单相半桥无源逆变器设计
单相半桥逆变电路

目录摘要 (1)第一章系统方案设计及原理 (2)1.1、系统方案 (2)1.2、系统工作原理 (2)1.2.1、逆变电路的基本工作原理 (2)1.2.2、单相半桥阻感负载逆变电路 (3)1.2.3、单相半桥纯电阻负载逆变电路 (4)1.3、IGBT的结构特点和工作原理 (4)1.3.1、IGBT的结构特点 (4)1.3.2、IGBT对驱动电路的要求 (6)第二章硬件电路设计与参数计算 (7)2.1、系统硬件连接 (7)2.1.1、单相半桥无源逆变主电路如图下所示 (7)2.2、整流电路设计方案 (8)2.2.1、整流变压器的参数运算 (8)2.2.2、整流变压器元件选择 (9)2.2.3、整流电路保护元件的选用 (9)2.3、驱动电路设计方案........................................................................... 错误!未定义书签。
2.3.1、IGBT驱动器的基本驱动性能.............................................. 错误!未定义书签。
2.3.2、驱动电路................................................................................ 错误!未定义书签。
2.4、触发电路设计方案........................................................................... 错误!未定义书签。
第三章系统仿真.............................................................................................. 错误!未定义书签。
3.1、建立仿真模型................................................................................... 错误!未定义书签。
IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种常用于将直流电转换成交流电的电路。
在没有任何主动元件的控制下,通过合适的电路设计可以实现直流到交流的转换。
本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路组成以及相关参数的计算。
一、IGBT单相桥式无源逆变电路的设计原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关元件,同时结合了MOSFET和BJT的优点,具有低开关损耗、高开关速度等特点。
单相桥式无源逆变电路是由四个IGBT和四个二极管组成的桥式整流电路,它可以将直流电源的电压转换成交流电,供给交流电动机等负载使用。
桥式无源逆变电路的工作原理是通过控制IGBT的导通和关断时间来生成脉冲调制信号,进而控制IGBT的输出电压波形。
通过合理的波形控制,可以实现直流到交流的转换。
二、IGBT单相桥式无源逆变电路的电路组成1.IGBT模块:IGBT模块由四个IGBT和四个二极管组成,承担了整流和逆变的功能。
2.LC滤波网络:LC滤波网络由电感器和电容器组成,用于平滑逆变后的脉冲信号,使其更接近于纯正弦波。
3.电源:电源为IGBT单相桥式无源逆变电路提供直流信号,可以采用整流桥或直流电源等形式。
4.纯电阻负载:纯电阻负载是指无感性和无容性的负载,用于测试和验证逆变电路的输出波形。
三、IGBT单相桥式无源逆变电路参数的计算1.IGBT参数的计算:IGBT的参数包括额定电压、额定电流、功率损耗等。
根据所需的载波频率、输入电压和输出功率等参数进行计算。
2.LC滤波网络参数的计算:根据所需的输出频率和负载电流等参数,计算出电感器和电容器的数值。
3.电源参数的计算:根据所需的输入电压、输出功率和效率等参数,选择合适的电源。
四、总结IGBT单相桥式无源逆变电路是一种常用的电路,用于将直流电转换成交流电供给负载使用。
本文介绍了该电路的设计原理、电路组成以及相关参数的计算方法。
igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计本文介绍了一种IGBT单相电压型半桥无源逆变电路设计,该电路采用半桥拓扑结构,通过IGBT管控制开关实现正负半周期无源逆变,具有高效、可靠、稳定等优点。
同时,本文还介绍了电路的设计流程和注意事项。
一、电路拓扑结构IGBT单相电压型半桥无源逆变电路采用半桥拓扑结构,如图1所示。
电路中,IGBT1和IGBT2分别代表上管和下管,L1和L2为变压器的两个线圈,C为输出滤波电容。
该拓扑结构有以下优点:1、半桥结构可以避免直流电离子飘移问题,提高电路的可靠性。
2、IGBT管负责开关电流,电压由变压器自行绝缘,可以避免功率管受到高频电磁干扰而损坏的问题。
3、半桥拓扑结构使得电路的效率较高,能够满足高效、小型化的需求。
二、电路设计1、选择IGBT管根据电路的工作电压和电流,选择适合的IGBT管是很重要的。
可以根据功率、电压承受能力、开关速度、漏电流等因素进行选择。
2、选择变压器变压器是半桥无源逆变电路的关键元件之一,变压器的参数需要根据电路需求进行选择。
如果输出功率较大,则需选择大功率变压器;如果需要较小的体积,则可以选择小型化的变压器。
3、选择输出电容电容可以用来过滤输出端的噪声和杂波。
根据输出电压、输出电流等参数选择适合的电容,并确保电容的电压承受能力充足。
4、电路参数计算根据电路的拓扑结构和工作参数,进行电路参数的计算。
需要计算的参数包括变压器的线圈数、电感值、电容容值等。
这些参数的计算需要根据电路需求进行合理设置。
三、注意事项在使用IGBT管时,需要防止温度过高和静电干扰等问题。
建议在使用IGBT管时加装散热器,并采用静电保护措施,以保证管子的正常工作。
总之,IGBT单相电压型半桥无源逆变电路是一种高效、可靠、稳定的电路结构,在工业自动化控制等领域有着广泛的应用。
IGBT单相半桥无源逆变电路设计

《单片机技术》课程设计说明书模板IGBT单相半桥无源逆变电路设计院、部:电子与信息工程学院学生姓名:指导教师:职称:博士专业:自动化班级:完成时间:2013年5月20日摘要本次课程设计的题目是IGBT单相半桥无源逆变电路设计,同时设计相应的触发电路。
根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。
当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。
本次设计中主要由交流电源,整流,滤波和半桥逆变电路四部分构成电路的主电路,驱动电路和驱动电源构成指挥主电路中逆变桥正确工作的控制电路。
设计中使用到的绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。
它是一种典型的全控器件。
它综合了GTR和MOSFET的优点,因而具有良好的特性。
现已成为中、大功率电力电子设备的主导器件。
本文对使用的IGBT单相半桥无源逆变电路进行了波形的仿真和分析。
关键词:IGBT;单相半桥;无源逆变ABSTRACTThe course design is the subject of IGBT single-phase half-bridge passive inverter circuit design, while the design of trigger circuit corresponding. According to the related knowledge of power electronics technology, single-phase bridge inverter circuit is a circuit common, compared with the rectifier circuit, the DC to AC inverter circuit become. When the AC side is connected to the power grid, called active inverter; when the AC side directly and load connected, called passive inverter, the inverter circuit is widely applied in real life.This design is mainly composed of AC power, rectifier, filter and half-bridge inverter circuit four parts of the main circuit circuit, driving circuit and power supply control circuit in the main circuit of inverter bridge command work properly. Insulated gate bipolar transistor to use in design (Insulated-gate Bipolar Transistor), the English abbreviation for IGBT. It is a typical control device. It combines the advantages of GTR and MOSFET, which has a good characteristic. Has now become the leading device, high power electronic equipment. This paper analyzed and simulated waveforms of IGBT single-phase half-bridge inverter circuit using passive.Keywords:IGBT; single-phase half-bridge; passive inverter第一章 系统方案设计及原理1.1 系统方案系统方案如图1所示,在电路原理框图中,交流电源、整流、滤波和半桥逆变电路四个部分构成电路的主电路,驱动电源和驱动电路两部分构成指挥主电路中逆变桥正确工作的控制电路。
电力电子技术课程设计mosfet电压型单相半桥无源逆变电路设计

电力电子技术课程设计一、课程设计的性质和目的1、性质:是电气自动化专业的必修实践性环节。
2、目的:1)培养学生综合运用知识解决问题的能力与实际动手能力;2)加深理解《电力电子技术》课程的基本理论;3)初步掌握电力电子电路的设计方法。
二、课程设计的题目MOSFET电压型单相半桥无源逆变电路设计(阻感性负载)设计条件:(1)输入直流电压:Ui=200V(2)输出功率:500W(3)输出电压波形:1KHz方波三、课程设计的内容,指标内容及要求,应完成的任务1、课程设计的要求1)整流电路的选择2)整流变压器额定参数的计算3)晶闸管(全控型器件)电压、电流额定的选择4)平波电抗器电感值的计算5)保护电路(缓冲电路)的设计6)触发电路(驱动电路)的设计7)画出完整的主电路原理图和控制电路原理图2、指标要求(1)输入直流电压:Ui=200V;(2)输出功率:500W;(3)输出电压波形:1KHz方波。
3、整流电路的选择整流电路选择感容滤波的二极管整流电路,由于电容两端的电压不能突变,故能够保证输出电压为大小恒定的直流电压。
u d波形更平直,电流i2的上升段平缓了许多,这对于电路的工作是有利的。
4、触发电路(驱动电路)的设计实现逆变的主电路中用的是全控型器件MOSFET,触发电路主要是针对它的触发设计,电路的原理图如下图所示。
跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。
这个很容易做到,但是,我们还需要速度。
在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。
对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。
选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。
第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。
而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。
IGBT单相桥式无源逆变电路设计资料

IGBT单相桥式无源逆变电路设计资料1.设计原理2.工作过程当输入电压正半周时,IGBT1和IGBT3导通,IGBT2和IGBT4截至,使得直流电源电压施加在纯电阻负载上,电流从A点流向B点。
当输入电压负半周时,IGBT2和IGBT4导通,IGBT1和IGBT3截至,电流从B点流向A点。
通过周期性地控制IGBT管的导通和截至,可以实现对输入电压的逆变转换。
3.性能分析在纯电阻负载情况下,IGBT单相桥式无源逆变电路具有以下特点:1)输出电压波形基本近似正弦波,谐波含量较低,可以满足很多电器设备对电源质量的要求。
2)输出电压最大值等于输入电压的峰值,输出电压最小值为0,可以满足正负半周的电压需求。
3)输出电压频率与输入电压频率相同,可以匹配大多数电器设备的工作频率。
4)可以通过改变IGBT管的导通时间和导通频率来调节输出电压的大小和频率。
5)由于使用了无源逆变,电路效率较高,损耗较小。
4.应用领域1)智能电网中的逆变器装置,用于将电网交流电转换为直流电,以供给电动汽车等设备使用。
2)变频空调、变频电机等设备的电源模块,用于将输入电源转换为合适的频率和电压,以满足设备的工作要求。
3)太阳能光伏逆变器,将太阳能电池板产生的直流电转换为交流电,以供给电网使用或给其他设备充电。
4)离网系统中的逆变器,用于将微型风力发电机或小型水力发电机产生的直流电转换为交流电,以供给独立的电力系统使用。
总结:IGBT单相桥式无源逆变电路是一种常用的电力转换器,适用于各种领域的电源转换应用。
在纯电阻负载情况下,该电路具有输出电压近似正弦波、频率可调、效率高等特点,因此被广泛应用于智能电网、变频设备、太阳能光伏逆变器和离网系统等领域。
MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计引言无源逆变电路是一种将直流电能转换为交流电能的电路。
其中,MOSFET单相桥式无源逆变电路是一种常用的设计方案。
本文将详细介绍MOSFET单相桥式无源逆变电路的设计。
设计思路MOSFET单相桥式无源逆变电路的设计需要考虑很多因素。
首先,要确定输出交流电的频率和电压,以及所需的输出功率。
其次,要选择合适的MOSFET管件,以确保其能够承受所需的输出功率。
最后,要设计出合适的电路结构和控制策略,以确保电路的稳定运行。
电路结构控制策略为了实现无源逆变电路的正常工作,需要设计合适的控制策略。
一种常用的控制策略是基于PWM(脉冲宽度调制)技术的控制方法。
通过控制上下桥的MOSFET管件的开关频率和占空比,可以实现对输出交流电的频率和电压的调节。
具体的控制策略是,通过对上下桥的交叉触发,控制上下MOSFET管件的开关。
当上半桥导通时,下半桥断开,输出交流电为正半周期;当下半桥导通时,上半桥断开,输出交流电为负半周期。
通过不断交替地进行上下桥的导通和断开,可以实现输出交流电的正常工作。
主要参数的设计在设计MOSFET单相桥式无源逆变电路时,需要确定一些重要的参数。
首先是输入端的直流电压。
根据所需的输出交流电压,可以确定输入端的直流电压。
其次是输出的频率和电压。
根据应用需求,可以指定输出交流电的频率和电压。
最后是输出功率。
根据所需的输出功率,可以选取合适的MOSFET管件。
结果与分析通过对MOSFET单相桥式无源逆变电路的设计,可以得到所需的输出交流电。
通过控制上下桥的MOSFET管件的开关,可以实现对输出交流电的频率和电压的调节。
结论1.唐凤鸣,张仕锁.电力电子器件与电源技术.北京:中国电力出版社,20242.鄂柯.光伏系统无源逆变与控制策略研究.浙江:浙江大学。
IGBT单相桥式无源逆变电路课程设计

IGBT单相桥式无源逆变电路是一种常见的电力电子变换器拓扑结构,广泛应用于各种领域的电力控制和调节中。
本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路结构、控制策略以及性能评估等方面,并通过课程设计来深入理解和实践这一电路的工作机制。
一、设计原理IGBT单相桥式无源逆变电路是一种将直流电压转换为交流电压的电力电子变换器。
其基本工作原理是通过控制IGBT管的导通和关断,调节输出电压的大小和频率,实现对负载端的功率调节。
在正半周和负半周分别通过两个IGBT管来实现电压的逆变,从而产生交流输出。
二、电路结构IGBT单相桥式无源逆变电路主要由四个IGBT管和四个二极管组成,其中两个IGBT管和两个二极管串联构成半桥,两个半桥串联形成全桥结构。
通过PWM控制方法,控制IGBT管的导通和关断,实现对输出电压的调节。
三、控制策略1. PWM控制:采用脉冲宽度调制(PWM)控制方法,通过改变PWM信号的占空比来调节输出电压的大小。
2. 电压闭环控制:通过采集输出电压信号,与设定的参考电压进行比较,控制PWM信号的占空比,实现稳定的输出电压控制。
3. 过流保护:设计合适的过流保护电路,当负载过大时及时切断IGBT 管的导通,以保护设备和负载不受损坏。
四、性能评估1. 效率评估:通过测量输入功率和输出功率,计算电路的效率,评估电路的能量转换效率。
2. 谐波分析:通过示波器等工具对输出波形进行谐波分析,评估谐波含量,检查输出波形的质量。
3. 动态响应:测试电路的动态响应特性,如瞬态响应时间、稳定性等,评估电路的动态性能。
五、课程设计内容1. 电路仿真:使用仿真软件搭建IGBT单相桥式无源逆变电路模型,进行电路仿真分析。
2. 硬件设计:根据电路原理图设计PCB电路板,选取合适的元器件进行电路搭建。
3. 控制程序编写:编写微控制器控制程序,实现对IGBT管的PWM 控制和电压闭环控制。
4. 性能测试与优化:进行电路性能测试,如效率测试、谐波分析、动态响应测试等,根据测试结果进行电路性能优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气与电子信息工程学院计算机控制课程设计设计题目:单相半桥无源逆变电路设计专业班级:电气工程及其自动化2010(专升本)班学号: 201020210128姓名:朱勇同组人:严康孙希凯指导教师:南光群黄松柏设计时间:2011/11/13~2011/11/21 设计地点:电力电子室电力电子课程设计成绩评定表指导教师签字:2011年12 月20 日《电力电子课程设计》课程设计任务书2011 ~2012 学年第1学期学生姓名:朱勇专业班级电气工程及其自动化2010专升本指导教师:南光群、黄松柏工作部门:电气学院电气自动化教研室一、课程设计题目:1. 单相桥式晶闸管整流电路设计2. 三相半波晶闸管整流电路设计3. 三相桥式晶闸管整流电路设计4. 降压斩波电路设计5. 升压斩波电路设计6. 单相半桥无源逆变电路设计7. 单相桥式无源逆变电路设计8. 单相交流调压电路设计9. 三相桥式SPWM逆变器设计二、课程设计内容1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整;2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数;3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。
注:详细要求和技术指标见附录。
三、进度安排2.执行要求电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。
四、基本要求(1)参考毕业设计论文要求的格式书写,所有的内容一律打印;(2)报告内容包括设计过程、电路元件参数的计算、系统仿真结果及分析;(3)要有完整的主电路原理图和控制电路原理图;(4)列出主电路所用元器件的明细表。
(5)参考文献五、课程设计考核办法与成绩评定根据过程、报告、答辩等确定设计成绩,成绩分优、良、中、及格、不及格五等。
六、课程设计参考资料[1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001[2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001[3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001[4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999[5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010指导教师:南光群、黄松柏2011年10月8日教研室主任签名:胡学芝2011年10 月9日摘要电力电子技术的应用已深入到国家经济建设,交通运输,空间技术,国防现代化,医疗,环保和人们日常生活的各个领域。
进入新世纪后电力电子技术的应用更加广泛。
以计算机为核心的信息科学将是21世纪起主导作用的科学技术之一,有人预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学的两大支柱。
电力电子技术是应用于电力领域的电子技术。
具体地说,就是使用电力电子器件对电能进行变换和控制的技术。
通常把电力电子技术分为电力电子制造技术和变流技术两个分支。
变流技术也称为电力电子器件的应用技术,它包括用电力电子器件构成各种电力变换电路和对这些电路进行控制的技术,以及由这些电路构成电路电子装置和电力电子系统的技术。
“变流”不仅指交直流之间的交换,也包括直流变直流和交流变交流的变换。
如果没有晶闸管及电力晶体管等电力电子器件,也就没有电力电子技术,而电力电子技术主要用于电力变换。
因此可以认为,电力电子器件的制造技术是电力电子技术的基础,而变流技术则是电力电子技术的核心。
电力电子器件制造技术的理论基础是半导体物理,而变流技术的理论基础是电路理论。
将直流电转换为交流电的电路称为逆变电路,根据交流电的用途可分为有源逆变和无源逆变。
本课程设计主要介绍单相半桥无源逆变电路。
关键词:整流、无源逆变、晶闸管AbstractThe application of power electronics technology has penetrated into the national economic construction, transportation, space technology, the modernization of national defense, medical, environmental protection and people in all areas of daily life. After entering the new century electric power electronic technology is used more and more widely. Take the computer as the core information science will be twenty-first Century played a dominant role in the science and technology one, somebody is fatidical, power electronics and motion control and computer technology together, will become the two pillars of the future science.The power electronic technology is applied in power electronics technology. Specifically, is the use of power electronic devices for power conversion and control technology. Usually the power electronic technology is divided into power electronics manufacturing technology and variable flow technology in the two branch. Converter technology is also known as the application of power electronic devices technology, it involves the use of power electronic devices of various electric power conversion circuit and the circuit control technology, as well as by the circuit circuit, electronic device and power electronic systems technology. " Flow" refers not only to the exchange between the AC and DC, including DC DC and AC AC converter.If there is no thyristor and power transistors and power electronic devices, there is no power electronic technology, power electronic technology is mainly used for power converter. It can therefore be considered, the power electronic device manufacturing technology is the power of electronic technology foundation, and converter technology is the core of power electronic technology. Manufacture technique of power electronic device is based on the theory of semiconductor physics, and converter technology is based on the theory of circuit theory.Changing DC into AC circuit called the inverter circuit, according to current use can be divided into active and passive inverter inverter.This course is designed to introduce a single-phase half-bridge passive inverter circuit.Key words: passive inverter, rectifier, thyristor目录第一章系统方案设计 (1)1.1 系统方案 (1)1.2 系统工作原理 (1)第二章硬件电路设计与参数计算 (3)2.1 系统硬件连接图 (3)2.2 整流电路设计方案 (3)2.2.1 整流变压器的参数运算 (3)2.2.2 整流变压器元件选择 (4)2.3.3 整流电路保护元件的选用 (5)2.2 驱动电路设计方案 (6)2.2.1 IGBT驱动器的基本驱动性能 (6)2.2.2 驱动电路 (7)2.3触发电路设计方案 (8)第三章 MATLAB仿真 (9)3.1 建立仿真模型 (9)3.2 仿真结果分析 (10)小结 (11)参考文献 (12)附录一:元器件清单 (13)第一章系统方案设计1.1 系统方案系统方案如图1.1所示,在电路原理框图中,交流电源、整流、滤波和半桥逆变电路四个部分构成电路的主电路,驱动电源和驱动电路两部分构成指挥主电路中逆变桥正确工作的控制电路。
其中,交流电源、整流、滤波三个部分的功能分别由交流变压器、全桥整流模块和两个串联的电解电容实现;半桥逆变电路由半桥逆变和缓冲电路构成; 而驱动电源和驱动电路则需要根据实验电路的要求进行搭建。
图1.1 电路原理图1.2 系统工作原理图1.2 电压型半桥逆变电路及其电压电流波形在一个周期内,电力晶体管T1和T2的基极信号各有半周正偏,半周反偏,且互补。