语音信号采集与回放系统

合集下载

音频信号采集回放系统设计与算法优化

音频信号采集回放系统设计与算法优化

音频信号采集回放系统设计与算法优化一、概述音频信号采集回放系统是一种应用广泛的系统,可以用于音乐制作、录音棚、会议室等领域。

本文就音频信号采集回放系统的设计和算法优化进行详细探讨。

二、音频信号采集系统设计音频信号的采集可以通过麦克风、话筒等方式实现。

在设计音频信号采集系统时,需要考虑以下几个方面。

1. 麦克风选择麦克风种类繁多,选择适合自己的麦克风至关重要。

一般可以分为指向性麦克风、全向麦克风、卡夫麦克风等几类。

根据不同的采集环境和需求,选择不同类型的麦克风。

2. 音频接口选择常见的音频接口有USB、Firewire、Thunderbolt等。

需要选择适合的音频接口,并保证音频接口与麦克风的相互兼容性。

3. 驱动程序选择音频设备需要安装相应的驱动程序,以实现采集功能。

驱动程序的稳定性和兼容性非常重要。

4. 采样率和位数选择采样率和位数是影响音频质量的两个重要参数。

在选择时需要根据采集的需求和环境选择。

5. 采集软件选择音频信号采集软件有很多种,需要选择稳定、易用、功能强大的软件,以满足不同的采集需求。

三、音频信号回放系统设计音频信号的回放可以通过扬声器、耳机等方式实现。

在设计音频信号回放系统时,需要考虑以下几个方面。

1. 扬声器选择扬声器种类繁多,选择适合自己的扬声器至关重要。

一般可以分为立体声扬声器和环绕声扬声器等几类。

根据不同的回放环境和需求,选择不同类型的扬声器。

2. 音频接口选择常见的音频接口有USB、Firewire、Thunderbolt等。

需要选择适合的音频接口,并保证音频接口与扬声器的相互兼容性。

3. 驱动程序选择音频设备需要安装相应的驱动程序,以实现回放功能。

驱动程序的稳定性和兼容性非常重要。

4. 回放软件选择音频信号回放软件有很多种,需要选择稳定、易用、功能强大的软件,以满足不同的回放需求。

4. 环境控制音频信号的回放环境也非常重要。

需要保证回放环境安静、不受干扰,以确保音频信号的质量。

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计1. 引言随着科技的不断发展,语音技术也得到了广泛应用。

如今,在很多领域,我们可以看到语音交互的身影。

语音存储与回放系统是语音技术的一个重要应用方向。

本文旨在讨论基于单片机的语音存储与回放系统的设计与实现。

2. 设计目标在开始设计语音存储与回放系统之前,我们首先明确系统的设计目标。

在该系统中,我们希望能够实现以下功能: 1. 采集语音信号并进行存储; 2. 实现语音信号的回放; 3. 提供用户友好的交互界面。

3. 系统设计3.1 硬件设计语音存储与回放系统的硬件设计是实现系统功能的基础。

这里我们选用单片机作为系统的核心控制器,其主要功能包括语音信号的采集、存储与回放。

1. 单片机选择:首先,我们需要选择适合语音处理的单片机。

常用的单片机型号有STM32、Arduino等。

选择单片机时要考虑其性能、成本和易用性等因素。

2. 语音输入与输出:为了实现语音信号的采集与回放,我们需要选择合适的语音输入输出设备,如麦克风和扬声器。

3. 存储器选择:在语音存储与回放系统中,我们需要选择适合存储语音信号的存储器。

可以选择外部存储器,如Flash、SD卡等。

3.2 软件设计语音存储与回放系统的软件设计包括系统的逻辑控制和交互设计。

1. 语音采集与存储:这一部分主要涉及音频采集和存储的算法。

需要设计合适的采样率、量化位数和编码方式等来满足存储与回放的需求。

2. 语音回放:回放语音的过程需要涉及音频解码和输出的算法。

需要设计合适的解码算法以及音频输出的放大电路。

3. 用户交互界面:为了方便用户操作,我们可以设计一个简单的用户交互界面,如按钮、LCD显示屏等。

用户可以通过界面进行语音的录制、回放和设置等操作。

4. 系统实现在完成系统设计后,我们可以开始系统的实现。

实现过程中需要进行硬件的连接和软件的开发。

1. 硬件连接:按照系统设计中的硬件设计要求,将单片机、麦克风、扬声器等硬件设备进行连接。

毕业设计论文(2)数字化语音存储与回放系统设计

毕业设计论文(2)数字化语音存储与回放系统设计

数字化语音存储与回放系统设计摘要本文介绍了一种以单片机为核心控制单元的数字化语音存储与回放系统的组成以及系统软硬件的设计。

该系统的基本原理是对语音信号的录制和回放的数字化控制。

该系统以AT89C52单片机为微处理器,实现对系统的控制以及数据的处理。

系统采用闪存28F512作为外部数据存储器来存放语音数据,以满足能够较长时间存储语音信息。

语音采集部分采用ADC0809进行模数转换,语音回放部分采用DAC0832实现数模转换,并通过键盘等接口电路实现人机交互,单片机工作在中断查询模式,能够快速响应按键要求,以控制信号的采集、存储和回放等。

同时,外围电路辅以带通滤波器和增益、功率放大等电路对信号进行滤波放大,以保证信息的高质量存储与回放。

关键词:数字化存储,回放,数字滤波,采样,模/数转换目录1绪论 (1)1.1课题背景 (1)1.2课题研究的意义 (1)1.3数字化处理的前景 (1)1.4课题任务要求 (2)1.5本文的主要内容 (3)2系统总体方案设计 (4)3硬件部分设计 (7)3.1拾音器 (7)3.2放大器的设计 (7)3.2.1前置增益放大器 (7)3.2.2输出功率放大器 (8)3.3滤波器设计 (9)3.4单片机选型 (12)3.4.1AT89C52介绍 (12)3.4.2引脚简介 (13)3.4.3主要功能及其特性 (14)3.4.4中断 (14)3.5采样保持电路 (15)3.6 D/A转换器DAC0832 (15)3.6.1DAC0832内部结构及引脚 (16)3.6.2 DAC0832工作方式 (16)3.7 A/D转换电路设计 (18)3.7.1 A/ D转换的常用方法 (18)3.7.2 ADC0809的主要特性和结构 (18)3.7.3 ADC0809管脚功能及定义 (19)3.7.4 ADC0809工作方式 (20)3.8键盘电路 (22)3.9存储器的选取 (23)4软件设计 (26)4.1编程工具软件Keil C51 (26)4.2 Protrus软件设计 (26)4.3软件程序的设计 (27)4.3.1程序总体流程图 (27)4.3.2子程序设计 (28)4.3.3系统仿真 (30)5结论 (32)6致谢 (33)参考文献 (34)附录 (36)外文资料 (41)外文翻译 (48)1绪论1.1课题背景语音信号处理是信息科学的一个重要分支,伴随着大规模集成技术的高度发展以及计算机技术的飞速前进,推动了语音信号处理技术的快速发展。

基于单片机的语音存储及回放系统课程设计设计(毕业设计)完整版

基于单片机的语音存储及回放系统课程设计设计(毕业设计)完整版

本文由lazy月如初贡献电子与信息工程学院综合实验课程报告课题名称专班业级基于单片机的语音采集及回放系统设计基于单片机的语音采集及回放系统设计电子信息工程 07 电子 2 班学生姓名学号宋杨指导教师2010 年7月 5日1 总体设计方案介绍:总体设计方案介绍:介绍语音编码方案: 1.1 语音编码方案:人耳能听到的声音是一种频率范围为 20 Hz~20000 Hz ,而一般语音频率最高为 3400 Hz。

语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。

根据“奈奎斯特采样定理”采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为 300~ , 3 400 Hz ,所以把语音采集的采样频率定为 8 kHz。

从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。

但要将之运用于单片机,显然信号波形表示法相对简单易实现。

基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有 VQ 技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。

结合实际情况,提出以下几种可实现的方案。

(1)短时平均跨零记数法不易实现。

(2)实时副值采样法采样过程如图 2.1 所示。

该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。

但对于单片机,由于处理数据能力底,该方法抽样量化存储图 2.1 采样过程具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。

其中第三种实现方法最具特色,该方法可使数据压 1: 4.5,既有 ?M 调制的优点,又同时兼有 PCM 编码误差较小的优点,编码误差不向后扩散。

1.2 A/D、D/A 及存储芯片的选择、单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。

在放音时,只要依原先的采样直经 D/ A 接口处理,便可使原音重现。

DSP语音信号采集与处理回放系统

DSP语音信号采集与处理回放系统

1.4 课题研究的主要内容 涉及内容包括: 熟悉 DSP 的集成开发环境 CCS,了解各芯片的用法和配置连接;分析和比较实现 DSP 语音压缩和解压缩的基本算法和类型, 增加语音压缩程序和解压程序,本课题采用 A 律 压缩和解压;考虑存储空间的大小和未来扩展的问题,添加 EPROM。 功能实现: 通过对 DSP(5402)和语音芯片(AIC23)进行配置,可以实现实时回放功能;通过 HPI 接口进行扩展,利用 A 律对接受和发送的语音信号进行压缩和解压,结合外部存储器对 数据进行存储和处理,从而实现录音和回放功能。
5.4.1 5.4.2 5.4.3
A 律压缩........................................................... 25 A 律压缩原理....................................................... 27 A 律压缩流程图..................................................... 29
5.5 扩展外部储存 ......................................................... 31 第 6 章 调试 .............................................................. 33 6.1 语音采集与实时回放功能调试 .......................................... 33 6.2 语音采集与实时回放系统存储数据调试.................................... 33 总结 ..................................................................... 35 致谢 ..................................................................... 36 参 考 文 献 .............................................................. 37

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计

基于单片机的语音存储与回放系统毕业设计基于单片机的语音存储与回放系统是一种能够实现语音录制、存储和回放功能的设备。

它可以用于各种应用场景,如语音备忘录、语音留言板、语音识别系统等。

该系统的设计需要完成以下关键功能:1. 语音录制:通过麦克风或其他输入设备采集语音信号,并将其转换为数字信号。

可以使用ADC模块将模拟信号转换为数字信号。

2. 存储功能:设计合适的存储器,如EEPROM或Flash存储器,用于存储采集到的语音信号。

存储器的容量应根据实际需求确定,并能够支持快速的读写操作。

3. 控制功能:设计合适的控制电路,通过按键或其他输入设备实现对语音录制和回放功能的控制。

可以使用GPIO口或外部中断等方式实现按键输入的响应。

4. 回放功能:设计合适的音频输出电路,将存储的语音信号转换为模拟信号,并通过扬声器或耳机输出。

可以使用DAC模块将数字信号转换为模拟信号。

5. 用户界面:设计合适的显示屏幕和操作界面,用于显示当前状态和操作指令。

可以使用LCD显示屏和按键等设备实现用户交互。

在设计过程中,需要考虑系统的实时性、容错性和稳定性。

同时,还需要进行适当的电路布局和信号处理,以减少噪音和干扰对语音信号的影响。

在编程方面,可以使用C语言或汇编语言编写程序,实现语音录制、存储和回放的功能。

需要考虑存储器的管理和控制、按键输入的处理、音频数据的处理等方面。

最后,还需要进行系统的测试和调试,确保系统的稳定性和功能完整性。

可以通过模拟语音信号进行录制和回放测试,检查系统的录制和回放效果是否符合要求。

综上所述,基于单片机的语音存储与回放系统的毕业设计需要涉及硬件电路设计、嵌入式软件编程和系统测试等多个方面的知识和技能。

需要深入理解语音信号处理、存储器管理和控制、电路设计和嵌入式系统等知识,并具备一定的创新能力和解决问题的能力。

音频信息采集与回放系统的实现

音频信息采集与回放系统的实现
[11] Jin Ah Kang.A Cross-Layer PLC Algorithm for a Real-time AudioConferencing System.Advanced Communication Technology, 10th International Conference.2008,16(2):17-20.
本次毕业设计中用到Wolfson公司的WM8731语音编解码芯片,课题需要在FPGA平台上对语音有效信号进行采集已备后续的压缩编码,同时需将采集到信号进行存储并实现回放。
二、设计要求
(1)掌握EDA等的相关课程,具备阅读英文数据手册的能力。
(2熟悉I2C总线工作方式,充分运用WM8731的技术参数,熟悉语音采样量化过程,存储过程,完成系统总体结构的设计。
附件A:
毕业设计(论文)任务书
设计(论文)中文题目:音频信息采集与回放系统的实现
设计(论文)的主要内容与要求:
一、主要内容
随着语音识别技术的应用越来越广,对其实时性的要求也越来越高。专用的DSP语音芯片虽然有硬件加速功能,但其指令依然是串行计算,在实时性方面有所欠缺。如今,具有并行运算能力的FPGA主频不断提高,加上其设计灵活、功耗低、体积小等优点,可以满足语音信号实时处理的要求。目前很多语音处理算法都是基于软件平台的,真正的语音处理硬件实现很少。
说明:
1、任务书由指导教师填写,于第七学期(五年制第九学期)期末前下达给学生。
2、学生签字时间就是任务下达时间(学生接受任务时间)。
[10] Chen E.Y.Digital Audio Radio-An Application of Audio Compression Technology[J].Industrial Technology,ProceedingsofTheIEEEInternationalConference,1996,6(2):796-800

语音信号采集与回放系统设计(FPGA)

语音信号采集与回放系统设计(FPGA)

数字化语音存储与回放系统 实验指导一、 数字语音处理1、 语音信号的采样(1)采样频率人耳可听到20Hz ~20KHz 的声音,但实际上人说话的声音带宽主要集中在300Hz ~3400Hz ,如电话线的带宽一般约为3KHz 。

根据采样定理,语音信号的采样频率应为语音带宽的2倍以上,对于300Hz ~3400Hz 的语音带宽,取采样频率为fs=8KHz 。

(2)平顶采样实际系统中的语音采样脉冲有一定的持续时间,即属于平顶采样。

如下图:(Ts 为采样间隔,τ为采样保持时间)平顶采样可以看成是理想采样后,再经过一个冲激响应是矩形的网络来形成的:stx(t)δ(t)不难进行下述推导: xs(t)= x(t)δ(t)= x(t)∑∞−∞=−n nTs t )(δ xsf(t)= xs(t)*h(t)==τττd t h xs )()(−∫∞∞−∑∞−∞=−n nTs t h nTs x )()(xsf(t)的频谱为: Xsf(ω)= Xs(ω)H(ω)=∑∞−∞=−n Ts H s n X /)()(ωωω 矩形脉冲的H(ω)= A τ2/)2/sin(ωτωτXsf(ω)= TsA τ∑∞−∞=−n s n X 2/)2/sin()(ωτωτωω由此可以看出,平顶采样时,加权项2/)2/sin(ωτωτ使信号频谱发生了变化,造成语音信号高频分量有部分损失,语音回放时失真。

实际PCM 系统中,均采用采样保持电路来提高输出信号的强度,为得到最大输出信号,通常取τ=Ts 。

Xsf(ω)= A∑∞−∞=−n Ts Ts s n X 2/)2/sin()(ωωωω加权项为:fsf fs f /)/sin(ππ分析该加权项:对fs=8KHzf=0时 ~ 0dB ; f=300Hz 时 ~ -0.02dB ; f=3400Hz 时 ~ -2.75dB 为了抵消平顶采样所产生的这种孔径失真,语音回放端需采用响应为)/sin()/(fs f fs f ππ的滤波网络进行频谱补偿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子与信息工程学院 综合实验课程报告课题名称 语音采集及回放系统设计专 业 电子信息工程班 级 07电子2班学生姓名 Y Y Y学 号 07002指导教师 X X X2010年 7月 5日1 总体设计方案介绍:1.1语音编码方案:人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。

语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。

根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。

从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。

但要将之运用于单片机,显然信号波形表示法相对简单易实现。

基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。

结合实际情况,提出以下几种可实现的方案。

(1)短时平均跨零记数法该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。

但对于单片机,由于处理数据能力底,该方法不易实现。

(2)实时副值采样法采样过程如图2.1所示。

图2.1 采样过程具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。

其中第三种实现方法最具特色,该方法可使数据压1:4.5,既有M∆调制的优点,又同时兼有PCM编码误差较小的优点,编码误差不向后扩散。

1.2 A/D、D/A及存储芯片的选择单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。

在放音时,只要依原先的采样直经D/ A 接口处理,便可使原音重现。

(1)A/D转换芯片的选择根据题目要求采样频率f s=8K H Z,字长=8位,可选择转换时间不超过125s的八位A/D转换芯片。

目前常用的A/D转换实现的方法有多种,鉴于转换速度的要求,我们采用A/D转换芯片A D574。

该芯片是高速12位逐次比较型A/D转换器,内置双极性电路构成的混合集成转换显片,具有外接元件少,功耗低,精度高等特点,并且具有自动校零和自动极性转换功能,只需外接少量的阻容件即可构成一个完整的A/D转换[5]。

(2)D/A转换芯片的选择 D/A转换芯片的作用是将存储的数字语音信号转换为模拟语音信号,由于一般的模拟转换器都能达到1μs的转换速率,足够满足题目的要求,故我们在此选用了通用D/A转换器D A C0832。

(3)数据存储器的选择 当采样频率ƒs=8KHZ,字长为8位时,一秒钟的语音需要8K字节的存储空间,则存储器至少需要有80k8×容量。

在这里我们选用闪速存储器A T29C040作为存储器,一片该芯片可存储60秒钟的语言。

1.3系统总体结构数字化语音存储与回放系统的基本思想是通过拾音器将声音信号转化成电信号,再经过放大器放大,然后通过带通滤波器滤波,模拟语音信号通过模数转换(A/D)转换成数字信号,再通过单片机控制将数据从存储器中读出,然后通过数模转换(D/A)转换成模拟信号,经放大再扬声器或耳机上输出。

整个系统框架图如图3.1所示:图3.1 整体框图系统组成如图所示,由输入通道、A T89C51单片机和输出通道三部分组成。

输入通道部分由拾音器、前置放大电路和带通滤波器组成;输出通道由带通滤波器、后级放大电路组成[9]。

拾音器输出的毫伏信号实测其范围约为20~25mV,此电信号太小不能够进行采样,后级A/D转换输入信号的动态范围为0~5V,语音信号的范围与采样范围的比较得出放大器的放大倍数应为200倍左右,此处将信号通过一增益为46dB的放大器,将其放大到伏特量级,输出级放大电路亦采用这种电路,两级放大电路都采用增益可调的典型电路。

考虑到语音信号的固有特点,将低于300Hz和高于3.4kHz的分量滤掉后语音质量仍然良好。

此处将其通过一增益为46dB的放大器,因此,将带通滤波器设计为典型的300Hz~3.4kHz,输出级带通滤波器亦为300Hz~3.4kHz,这样既可滤掉低频分量又可滤掉D/A转换带来的高频分量,很好的滤除掉噪声。

根据奈奎斯特抽样定理知欲使采样信号无失真,抽样频率最低为 6.8kHZ,考虑到留有一定的余地,这样就足够保证语音质量。

经量化后,微处理器将数据存到处理器,需要时再将其回放,存入与放出由开关通过微处理器来控制实现。

存储器的容量选择视所存语音信号的时间长短而定。

为了使A/D的输入信号稳定在其动态范围内,在输入级加上了自动增益控制电路,同时也使音量稳定。

2硬件电路设计:2.1拾音器拾音器是一种声传感器,声传感器是把外界声场中的声信号转换成电信号的传感器。

它在通讯、噪声控制、环境检测、音质评价、文化娱乐、超声检测、水下探测和生物医学工程及医学方面有广泛的应用[10]。

它的种类很多,按其特点和频率等,将它划分为超声传感器、声压传感器和声表面波传感器等。

单纯的磁性拾音器工作的电学原理为当声音在铜丝绕制的线圈内震动切割被该线圈所缠绕的磁芯产生的磁感线时,线圈内感应出电信号并流出。

感应电流的强弱取决于切割磁感线的多寡(振幅)、切割频率(震动频率)和磁感线自身的强弱。

拾音器包括拾音头(换能装置、唱针)和音臂等附件。

其换能装置主要有压电式、电磁式、电容式以及半导体等[11]。

电磁式拾音头,用电磁感应原理,将机械振动变换成电信号的幅度响应拾音头。

主要由线圈和磁钢等组成。

唱针耦合在线圈上的称动圈式,耦合在磁钢上的称动磁式。

此外,也有将唱针耦合在衔铁上的称为动铁式,也称可变磁阻式。

在本设计中决定采用动圈式拾音器2.2放大器的设计(1)增益放大器 拾音器输出的毫伏信号实测其范围约为20~25Mv 此电信号太小不能够进行采样,后级A/D 转换输入信号的动态范围为0~5V ,语音信号的范围与采样范围的比较得出放大器的放大倍数应为200倍左右,此处将信号通过一增益为46dB 的放大器,将其放大到伏特量级,输出级放大电路亦采用这种电路,两级放大电路都采用增益可调的典型电路[12]。

为了将从拾音器获得的微弱语音信号放大,采用两极高输入阻抗的同向放大器,电路图如图所示,每级放大器的放大倍数按下式计算:311/1R R A P V +=522/1R R A P V +=M图4.1 增益放大器(2)输出放大器 经带通滤波器输出的声音回放信号,其幅度为0~5V ,足以用耳机来接收听,可不接任何放大器。

但考虑到实际中经常回用到喇叭外放,故在本系统中增加外放功能,前端放大器采用通用型音频功率放大器LM386来完成[13]。

电路如图4.1。

该电路增益为50~200,连续可调,最大不失真功率为325mW 。

输出端接C4、R9串联电路,以校正喇叭的频率特性,防止高频自激.脚7接220uF 去偶电容,以消除低频自激.为便于该功放在高增益情况下工作,这里将不使用输入端脚2对地短路.图4.2 输出放大器2.3有源带通滤波器设计滤波器是一种能使有用频率信号通过同时抑制(或大为衰减)无用频率信号的电子装置。

工程上常用它来作信号处理、数据传输和抑制干扰等。

这里主要讨论模拟滤波器。

以往这种滤波电路主要采用无源元件R 、L 和C 组成,60年代以来,集成运放获得了迅速发展,由它和R 、C 组成的有源滤波电路,具有不用电感、体积小、重量轻等优点[14]。

此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗又底,构成有源滤波电路后还具有一定的电压放大和缓冲作用。

但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以作的很高,这是它的不足之处。

对于幅频响应,通常把能够通过的信号频率范围定义为通带,而把受阻和衰减的信号频率范围定义为阻带,理想滤波电路在通带内应具有零衰减的幅频响应和线形的相位响应,而在阻带内应具有无限大的幅度衰减(()0=ωj A )。

按照通带和阻带的相互位置不同,滤波器可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器。

通常用幅频响应来表征一个滤波器的特征,欲使信号通过滤波器的失真很小,则相位和延时响应亦须考虑。

当相位响应()ωϕ作线性变化,即时延响应()ωτ为常数时,输出信号才可能避免失真。

()()()s V s V s A 10=,()()e j A j A ωω=()ωϕj (s=ωj )这里()ωj A 为传递函数的模,()ωϕ为其相位角。

延时向量()ωτ: ()())s d d ωϕωτ−= 声音信号经动圈拾音器转有源滤波器换成电压信号,通过前级放大,在对其进行数据采集之前,有必要经过带通滤波器除带外杂波,选定该滤波器的通带范围为300Hz~3.4KHz.其作用是:1.保证300~3400Hz 的语音信号不失真的通过滤波器;2.滤除带外的低频信号,以减少带外功频等分量的干扰,大大减少噪声影响,该下限频率可下延到270Hz 左右;3.便于滤除带外的高次谐波,以减少因8kHz 采样率而引起的混叠失真,根据实际情况,该上限频率可在2700Hz 左右,带通滤波器按品质因数Q 的大小为窄带滤波器(Q>10)和带通滤波器(Q<10两种,本题中,上限频率fh=3400Hz,通带滤波器中心频率f0与品质因数Q分别为 f0=1FhF 3003400×=1010Hz Q=326.0100=−=f Fh F BW F 显然,Q <10,故该带通滤波器为宽带带通滤波器.带宽带通滤波器由高通和低通滤波器级联构成,鉴于Butterworth 滤波器带内平坦的响应特性,我们选用二阶Butterworth 带通滤波器,电路如图4.3所示.实验证明,该滤波器能有效的滤除低频分量,大大减少噪声干扰,与之同时也绿除了多余的高频分量,消除了高频失真,性能足以满足要求[15]。

图4.4 带通滤波器2.4可调稳压电源的设计这里介绍的稳压电源,采用三端可调稳压集成电路LM317,外围电路十简单,便于制作。

该稳压电源,电压可调范围1.5~25V ,最大负载电流1.5A [16]。

电路如图4.4所示:220V 交流电经变压器T 降压,得到24V 交流电,再经VD1~VD4组成的全桥整流,由C1滤波后得到33V 左右的直流电压[17]。

该电压经集成电路LM317后得稳压输出,调节电位器RP ,即可连续调节输出电压。

图中C2用以消除寄生振荡,C3的作用是抑制纹波,C4是用以改善稳压电源的的暂态响应,VD6、VD7在输出端电容漏电或调整端短路时起保护作用。

VD5为本电源的工作指示灯,电阻R1是限流电阻。

输出端接微型电压表PV ,可以直观的指示输出电压值。

相关文档
最新文档