-36W-765

T8灯-18W-865758000~12000较大大858000~12000较大大 T8灯-30W-865 938000~12000较大大 T8灯-36W-865 858000~12000较大大 T8灯-36W-840 568000~11000较大大 T5环灯22W-865 628000~11000较大大 T5环灯28W-865 628000~11000较大大 T5环灯32W-865

直流屏的操作及使用说明书

PGD7-IV-120Ah-220/220使用说明书 一、概述: 程控高频开关电源具有体积小,重量轻,效率高,输出纹波低,动态响应快,控制精度高,模块可叠加输出,蓄电池采用屏式安装,成套性强等特点。广泛应用于电站、变(配)电所、工矿企业、邮电通信等场合的直流电源系统,可实现无人值班。 二、型号及其含义: 该系列直流屏作为其中一大系列,由高频开关整流模块,可编程控制器(PLC),蓄电池组,绝缘监视装置,蓄电池自动监测装置,母线电压自动调节装置,触摸屏,预告信号装置等组成。蓄电池采用免维护电池。 三、使用条件: 1.环境温度-5℃~+40℃,日平均气温≤35℃。 2.相对湿度不大于85%。 3.使用场所的污染等级≤3级。(有导电性污染物,或由于预期的凝露使干燥的非导电性污染物变为导电性的) 4.产品垂直安装的倾斜应≤5度。 5.安装地点海拔≤2000米。 6.设备应安装在无爆炸危险及腐蚀性气体的场所。 四、主要技术参数: 1.交流输入电压:三相AC380±15%V、50±1HZ。 2.母线电压:DC 220V/110V。 3.整流器输出额定电流:可选。 4.浮充电压:DC 246V/123V(标准)。 5.额定充电电流:。 6.稳压精度:≤±%。 7. 纹波系数:≤%。 8.限流精度:≤±%。 五、使用说明: 1.检查内部所有紧固件是否松动、电气元器件是否完好。 2.本设备安装就位后应可靠接地,解除所有继电器动触点的紧固物,同时将所有开关置于断开位置。 3.按本设备图纸要求,检查输入交流电压是否符合设备电压(380V±15%)要求,并检查输入电源引线,控制回路及设备间所有联络线是否有误。 4.本设备若经长途运输或长时间存放后,应先用500 伏兆欧表测量直流母线对地绝缘电阻,一般绝缘电阻大于2兆欧,均属合格。测试前必须可靠短接或解除二极管、高频开关模块,触摸板,解除电池组与外电路的连接线等。测试后应恢复原状。 六、操作顺序: 1.本设备交流进线分两路即I路电源和II路电源: 1. I、II路交流电源操作,首先合上I路交流输入总电源开关,II路交流输入总电源开关,当I路交流电源正常工作时,I 路交流电源工作指示灯亮,表明系统已接通交流电源,II路电源只作为备用;以第I路为主回路,第II回路

直流屏选型方法和技术参数

专业的直流屏生产厂家:QQ:2514939347 网站:https://www.360docs.net/doc/216567812.html,/Product-8-1.html 目录表 一、产品简介 (1) 二、使用环境 (1) 三、技术指标 (1) 四、安装及开机前的准备 (2) 五、开机操作 (2) 六、主要部件介绍 (3) 七、保养维护 (3) 八、运输、贮存及保证期 (3) 九、附录(S型模块操作) (4)

GZDW智能直流屏使用手册 (S型模块系统) 1.产品简介 GZDW智能直流电源屏设计参照了电力部《DL/T5044-2004》、《JB/5777.2-2002》及《JB/5777.3-2002》等相关技术标准制作,能可靠满足输配电系统正常或非正常状态下的直流控制电源和高低压开关分合闸的供电需求。它广泛适用于500KV以下的变配电站和60万KW以下发电厂的直流操作电源需求。 2.使用环境 2.1 海拨高度不超过于1000米。 2.2 环境温度-10~+50℃。 2.3 日平均相对湿度不大于95%,月平均相对湿度不大于90%。 2.4 无强烈振动和冲击,无强烈电磁场干扰。 2.5 周围无严重尘土、爆炸危险介质、腐蚀金属和破坏绝缘的有害气体、导电微粒和严重的霉菌。 2.6 垂直倾斜度不大于5度。 3.技术指标 3.1 三相交流输入电压380V(+15%,-10%),频率50 HZ。 3.2 控制母线直流输出电压:220V。 3.3 控制母线直流输出电流额定值:4A。 3.4 免维护全密封铅酸蓄电池的电池容量额定值:40AH。 3.5 直流屏在0.5秒内瞬时输出电流值2C:80A。 3.6 控制母线电压稳定度≤±2%。 3.7 控制母线电压纹波系数≤±0.1%。 3.8 恒流精度≤±0.5%。 3.9 合闸母线电压≤+15%,-10%。 3.10 最大限流输出电流(A):1.2I N。 3.11 效率≥90%。 3.12 功率因数>0.92。 3.13 响应速度:0.2ms。 3.14 整机噪声≤50dB。 3.15 均流方式:自动均流。 3.16 谐波:无干扰。

常用品牌灯具参数表

三雄灯具参数表T5高效节能荧光灯管

T5炫彩荧光灯管 T8标准型荧光灯管

佛山照明灯具参数表 雪靓系列T5一体化日光灯 型号电压(V) 功率(W) 功率因数尺寸寿命(H) T5一体化-14W 220 14 0.95 571X21X39 8000 T5一体化-28W 220 28 0.95 1171X21X39 8000 T8直管形彩色荧光灯 规格功率 (w)颜色管径 (mm) 管长 (mm) 寿命 (hrs) 灯头 F10T8/红 F10T8/绿F10T8/蓝10 红色 绿色 蓝色 26331.36000G13 F15T8/红 F15T8/绿F15T8/蓝15 红色 绿色 蓝色 26437.47000G13 F18T8/红 F18T8/绿F18T8/蓝18 红色 绿色 蓝色 26589.87000G13 F30T8/红 F30T8/绿F30T8/蓝30 红色 绿色 蓝色 26894.69000G13 F36T8/红 F36T8/绿F36T8/蓝36 红色 绿色 蓝色 261199.49000G13

T8直管形三基色荧光灯 规格功率 (w) 色温 (k) 显色指数 (mm) 光通量 (Lm) 直径 (mm) 管长 (mm) 寿命灯头 F10T8/865 F10T8/840 F10T8/827 F10T8/81010 6500 4000 2700 10000 82 600 650 650 500 26331.38000G13 F15T8/865 F15T8/840 F15T8/827 F15T8/81015 6500 4000 2700 10000 82 900 950 950 850 26437.410000G13 F18T8/865 F18T8/840 F18T8/827 F18T8/81018 6500 4000 2700 10000 82 1300 1350 1350 1130 26589.810000G13 F30T8/865 F30T8/840 F30T8/827 F30T8/81030 6500 4000 2700 10000 82 2350 2450 2450 2150 26894.612000G13 F36T8/865 F36T8/840 F36T8/827 F36T8/81036 6500 4000 2700 10000 82 3250 3350 3350 2750 261199.412000G13 F58T8/865 F58T8/840 F58T8/827 F58T8/81058 6500 4000 2700 10000 82 4800 5000 5000 4200 26150012000G13

网络分析仪E5071C帮助文档_命令参考_MMEMory

:MMEMory:LOAD:PROGram 没有等效COM命令 语法 :MMEMory:LOAD:PROGram 说明 这个命令下载(或导入)VBA工程(以.vba为扩展名的文件)、模块(以.bas为扩展名的文件)、用户表格(以.frm为扩展名的文件)或类模块(以.cls为扩展名的文件)。如果指定文件不存在就会出错,并忽略命令。 变量 参数 String 说明 您想下载VBA工程的文件的名称 范围 254个字符或更少 预置值 “” 应用实例 10 OUTPUT 717;":MMEM:LOAD:PROG ""Test1/Test1_01.vba""" 10 OUTPUT 717;":MMEM:LOAD:PROG ""A:Test1_01.vba""" 相关命令 :MMEM:STOR:PROG 等效键 Macro Setup > Load VBA Project Macro设置 > 加载VBA工程 :MMEMory:STORe:PROGram 没有等效COM命令 语法 :MMEMory:STORe:PROGram 说明

这个命令将VBA编辑器上打开的VBA工程保存到文件中。该文件的扩展名为.vba。如果存在指定文件名的文件,重写其内容。 变量 参数 String 说明 要保存VBA工程的文件的名称 范围 254个字符或更少 预置值 “” 应用实例 10 OUTPUT 717;":MMEM:STOR:PROG ""Test1/Test1_01.vba""" 10 OUTPUT 717;":MMEM:STOR:PROG ""D:Test1_01.vba""" 相关命令 :MMEM:LOAD:PROG 等效键 Macro Setup > Save VBA Project 宏设置 > 保存VBA工程 :MMEMory:TRANsfer 没有等效COM命令 语法 :MMEMory:TRANsfer , :MMEMory:TRANsfer? 说明 这个命令设置E5071C内存储设备的文件数据,或从E5071C内存储设备的文件中获取数据。使用这个命令读出E5071C的数据并将数据写入外部控制器上的文件,这样就能实现从E5071C到外部控制器的文件传输。 另外,使用这个命令读出外部控制器的数据并将数据写入E5071C的文件就可以实现从外部控制器到E5071C的文件传输。 当您使用目录名和文件名时,使用“/”(斜线)或“\”(反斜线)将其分开。如果要写入的指定文件名的文件已经存在,或要读出(查询)的指定文件不存在,就会出错,并忽略命令。

简述直流屏原理作用与操作说明

简述直流屏原理作用与操作说明 现代企业都离不开电,如石化、煤矿、医院、学校、商场等。而直流屏是电气设备中必不可少的一个组合配电设备之一。 标签:直流屏;原理;操作说明 1 直流屏的组成 充电柜-充电模块-监控模块-电池组-降压硅链。 2 直流屏特点 2.1 具有高可靠性 它采用开关电源的模块化设计,N+1热备份。其中充电模块可以带电热插拔,平均维护时间大大减少。动力母线与控制母线可以由充电模块单独直接供电,通过降压装置能够热备份。它具有可靠的防雷和电气绝缘措施,选配的绝缘监测装置能够实时监测系统绝缘情况,确保系统和人身安全等等。 2.2 具有高智能化 它的监控模块采用大屏幕液晶汉字显示,声光告警。可通过监控模块进行系统各个部分的参数设置。模块具有平滑调节输出电压和电流的功能,具备电池充电温度补偿功能。具有多个扩展通讯口,可以接入多种外部智能设备(如电池测试仪、绝缘监测装置等)。可实现无人值守。蓄电池具有自支管理及保护,实时自动检测蓄电池的端电压、充电放电电流,并对蓄电池的均浮充电进行智能能控制,设有电池过欠压和充电过流声光告警。 3 技术数据(如表1) 4 操作说明 日常使用中,具体操作步骤如下: (1)参数配置。接通交流电,监控系统开始工作,显示屏面亮,有提示信息出现。 (2)电池组接入。参数配置完毕后,检查电池组的两端电压值和监控屏提示的合母电压值。如果合母电压值和电池组电压相差较大,则通过设置监控的均/浮充电压参数调整合母电压值,使其和电池组电压一致。然后切断交流电源,将电池回路的熔断器插入。再次合上交流电。并逐一合上各路输出断路器,检查指示灯及对应输出端子电压是否正常;系统当前信息菜单显示的各参数应该正

直流屏技术规范

直流屏技术规范 2017年9月

直流电源技术规范 1.总则 具有强大的软件功能、高度的集成化、简单的主电路线路、技术先进,智能化水平高,性能稳定可靠,指标高于标准要求值,生产容易,操作简单,维护方便,性能价格比高。 编制适合直流系统的控制、调节、信号、报警软件,使系统各部分功能有机地融为一体。控制系统可根据运行情况及变化按设计要求,自动确定其工作状态,输出电压、电流及信号。可以随时随地对其运行状态监控,并进行相应的动态调节;技术方案先进,标准化设计,容量变化控制单元硬件不变,仅与软件设置有关,改变软件中的设置参数,就可以满足用户的要求;生产、维护均很方便,这也最大限度的减少了备品备件。控制单元设计特点是:硬件集成化、标准化、模块化,强化软件功能,控制方式灵活、方便。 2. 引用标准 DL/T459—2000 《电力系统直流电源柜订货技术》 DL/T 5777.4-2000 《电力系统直流电源设备通用技术条件及安全要求》 DL/T 724-2000 《电力系统用蓄电池直流电源装置运行与维护技术规程》 DL/T 781-2001 《电力用高频开关整流模块》 JB/T8456—1996 《低压直流成套开关设备》 DL/T637-1997 《阀控式密封铅酸蓄电池订货技术》 GB/T3859.1—1993 《半导体变流器基本要求的规定》 ZBK45017—90 《电力系统用直流屏通用技术条件》 GB/T17626—1998 《电磁兼容试验和测量技术》 GB/T7261-1987 《继电器及继电器保护装置基本试验方法》 GB2681-81 《电工成套装置中导线颜色》 GB/T17478-1998 《低压直流设备的特性及安全要求》 IEC896-2 《固定型铅酸蓄电池一般要求和试验方法》 LS(W)30-40-JT 《电力系统用微机控制直流电源柜技术条件》 DL/T 5044-2014 《电力工程直流系统设计技术规程》 3. 环境使用条件 3.1 海拔高度不超过2000m。 3.2 户内使用,周围环境温度不低于-10℃,不高于40℃。 3.3 环境的日平均相对湿度不超过95%,月平均相对湿度不超过90%。 3.4 运行地点无导电微粒,爆炸介质和严重尘埃,无腐蚀金属和破坏绝缘的气体,无强电磁干扰。 3.5 地震裂度::8度。 3.6 柜体前平面对安装水平面的不垂直度(向后),不超过柜体高度的5‰.

相关文档
最新文档