摄像头镜头参数概念-sensor分析

合集下载

第6课:手机照相模组之Sensor介绍

第6课:手机照相模组之Sensor介绍
Complementary Metal-Oxide Semiconductor 互補性氧化金屬半導體 材料:矽和鍺合成半導體 作用:記錄光線變化 原理:在COMS上共存着帶+電和-電的半導體,這兩个互補效應所產生的電流即可
被處理晶片記錄和解讀成像。 優缺點:成本低,耗電量小,便於製造,可與影響處理電路同處於一个晶片上,但
Normal Image
Noise Image
3 Sensor 特性-SNR
Ⅱ.SNR Methodology
The SNR is defined mathematically as
* Where pixel is the mean value over all pixels and all frames and σi,j is the standard deviation of the value of the pixel at coordinated (i,j) over all frames
Ⅱ. Flicker產生的原因
產生Flicker的根本原因是不同pixel接受到的光能量不同,也就是影像的亮度的不同所 導致。電源的頻率有兩種標準:50Hz(大陸)和60Hz(臺灣、日本)的正弦波形,對應的 能量一個頻率為100Hz和120Hz的波形(如下圖所示) , 由於能量在時間方向上的波形, 照在 Sensor 上就使每一個 pixel 產生在時間方向上的相應波形,由於 CMOS Sensor 的 曝光方式是一行一行的方式進行的,也就是同一行上的每個pixel 的曝光開始點和曝光的時 間都是一樣的,所以同一行的所有點所接受到的能量是一樣的。而在不同行之間雖然曝光 時間都是一樣的,但是曝光的開始點是不同的,所以不同行之間所接受到的能量是不一定 相同的,由此導致影像出現 Flicker。

摄像头镜头参数概念,sensor简介分析

摄像头镜头参数概念,sensor简介分析

16
二.Sensor
灵敏度(摄像头的光电转换能力)
拍摄运动物体或者弱光情况下,灵敏度越高越好,但灵敏度过高时,图像噪 音信号较多, 清晰度可能会下降,影响画质。
17
二.Sensor
白平衡(传感器对在光线不断变化环境下的色彩准确重现的能力表示)
人眼所见到的白色或其他颜色同物体本身的固有色、光源的色温、物体的反 射或透射特性、人眼的视觉感应等诸多因素有关
7
一.Lens基本参数MTF与SFR Nhomakorabea8
一.Lens基本参数
畸变(Distortion)
物体通过光学系统后实际像高与理想像高的差值
若物点离开光轴越远,放 大率越大,就产生正畸变, 如果物点离开光轴越远, 放大率越小则产生负畸变
畸变只影响图形的变形,并不影响画面清晰度,但却影响像的真实度
9
一.Lens基本参数
二.Sensor
信噪比(SNR):反映摄像机成像的抗干扰能力;反应在画质上就是画面是否 干净无噪点。 上电过程中机体升温效应,CCD或COMS上的残留能量以致于机身零部件本身 等,甚至来自外界的电磁波干扰都有可能引起画面噪声增大
(规格书上SNR的数据仅供参考:与测试环境,方法,解析软件,人为等均有 一定关系)
5
一.Lens基本参数
景深:指在被摄物体聚焦清楚后,在物体前后一定距离内, 其影像仍然清晰的范围
6
一.Lens基本参数
MTF(光学传递函数):常常用于光学系统 描述镜头的分辨能力,数值上为像的对比度与物的对比度的 比值
SFR(空间频率响应):常常用于成像系统 1mm的宽度中所能分辨的线对数
每一个空间频率下对应一个MTF值,MTF介于0-1之间

CMOS-Sensor的调试经验分享

CMOS-Sensor的调试经验分享

CMOS-Sensor的调试经验分享CMOS Sensor的调试经验分享我这里要介绍的就是CMOS摄像头的一些调试经验。

首先,要认识CMOS摄像头的结构。

我们通常拿到的是集成封装好的模组,一般由三个部分组成:镜头、感应器和图像信号处理器构成。

一般情况下,集成好的模组我们只看到外面的镜头、接口和封装壳,这种一般是固定焦距的。

有些厂商只提供芯片,需要自己安装镜头,镜头要选择合适大小的镜头,如果没有夜视要求的话,最好选择带有红外滤光的镜头,因为一般的sensor都能感应到红外光线,如果不滤掉,会对图像色彩产生影响,另外要注意在PCB设计时要保证镜头的聚焦中心点要设计在sensor的感光矩阵中心上。

除了这点CMOS Sensor硬件上就和普通的IC差不多了,注意不要弄脏或者磨花表面的玻璃。

其次,CMOS模组输出信号可以是模拟信号输出和数字信号输出。

模拟信号一般是电视信号输出,PAL和NTSC都有,直接连到电视看的;数字输出一般会有并行和串行两种形式,由于图像尺寸大小不同,所要传输的数据不同,数据的频率差异也很大,但是串行接口的pixel clock频率都要比并行方式高(同样的数据量下这不难理解),较高的频率对外围电路也有较高的要求;并行方式的频率就会相对低很多,但是它需要更多引脚连线;所以这应该是各有裨益。

(笔者测试使用的系统是8bit并行接口)另外输出信号的格式有很多种,视频输出的主要格式有:RGB、YUV、BAYER PATTERN等。

一般CMOS Sensor 模组会集成ISP在模组内部,其输出格式可以选择,这样可以根据自己使用的芯片的接口做出较适合自己系统的选择。

其中,部分sensor为了降低成本或者技术问题,sensor部分不带ISP或者功能很简单,输出的是BAYER PATTERN,这种格式是sensor的原始图像,因此需要后期做处理,这需要有专门的图像处理器或者连接的通用处理器有较强的运算能力(需要运行图像处理算法)。

摄像头的镜头及感光芯片

摄像头的镜头及感光芯片

摄像头的镜头、主控芯片和感光芯片分类作者: 日期: 2009-12-03摄像头的品质从硬件上来说主要是:镜头、主控芯片与感光芯片。

1、镜头(LENS)五层“全玻”,也算目前顶级的摄像头镜头了。

镜头的组成是透镜结构,由几片透镜组成,一般有塑胶透镜(plastic)或玻璃透镜(glass)。

通常摄像头用的镜头构造有:1P、2P、1G1P、1G2P、2G2P、4G等。

透镜越多,成本越高;玻璃透镜比塑胶贵。

因此一个品质好的摄像头应该是采用玻璃镜头,成像效果就相对塑胶镜头会好。

现在市场上的大多摄像头产品为了降低成本,一般会采用塑胶镜头或半塑胶半玻璃镜头(即:1P、2P、1G1P、1G2P等)。

2、感光芯片(SENSOR)是组成数码摄像头的重要组成部分,根据元件不同分为CCD(Charge Coupled Device,电荷耦合元件)应用在摄影摄像方面的高端技术元件。

CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)应用于较低影像品质的产品中。

目前CCD元件的尺寸多为1/3英寸或者1/4英寸,在相同的分辨率下,宜选择元件尺寸较大的为好。

CCD的优点是灵敏度高,噪音小,信噪比大。

但是生产工艺复杂、成本高、功耗高。

CMOS的优点是集成度高、功耗低(不到CCD的1/3)、成本低。

但是噪音比较大、灵敏度较低、对光源要求高。

在相同像素下CCD的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。

而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好。

所以我们在使用摄像头,尤其是采用CMOS芯片的产品时就更应该注重技巧:首先不要在逆光环境下使用(这点CCD同),尤其不要直接指向太阳,否则“放大镜烧蚂蚁”的惨剧就会发生在您的摄像头上。

其次环境光线不要太弱,否则直接影响成像质量。

克服这种困难有两种办法,一是加强周围亮度,二是选择要求最小照明度小的产品,现在有些摄像头已经可以达到5lux。

关于Sensor的一些术语

关于Sensor的一些术语

图像术工光区完整像传感器的功工艺上有前照一、图像传COB 封装的图像传感器区域是单像素整的画面。

功能是光电转照式(FSI)、传感器架构的图像传感器器从外观看分素阵列,由多转换。

关键的背照式(B 器绑定金线分感光区域多个单像素点的参数有像素BSI)、堆栈式线后示意(Pixel Arr 点组成。

每个素、单像素尺式(Stack)ray),绑线个像素获取的尺寸、芯片尺等。

以下简Pad,内层电的光信号汇集尺寸、功耗简单介绍。

电路和基板集在一起时组。

技。

感组成镜修头的部通光区理和 CMOS 芯片CMOS 芯片由于光线进修正光线角度的CRA 保持电路架构上通常包含有电区域(Pixel A 和一定的编码片由微透镜层片剖面图进入各个单像度,使光线垂持在一点的偏上,我们加入电源、数据、Array)将光码后通过数据层、滤色片像素的角度不垂直进入感光偏差范围内。

入图像传感器时钟、通讯光信号转换为据接口将电信片层、线路层不一样,因此光元件表面。

器是一个把光讯、控制和同为电信号后信号输出。

层、感光元件此在每个单像。

这就是芯光信号转为电同步等几部分,由暗盒中的件层、基板层像素上表面增片CRA 的概电信号的暗盒分电路。

可以的逻辑电路将层组成。

增加了一个微概念,需要与盒,那么暗盒以简单理解将电信号进行微透与镜盒外为感行处20M 1/2 微米整体一个 友们二、图像传1.像素:指M,像素越多2.芯片尺寸.3inch 等。

3.单像素尺米,1.34微米体性能就相对个相当关键的其他更深入们可以研究探传感器关键参指感光区域内多,拍摄画面寸:指感光区域芯片尺寸越尺寸:指单个米,1.5微米对较高,最终的参数。

入的参数比如探讨。

参数内单像素点的面幅面就越大域对角线距越大,材料成个感光元件的米等。

开口尺终拍摄画面的如SNR,Se 的数量,比如大,可拍摄距离,通常以英成本越高。

的长宽尺寸尺寸越大,单的整体画质相ensitivity,如5Maga 摄的画面的细英制单位表示,也称单像单位时间内进相对较优秀。

CameraSensor基础知识

CameraSensor基础知识

CameraSensor基础知识1. 感光原理Camera Sensor是由数百万上千万数量⼩⽅块的CCD或CMOS感光元件(简称像素),以平⾯阵列⽅式排列组成,其感光原理是于感光元件表层上整合RGB(红、绿、蓝)三原⾊的滤镜,通过对⼀个⼀个的感光点对光进⾏采样和量化形成图像。

Sensor中每⼀个感光点只对应⼀个彩⾊滤光⽚,因此只能感光RGB中的⼀种颜⾊。

通常所说的30万像素或130万像素等,指的是有30万或130万个感光点。

如果⼀台拥有⼀千⼆百万像素的数码相机,明显地就是最少12,000,000⼩⽅块的感光元件了Sensor的彩⾊滤镜阵列元件,基本上是采⽤了Bayer图样(RGRG/GBGB排列如上图)的排列⽅式,实现RGB三原⾊滤镜依序,以Striped Array(条状阵列)形式,红、蓝、绿相互交替,各施其职,分别去 "捕捉" 三原⾊的光能量。

以光学的⾓度⽽⾔,应该说成是光线通过镜头的不同镜⽚组,投射抵达⾄整合了Bayer图样的条状阵列RGB滤镜的图像传感器,⽽图像传感器记录了进光量的电荷,转成数字参数,成为了RAW⽂件的图像信息即RAW DATA。

绿⾊滤镜元件,是红、蓝的2倍,只因⼈类眼睛识别颜⾊不是线性的,我们的眼睛对于绿⾊,显然是⽐较敏感。

因此护眼常识都在⿎励⼈们多看绿⾊的缘故。

理论上RGB的3原⾊滤镜数量⽐例是1: 2: 1。

Bayer RGB是属于 RGB RAW data的,但是 RGB RAW data不⼀定是Bayer pattern。

Sensor输出的RAW格式图像⼤⼩取决于⾃⾝特性与配置,例如某款Sensor配置为10-bit RGB RAW并且图像尺⼨为1024*768,那么单帧图像⼤⼩为1024*768*10bit=7680kb。

当然也有些Sensor内置格式转换单元,可以直接输出YUV数据或者RGB数据。

2. 输出接⼝-DVPDVP(Digital Video Port)是传统的sensor输出接⼝,采⽤并⾏输出⽅式,数据位宽有8bit、10bit、12bit、16bit等,是CMOS电平信号(重点是⾮差分信号)。

摄像头-Camerasensor基本知识

摄像头-Camerasensor基本知识

摄像头-Camerasensor基本知识⼀、Camera ⼯作原理介绍1. 结构 .⼀般来说,camera 主要是由 lens 和 sensor IC 两部分组成,其中有的 sensor IC 集成 了 DSP,有的没有集成,但也需要外部 DSP 处理。

细分的来讲,camera 设备由下边⼏部 分构成: b$ w6 [# i& q% p* E1) lens(镜头) ⼀般 camera 的镜头结构是有⼏⽚透镜组成,分有塑胶透镜(Plastic)和玻璃透 镜(Glass) ,通常镜头结构有:1P,2P,1G1P,1G3P,2G2P,4G 等。

2) sensor(图像传感器) Senor 是⼀种半导体芯⽚,有两种类型:CCD 和 CMOS。

Sensor 将从 lens 上传导过来的光线转换为电信号, 再通过内部的 AD 转换为数字信号。

由于 Sensor 的每个 pixel 只能感光 R 光或者 B 光或者 G 光, 因此每个像素此时存贮的是单⾊的, 我们称之为 RAW DATA 数据。

要想将每个像素的 RAW DATA 数据还原成三基⾊,就需要 ISP 来处理。

3)ISP(图像信号处理) 主要完成数字图像的处理⼯作,把 sensor 采集到的原始数据转换为显⽰⽀持 的格式。

2 {4 w# {. R- z% Y4)CAMIF(camera 控制器) 芯⽚上的 camera 接⼝电路,对设备进⾏控制,接收 sensor 采集的数据交给 CPU,并送⼊ LCD 进⾏显⽰。

2. ⼯作原理 . & W* e" B3 D6 O) |4 k外部光线穿过 lens 后, 经过 color filter 滤波后照射到 Sensor ⾯上, Sensor 将从 lens 上传导过来的光线转换为电信号,再通过内部的 AD 转换为数字信号。

如果 Sensor 没有集 成 DSP,则通过 DVP 的⽅式传输到 baseband,此时的数据格式是 RAW DATA。

背照式CMOS SENSOR解析

背照式CMOS SENSOR解析

时代发展,技术进步。

数码相机的各种新技术层出不穷,导致消费者面对厂家宣传或者是相机参数列表中的一些专业词汇,一般都会感到非常难于理解,以致影响到购机前的判断。

所以我们数码相机频道特撰写“拒绝专业术语”系列文章,力求用通俗易懂的文字为各位网友解释常见又不太易懂的数码相机技术专业术语,让大家在购机前能清楚明白相关技术。

本期就为大家讲解一下现在出现率颇高的“背照式CMOS传感器”,分析一下此技术是好是坏。

照片怎么来的?相机的本质价值就在于把我们人眼能看到的景象转化成可以保存欣赏的平面图像,把辗转即逝的瞬间变成永恒。

在另一个角度来看,这是一种能量流动的方式,相机所做的工作就是将光能转化到介质上转化为信息存储起来。

其中胶片相机成像是依靠卤化银晶体的化学特性,即遇光就会发生化学变化,再通过冲洗等一系列过程得到影像,具体的细节本文不展开。

科技发展到了数码化的时代,照片的存储最终是以数字的格式,即是一连串的数值组成的文件。

那究竟从自然界的光到数码图片文件,中间要经过怎么样的处理过程呢?数码照片是一些电路和软件计算出来的结果照片要以数码的方式来表现,一个非常重要的步骤就是量化,也就是说我们需要将自然界的景象转换成一种可以用数值精确衡量的方式来表达。

实际上量化过程的核心部件是影像传感器,它可以将传到它身上的不同强弱、不同颜色的光线,通过转化成可以感光二极管(photodiode)进行光电转换成电荷或者是电压信息,整个图像传感器点阵上所有的信息出来再到处理芯片生成数字格式的图片。

CCD传感器和CMOS传感器而现在普遍使用的两种图像传感器就是大家经常听说到的CMOS和CCD传感器了,为了让大家最终更好地认识背照式CMOS传感器,小编在此也简单说一下两种传感器的异同以及优缺点。

如下图所示,左边为CCD传感器的结构,右边的为CMOS传感器的机构,黄色的小方块为像素点。

由图示可以看出,CCD传感器中每一行中每一个象素的电荷数据都会依次传送到下一个象素中,由最底端部分输出,再经由传感器边缘的放大器进行放大输出;而在CMOS传感器中,每个象素都会邻接一个放大器及A/D转换电路,用类似内存电路的方式将数据输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档