高三理科数学期末试卷及答案

合集下载

高三理科数学试题及答案

高三理科数学试题及答案

高三理科数学试题及答案一、选择题(每题4分,共40分)1. 函数y=\(\frac{1}{x}\)的图象在第一象限内是()A. 递增函数B. 递减函数C. 先递增后递减D. 先递减后递增2. 已知向量\(\vec{a}=(3,-2)\),\(\vec{b}=(2,3)\),则\(\vec{a}\cdot\vec{b}\)的值为()A. -5B. 5C. 13D. -133. 已知双曲线的方程为\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\),其中a>0,b>0,若该双曲线的渐近线方程为y=±\(\frac{b}{a}\)x,则该双曲线的离心率为()A. \(\sqrt{2}\)B. \(\sqrt{3}\)C. \(\sqrt{5}\)D. 24. 已知函数f(x)=x^3-3x+1,若f(x)在区间(1,2)内有零点,则零点的个数为()A. 0B. 1C. 2D. 35. 已知等比数列{an}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()A. 63B. 77C. 84D. 1266. 已知直线l的方程为y=kx+b,若直线l过点(1,2)且与直线y=-2x 平行,则直线l的方程为()A. y=-2x+4B. y=-2x+3C. y=2x-1D. y=2x+17. 已知函数f(x)=\(\ln(x+\sqrt{x^2+1})\),若f(x)在区间(0,+∞)上单调递增,则该函数的值域为()A. (0,+∞)B. (-∞,+∞)C. [0,+∞)D. R8. 已知抛物线C的方程为y^2=4x,若直线l与抛物线C相切,则直线l的斜率的取值范围为()A. (-∞,0]B. (0,+∞)C. [0,+∞)D. R9. 已知椭圆E的方程为\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),其中a>b>0,若椭圆E的离心率为\(\frac{\sqrt{2}}{2}\),则椭圆E 的短轴长为()A. \(\sqrt{2}\)B. 1C. 2D. \(\sqrt{3}\)10. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为()A. \(\frac{7}{20}\)B. \(\frac{7}{15}\)C. \(\frac{7}{12}\)D. \(\frac{7}{10}\)二、填空题(每题4分,共20分)1. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为\(\frac{7}{20}\)。

高三数学试卷理科及答案

高三数学试卷理科及答案

一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。

A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。

A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。

A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。

A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。

A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。

A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。

A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。

A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。

A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。

A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。

内蒙古阿拉善盟2022-2023学年高三上学期期末考试理科数学试题及答案解析

内蒙古阿拉善盟2022-2023学年高三上学期期末考试理科数学试题及答案解析

内蒙古阿拉善盟第一中学2022-2023学年高三上学期期末考试理科数学试题及答案解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.记集合{|||2}M x x =>,(){}2|ln 3N x y x x==-,则M N = ()A.{}32≤<x x B.{|3x x >或2}x <-C.{}20<≤x x D.{}32≤<-x x 2.已知复数1i z =+(i 是虚数单位),则izzz =+()A.31i 55+ B.11i 55+ C.31i55-+ D.11i 55-+3.命题“2≥∀a ,()2f x x ax =-是奇函数”的否定是()A.2≥∀a ,()2f x x ax =-是偶函数B.2≥∃a ,()2f x x ax =-不是奇函数C.2a ∀<,()2f x x ax =-是偶函数D.2a ∃<,()2f x x ax =-不是奇函数4.若()4sin 5πα+=-,则()cos 2πα-=()A.35B.35-C.725D.725-5.若双曲线2221x y m-=(0m >)的渐近线与圆22610x y y +-+=相切,则m =()A.4C.2D.6.端午节为每年农历五月初五,又称端阳节、午日节、五月节等.端午节是中国汉族人民纪念屈原的传统节日,以围绕才华横溢、遗世独立的楚国大夫屈原而展开,传播至华夏各地,民俗文化共享,屈原之名人尽皆知,追怀华夏民族的高洁情怀.小华的妈妈为小华煮了8个粽子,其中5个甜茶粽和3个艾香粽,小华随机取出两个,事件A “取到的两个为同一种馅”,事件B “取到的两个都是艾香粽”,则()|P B A =()A.35B.313C.58 D.13287.正方体1111ABCD A B C D -中,E 为1CC 的中点,则异面直线1B E 与1C D 所成角的余弦值为()A.1010B.1010-C.104D.104-8.某地锰矿石原有储量为a 万吨,计划每年的开采量为本年年初储量的m (01m <<,且m 为常数)倍,第n (*n ∈N )年开采后剩余储量为(1)na m -,按该计划使用10年时间开采到剩余储量为原有储量的一半.若开采到剩余储量为原有储量的70%,则需开采约(参考数107≈)()A.3年B.4年C.5年D.6年9.在平行四边形ABCD 中,4AB =,3AD =,13AE EB = ,2DF FC = ,且6BF CE ⋅=-,则平行四边形ABCD 的面积为()A.5B.5C.245D.12510.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,如图是该算法的程序框图,如果输入99a =,231b =,则输出的a 是()A.23 B.33C.37D.4211.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,π0ϕ-<<)的部分图象如图所示,下列说法中错误的是()A.函数()f x 的图象关于点2π,03⎛⎫- ⎪⎝⎭对称B.函数()f x 的图象关于直线11π12x =-对称C.函数()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x 的图象向右平移π3个单位可得函数2sin2y x =-的图象12.若e 是自然对数的底数,()e ln x x m >+,则整数m 的最大值为()A.0B.1C.2D.3二、填空题:本题共4小题,每小题5分,共20分。

高三数学期末考试试题(理科)

高三数学期末考试试题(理科)

高三数学期末考试试题(理科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。

)1、设集合 ( )A、 B、 C、 D、2、已知是数列的前项和,,则是( )A、等差数列B、等比数列C、既是等差数列又是等比数列D、既不是等差数列又不是等比数列3、若函数的值域是,则函数的值域是( )A、 B、 C、 D、4、函数的单调递增区间是( )A、 B、 C、 D、5、是成立的()A、充分不必要条件B、必要不充分条件C、充要条件D、非充分非必要条件6、若点的坐标为,为抛物线的焦点,点在该抛物线上移动,为使得取得最小值,则点的坐标( )A、 B、 C、 D、7、已知椭圆,过椭圆的右焦点作轴垂线交椭圆于两点,若以为直径的圆过坐标原点,则椭圆的离心率为( )A、 B、 C、 D、8、在中,,则一定是()A、直角三角形B、等腰三角形C、等腰三角形或直角三角形D、等腰直角三角形9、已知向量,若与的夹角为,则直线与圆的位置关系是()A、相切B、相交C、相离D、随的值而定10、已知向量,曲线上一点到的距离为6,为中点,为坐标原点,则()A、1B、2C、5D、1或511、若方程的两根分别为椭圆和双曲线的离心率,则的范围是()A、 B、 C、 D、12、已知曲线点及点从点观察点要使视线不被曲线挡住,则实数的范围( )A、 B、 C、 D、二、填空题:(本大题共4小题,每小题5分,共20分)13、已知为偶函数,且,则__________.14、各项不为零的等差数列中,有,数列是等比数列,且,则 __________.15、已知函数的定义域为R,且,,则__________.16、设函数,有下列结论:①点是函数图象的一个对称中心;②直线是函数图象的一条对称轴;③函数的最小正周期是;④将函数的图象向右平移个单位后,对应的函数是偶函数.其中所有正确结论的序号是。

三、解答题:(解答应写出必要的文字说明、证明过程及演算步骤.)17、(本小题满分12分)已知函数,其中,,其中,若相邻两对称轴间的距离等于。

高三理科数学期末试题及答案

高三理科数学期末试题及答案

高三年级第一学期期末统一考试数学试卷(理工类)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题:每小题5分:共40分.在每小题给出的四个选项中:选出符合题目要求的一项.1.已知集合{}|11M x x =-<<M N =A .{}|01x x ≤<B .{|01x x <<C .{}|0x x ≥D .{}|10x x -<≤2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (1,1)-3.执行如图所示的程序框图:则输出的i 值为A .3B .4C .5D .6第3题图4.在一段时间内有2000辆车通过高速公路上的某处:现随机抽取其中的200辆进行车速统计:统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h :试km/h )错误!估计2000辆车中:在这段时间内以正常速度通过该处的汽车约有A .30辆B .300辆C .170辆D .1700辆第4题图5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知点)0,22(Q 及抛物线24x y =上一动点(,)P x y :则y PQ +的最小值是A .12B .1C . 2D . 3 7.某四棱锥的三视图如图所示:则该四棱锥的侧面积是A .27B .30C .32D .36第7题图8.设函数()f x 的定义域D :如果存在正实数m :使得对任意x D ∈:都有()()f x m f x +>:则称()f x 为D 上的“m 型增函数”.已知函数()f x 是定义在R 上的奇函数:且当0x >时:()f x x a a =--(a ∈R ).若()f x 为R 上的“20型增函数”:则实数a 的取值范围是 A .0a > B .5a < C.10a<D .20a <第二部分(非选择题 共110分)二、填空题:本大题共6小题:每小题5分:共30分.把答案填在答题卡上.侧视图俯视图9.函数2sin(2)16y x π=++的最小正周期是 :最小值是 .10.若x :y 满足约束条件2211x y x y y -⎧⎪+⎨⎪⎩≤,≥,≤,则z x y =+的最大值为 .11.在各项均为正数的等比数列n a 中:若22a :则132a a 的最小值是 .12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间:甲同学不与老师相邻:则不同站法种数为 .13.已知B A ,为圆9)()(:22=-+-n y m x C (,m n ∈R )上两个不同的点(C 为圆心):且满足||25CA CB +==AB .14.已知点O 在ABC ∆的内部:且有xOA yOB zOC ++=0:记,,AOB BOC AOC ∆∆∆的面积分别为AOB BOC AOC S S S ∆∆∆,,.若1x y z ===:则::AOB BOC AOC S S S ∆∆∆= :若2,3,4x y z ===:则::AOB BOC AOC S S S ∆∆∆= .三、解答题:本大题共6小题:共80分.解答应写出文字说明:演算步骤或证明过程. 15.(本小题满分13分)某中学高一年级共8个班:现从高一年级选10名同学组成社区服务小组:其中高一(1)班选取3名同学:其它各班各选取1名同学.现从这10名同学中随机选取3名同学:到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率:(Ⅱ)设X 为选出同学中高一(1)班同学的人数:求随机变量X 的分布列和数学期望.16.(本小题满分13分)如图:在ABC ∆中:点D 在BC 边上:7,42CAD AC π∠==:cos 10ADB ∠=-.(Ⅰ)求sin C ∠的值:(Ⅱ)若5,BD =求ABD ∆的面积.17.(本小题满分13分)如图:在四棱锥P ABCD -中:底面ABCD 是菱形:且60DAB ∠=︒.点E 是棱PC 的中点:平面ABE 与棱PD 交于点F .(Ⅰ)求证:AB ∥EF :(Ⅱ)若PA PD AD ==:且平面PAD ⊥平面ABCD : 求平面PAF 与平面AFE 所成的锐二面角的余弦值.18.(本小题满分14分)已知函数()ln f x ax x =+:其中a ∈R .(Ⅰ)若()f x 在区间[1,2]上为增函数:求a 的取值范 围:(Ⅱ)当e a =-时:(ⅰ)证明:()20f x +≤:19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A :B 两点. (Ⅰ)求椭圆C 的离心率: (Ⅱ)求证:OA OB ⊥: (Ⅲ)求OAB ∆面积的最大值.20.(本小题满分13分) 已知有穷数列:*123,,,,(,3)k a a a a k k ∈≥N 的各项均为正数:且满足条件:①1k a a =:②11212(1,2,3,,1)n n n n a a n k a a +++=+=-.(Ⅰ)若13,2k a ==:求出这个数列: (Ⅱ)若4k =:求1a 的所有取值的集合: (Ⅲ)若k 是偶数:求1a 的最大值(用k 表示).数学答案(理工类) .1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空:第一空3分:第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A :则1203373731049().60C C C C P A C ⋅+⋅== 所以选出的3名同学来自班级的概率为4960. ……………………………5分 (Ⅱ)随机变量X 的所有可能值为0:1:2:3:则03373107(0)24C C P X C ⋅===: 123731021(1)40C C P X C ⋅===: 21373107(2)40C C P X C ⋅===:30373101(3)120C C P X C ⋅===. 所以随机变量X 的分布列是随机变量X 的数学期望721719()012324404012010E X =⨯+⨯+⨯+⨯=. …………………………13分 16.(本小题满分13分) 解:(Ⅰ)因为cos 10ADB ∠=-:所以sin 10ADB ∠=. 又因为4CAD π∠=:所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45=. ………………………7分 (Ⅱ)在ACD ∆中:由ADCAC C AD ∠=∠sin sin:得74sin sin AC C AD ADC ⋅⋅∠===∠.所以11sin 572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………13分 17.(本小题满分13分)(Ⅰ)证明:因为底面ABCD 是菱形:所以AB ∥CD . 又因为AB ⊄面PCD :CD ⊂面PCD :所以AB ∥面PCD . 又因为,,,A B E F 四点共面:且平面ABEF平面PCD EF =:所以AB ∥EF . ………………………5分 (Ⅱ)取AD 中点G :连接,PG GB .因为PA PD =:所以PG AD ⊥. 又因为平面PAD ⊥平面ABCD : 且平面PAD平面ABCD AD =:所以PG ⊥平面ABCD .所以PG GB ⊥. 在菱形ABCD 中:因为AB AD =: 60DAB ∠=︒:G 是AD 中点: 所以AD GB ⊥.如图:建立空间直角坐标系G xyz -.设2PA PD AD a ===: 则(0,0,0),(,0,0)G A a :,0),(2,0),(,0,0),)B C a D a P --.又因为AB ∥EF :点E 是棱PC 中点:所以点F 是棱PD中点.所以(,,)22E a -:(2a F -.所以3(2a AF =-:(,2a EF =.设平面AFE 的法向量为(,,)x y z =n :则有0,0.AF EF ⎧⋅=⎪⎨⋅=⎪⎩n n所以,.z y x ⎧=⎪⎨=⎪⎩令3x =:则平面AFE 的一个法向量为=n .因为BG ⊥平面PAD :所以(0,,0)GB =是平面PAF 的一个法向量.因为cos ,39GB <GB >GB⋅===⋅n n n所以平面PAF 与平面AFE . ……………………13分 18.(本小题满分14分)解:函数()f x 定义域),0(+∞∈x :1()f x a x'=+.(Ⅰ)因为()f x 在区间[1,2]上为增函数:所以()0f x '≥在[1,2]x ∈上恒成立: 即1()0f x a x '=+≥:1a x≥-在[1,2]x ∈上恒成立: 则1.2a ≥- ………………………………………………………4分(Ⅱ)当e a =-时:() e ln f x x x =-+:e 1()x f x x-+'=. (ⅰ)令0)(='x f :得1ex =. 令()0f x '>:得1(0,)e x ∈:所以函数)(x f 在1(0,)e 单调递增.令()0f x '<:得1(,)e x ∈+∞:所以函数)(x f 在1(,)e +∞单调递减.所以:max 111()()e ln 2e e ef x f ==-⋅+=-.所以()20f x +≤成立. …………………………………………………9分 (ⅱ)由(ⅰ)知: max ()2f x =-: 所以2|)(|≥x f . 设ln 3(),(0,).2x g x x x =+∈+∞所以2ln 1)(xx x g -='. 令0)(='x g :得e x =.令()0g x '>:得(0,e)x ∈:所以函数)(x g 在(0,e)单调递增: 令()0g x '<:得(e,)x ∈+∞:所以函数)(x g 在(e,)+∞单调递减:所以:max lne 313()(e)2e 2e 2g x g ==+=+<: 即2)(<x g . 所以)(|)(|x g x f > :即>|)(|x f ln 32x x +.所以:方程=|)(|x f ln 32x x +没有实数解. ……………………………14分 19.(本小题满分14分) 解:(Ⅰ)由题意可知24a =:243b =:所以22283c a b =-=.所以3c e a ==.所以椭圆C的离心率为3. …………………………3分 (Ⅱ)若切线l 的斜率不存在:则:1l x =±.在223144x y +=中令1x =得1y =±. 不妨设(1,1),(1,1)A B -:则110OA OB ⋅=-=.所以OA OB ⊥. 同理:当:1l x =-时:也有OA OB ⊥. 若切线l 的斜率存在:设:l y kx m =+1=:即221k m +=.由2234y kx m x y =+⎧⎨+=⎩:得222(31)6340k x kmx m +++-=.显然0∆>. 设11(,)A x y :22(,)B x y :则122631kmx x k +=-+:21223431m x x k -=+.所以2212121212()()()y y kx m kx m k x x km x x m =++=+++. 所以1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+ 22244431m k k --=+2224(1)44031k k k +--==+. 所以OA OB ⊥.综上所述:总有OA OB ⊥成立. ………………………………………………9分(Ⅲ)因为直线AB 与圆O 相切:则圆O 半径即为OAB ∆的高: 当l 的斜率不存在时:由(Ⅱ)可知2AB =.则1OAB S ∆=.当l 的斜率存在时:由(Ⅱ)可知:AB ===223131k k ==++231k =+. 所以2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++ 24222164164164419613396k k k k k=+⋅=+≤+=++++(当且仅当k =时:等号成立).所以AB ≤.此时:max (S )OAB ∆=.综上所述:当且仅当3k =±时:OAB ∆面积的最大值为3.…………………14分 20.(本小题满分13分)解:(Ⅰ)因为13,2k a ==:由①知32a =: 由②知:21211223a a a a +=+=:整理得:2222310a a -+=.解得:21a =或212a =. 当21a =时:不满足2323212a a a a +=+:舍去: 所以:这个数列为12,,22. …………………………………………………3分 (Ⅱ)若4k =:由①知4a =1a . 因为11212(1,2,3)n n n n a a n a a +++=+=:所以111(2)(1)0n n n n a a a a ++--=.所以112n n a a +=或11(1,2,3)n na n a +==. 如果由1a 计算4a 没有用到或者恰用了2次11n na a +=:显然不满足条件: 所以由1a 计算4a 只能恰好1次或者3次用到11n na a +=:共有下面4种情况: (1)若211a a =:3212a a =:4312a a =:则41114a a a ==:解得112a =: (2)若2112a a =:321a a =:4312a a =:则4111a a a ==:解得11a =:(3)若2112a a =:3212a a =:431a a =:则4114a a a ==:解得12a =:(4)若211a a =:321a a =:431a a =:则4111a a a ==:解得11a =: 综上:1a 的所有取值的集合为1{,1,2}2. ………………………………………………8分 (Ⅲ)依题意:设*2,,m 2k m m =∈≥N .由(II )知:112n n a a +=或11(1,2,3,21)n n a n m a +==-.假设从1a 到2m a 恰用了i 次递推关系11n n a a +=:用了21m i --次递推关系112n n a a +=: 则有(1)211()2itm a a -=⋅,其中21,t m i t ≤--∈Z . 当i 是偶数时:0t ≠:2111()2tm a a a =⋅=无正数解:不满足条件: 当i 是奇数时:由12111(),21222t m a a a t m i m -=⋅=≤--≤-得22211()22t m a -=≤:所以112m a -≤.又当1i =时:若213221222211111,,,,222m m m m a a a a a a a a ---====: 有222111()2m m a a --=⋅:222112m m a a a -==:即112m a -=.所以:1a 的最大值是12m -.即1212k a -=.…………………………………13分。

海淀区高三年级第二学期数学理科期末练习参考答案

海淀区高三年级第二学期数学理科期末练习参考答案

海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 .5说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BADCABAD第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) 9.1 10.< 11.2 ;10 12.48 13.2 14.;84.三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,由2446,10a a S +==,可得11246434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,………………………2分即1123235a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,………………………4分∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =.………………………5分 (Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅,………………………7分又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅, …………………9分 两式相减得2311(22222)2n n n n T n -+-=+++++-⋅………………………11分()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,………………………12分 ∴1(1)22n n T n +=-⋅+.………………………13分16.(本小题满分14分)(Ⅰ)证明:连结AC 交BD 于O ,连结OM , ABCD 底面为矩形,O AC ∴为中点,………… 1分M N PC 、为侧棱的三等分点, CM MN ∴=,//OM AN ∴ ,………… 3分,OM MBD AN MBD ⊂⊄平面平面,//AN MBD ∴平面.………… 4分 (Ⅱ)如图所示,以A 为原点,建立空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(3,6,0)C ,(0,6,0)D ,(0,0,3)P ,(2,4,1)M ,(1,2,2)N , (1,2,2),(0,6,3)AN PD ==-,………………………5分025cos ,335AN PDAN PD AN PD⋅+∴<>===⨯,………………………7分∴异面直线AN 与PD 25.………………………8分 (Ⅲ)侧棱PA ABCD ⊥底面,(0,0,3)BCD AP ∴=平面的一个法向量为,………………………9分 设MBD 平面的法向量为(,,)x y z =m ,(3,6,0),(1,4,1)BD BM =-=-,并且,BD BM ⊥⊥m m ,PAB CD MNzyPADM NO36040x y x y z -+=⎧∴⎨-++=⎩,令1y =得2x =,2z =-, ∴MBD 平面的一个法向量为(2,1,2)=-m.………………………11分2cos ,3AP AP AP ⋅<>==-m m m,………………………13分由图可知二面角M BD C --的大小是锐角, ∴二面角M BD C --大小的余弦值为23..………………………14分17. (本小题满分13分)解:(Ⅰ)设“4人恰好选择了同一家公园”为事件A . (1)分每名志愿者都有3种选择,4名志愿者的选择共有43种等可能的情况 . …………………2分 事件A 所包含的等可能事件的个数为3,…………………3分 所以,()431327P A ==. 即:4人恰好选择了同一家公园的概率为127.………………5分(Ⅱ)设“一名志愿者选择甲公园”为事件C ,则()13P C =..………………………6分4人中选择甲公园的人数X 可看作4次重复试验中事件C 发生的次数,因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4..………………………8分()4412()()33i i iP X i C -==, 0,1,2,3,4i =..………………………10分 X0 1 23 4 P1681 32812481 881 181.………………………12分X 的期望为()14433E X =⨯=..………………………13分18.(本小题满分13分)解法一:(Ⅰ)依题意得2()(2)e x f x x x =-,所以2()(2)e x f x x '=-, .………………………1分 令()0f x '=,得2x =±.………………………2分()f x ',()f x 随x 的变化情况入下表:x(,2)-∞-2-(2,2)-2(2,)+∞()f x ' - 0 + 0 -()f x极小值极大值………………………4分由上表可知,2x =()f x 的极小值点,2x ()f x 的极大值点.………………………5分(Ⅱ) 22()[(22)2]e ax f x ax a x a '=-+-+,.………………………6分由函数()f x 在区间(2,2)上单调递减可知:()0f x '≤对任意(2,2)x ∈恒成立,.………………………7分当0a =时,()2f x x '=-,显然()0f x '≤对任意(2,2)x ∈恒成立; .…………………8分当0a >时,()0f x '≤等价于22(22)20ax a x a ---≥,因为(2,2)x ∈,不等式22(22)20ax a x a ---≥等价于2222a x x a--≥,.………………………9分令2(),[2,2]g x x x x =-∈,则22()1g x x'=+,在[2,2]上显然有()0g x '>恒成立,所以函数()g x 在[2,2]单调递增, 所以()g x 在[2,2]上的最小值为(2)0g =,.………………………11分由于()0f x '≤对任意(2,2)x ∈恒成立等价于2222a x x a --≥对任意(2,2)x ∈恒成立,需且只需2min22()a g x a -≥,即2220a a-≥,解得11a -≤≤,因为0a >,所以01a <≤. 综合上述,若函数()f x 在区间(2,2)上单调递减,则实数a 的取值范围为01a ≤≤..………………………13分解法二:(Ⅰ)同解法一(Ⅱ)22()[(22)2]e ax f x ax a x a '=-+-+,.………………………6分由函数()f x 在区间(2,2)上单调递减可知:()0f x '≤对任意(2,2)x ∈恒成立, 即22(22)20ax a x a ---≥对任意(2,2)x ∈恒成立, (7)分当0a =时,()2f x x '=-,显然()0f x '≤对任意(2,2)x ∈恒成立;…………………8分当0a >时,令22()(22)2h x ax a x a =---,则函数()h x 图象的对称轴为21a x a-=,.………………………9分 若210a a-≤,即01a <≤时,函数()h x 在(0,)+∞单调递增,要使()0h x ≥对任意(2,2)x ∈恒成立,需且只需(2)0h ≥,解得11a -≤≤,所以01a <≤;..………………………11分若210a a->,即1a >时,由于函数()h x 的图象是连续不间断的,假如()0h x ≥对任意(2,2)x ∈恒成立,则有(2)0h ≥,解得11a -≤≤,与1a >矛盾,所以()0h x ≥不能对任意(2,2)x ∈恒成立.综合上述,若函数()f x 在区间(2,2)上单调递减,则实数a 的取值范围为01a ≤≤..………………………13分19.(本小题满分13分)解:(Ⅰ)由题意,抛物线2C 的方程为:24y x =,…………2分(Ⅱ)设直线AB 的方程为:(4),(0)y k x k k =-≠存在且. 联立2(4)4y k x y x=-⎧⎨=⎩,消去x ,得 24160ky y k --=,………………3分显然216640k ∆=+>,设1122(,),(,)A x y B x y ,则 124y y k += ①1216y y ⋅=- ②…………………4分 又12AM MB =,所以 1212y y =- ③…………………5分由①② ③消去12,y y ,得 22k =,故直线l 的方程为242,y x =-或242y x =-+ . (6)BM AF Py xO分(Ⅲ)设(,)P m n ,则OP 中点为(,)22m n, 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩, (8)分将其代入抛物线方程,得:222288()411k k k k -=⋅++,所以,21k =. ………………………9分联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222222()8160b a k x k a x a k a b +-+-=.………………………10分由2222222222(8)4()(16)0k a b a k a k a b ∆=--+-≥,得 242222216()(16)0a k b a k k b -+-≥,即222216a k b k +≥,…………………12分将21k =,221b a =-代入上式并化简,得 2217a ≥,所以34a ,即234a ≥ 因此,椭圆1C 34 ………………………13分20.(本小题满分14分) 解:(Ⅰ)由题意可得:1()cos ,[0,]f x x x π=∈ ,………………………1分 2()1,[0,]f x x π=∈.………………………2分(Ⅱ)21,[1,0)()0,[0,4]x x f x x ⎧∈-=⎨∈⎩,………………………3分 221,[1,1)(),[1,4]x f x x x ∈-⎧=⎨∈⎩,………………………4分22121,[1,0)()()1,[0,1),[1,4]x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩,………………………5分当[1,0]x ∈-时,21(1)x k x -≤+1k x ∴≥-,2k ≥; 当(0,1)x ∈时,1(1)k x ≤+11k x ∴≥+1k ∴≥; 当[1,4]x ∈时,2(1)x k x ≤+21x k x ∴≥+165k ∴≥.综上所述,165k ∴≥………………………6分即存在4k =,使得()f x 是[1,4]-上的4阶收缩函数.………………………7分(Ⅲ)()2()3632f x x x x x '=-+=--,令'()0f x =得0x =或2x =.函数()f x 的变化情况如下:令()0f x =,解得0x =或3.………………………8分ⅰ)2b ≤时,()f x 在[0,]b 上单调递增,因此,()322()3f x f x x x ==-+,()1()00f x f ==.因为32()3f x x x =-+是[0,]b 上的2阶收缩函数, 所以,①()()21()20f x f x x -≤-对[0,]x b ∈恒成立;②存在[]0,x b ∈,使得()()21()0f x f x x ->-成立.………………………9分①即:3232x x x -+≤对[0,]x b ∈恒成立, 由3232x x x -+≤,解得:01x ≤≤或2x ≥,要使3232x x x -+≤对[0,]x b ∈恒成立,需且只需01b <≤..………………………10分②即:存在[0,]x b ∈,使得()2310x x x -+<成立.由()2310x x x -+<得:0x <3535x -+<<, 所以,需且只需35b ->351b -<≤..………………………11分ⅱ)当2b >时,显然有3[0,]2b ∈,由于()f x 在[0,2]上单调递增,根据定义可得:2327()28f =,13()02f =, 可得 2133273()232282f f ⎛⎫-=>⨯= ⎪⎝⎭,此时,()()21()20f x f x x -≤-不成立..………………………13分351b -<≤.注:在ⅱ)中只要取区间(1,2)内的一个数来构例均可,这里用32只是因为简单而已.。

北京高三期末考试题 高三数学(理科)答案

北京高三期末考试题 高三数学(理科)答案

高三期末考试数学(理)答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:每小题5分,共30分.(第一空3分,第二空2分)9. 1(,0)210. 1,3- 11.12. 4π,-13. 1(0,]214. {}2,11三、解答题:本大题共6小题,共80分. 15(共13分)解:2sin b A =,2sin sin A B A =, ………………4分因为0A π<<,所以sin 0A ≠,所以sin 2B =, ………………5分 因为0B π<<,且a b c <<,所以60B =. ………………7分(Ⅱ)因为2a =,b =,所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=, ………………11分解得3c =或1c =-(舍),所以c 边的长为3. ………………13分16(共13分)解:(Ⅰ)由数列{}n a 满足12n n a a +=(1,2,3,)n =知 数列{}n a 是公比2q =的等比数列 ………………2分 又123,1,a a a +成等差数列 所以 2132(1)a a a +=+………………4分 即 1112(21)4a a a +=+解得12a = ………………5分 所以 2n n a = ………………6分 223log 73log 2737n n n b a n =-=-=- ………………8分(Ⅱ)解: (2)(3)n n nb n b b n -≤⎧⎪=⎨≥⎪⎩112124415T b T b b ===+=+=3n ≥时,121234123412222(437)1023111022n n nn T b b b b b b b b b b b b b b b n nn n =+++=--++++=+++++---+-=+=-+易知 2n =时也满足上式所以 24(1)31110(2)22n n T n n n =⎧⎪=⎨-+≥⎪⎩………………………………13分17(共13分)(Ⅰ)两年级满意度评分的茎叶图如下………………………………3分可以看出,高一年级满意度评分的平均值高;高一年级满意度评分的离散程度小.………………………………7分(Ⅱ)从已知可得到相应事件的概率421()202050P A………………………………10分高一满意度等级为“非常满意”且高二为“不满意”的概率为4101 202010高一满意度等级为“非常满意”且高二为“满意”的概率为482 202025高一满意度等级为“满意”且高二为“不满意”的概率为12103 202010所以12312()10251025P B………………………………13分18(共14分)(Ⅰ)方法1:如图,取1AE 的中点T ,连接TM ,TD ,又M 是1BE 的中点,12TMAB TMAB 所以,且, 又N 是DC 的中点,12DN =CD 所以,由四边形ABCD 是矩形,所以 AB CD AB=CD ,,所以TMDN TM=DN ,且.从而四边形TMND 是平行四边形,所以MNTD ,………………………3分TD ⊂平面1ADE , MN ⊄平面1ADE所以 MN ∥平面1ADE ;……………………5分 (Ⅰ)方法2:取AB 的中点H ,连接HM ,HN(Ⅱ) 因为 AB BC ⊥, 1AB BE ⊥ 所以 AB ⊥平面1BCE……………………………6分因为 1E C ⊂平面1BCE 所以 1AB E C⊥……………………………7分又 190BE C ∠=︒ 所以 11BE E C ⊥ 所以 1E C ⊥平面1ABE……………………………8分又 AM ⊂平面1ABE 所以1AM E C ⊥………………………………9分MN A BCD E 1TMN ABCD E 1H(Ⅲ)方法1:如图,过点1E 做平面1BCE 的垂线1E F , 则E 1FBE 1,E 1FE 1C ,已知BE 1E 1C.以1E 为原点,分别以111,,E C E B E F 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,易知11E C ……10分 则A (0,1,1),1E (0,0,0), N (1,0,12). 111(0,1,1)(1,0,)2E A E N=,易知,=(m 0,0,1)为平面1BCE 的一个法向量,…………………………11分 设()nx,y,z 为平面AE 1N 的法向量.由1100n E A n E N得102y z x z 取2z 得=(1,2,-2)n .……………12分从而22cos ,=,313||||n m n m n m……………13分所以平面AE 1N 与平面1BCE 所成锐二面角的余弦值为23. ………………………………14分(Ⅲ)方法2:如图,在平面1BCE 内,过点B 作1BQ E C因为11BE E C ⊥,所以 1BQ BE ⊥. 又因为AB ⊥平面1BCE ,所以ABBE 1,ABBQ以B 为原点,分别以1,,BE BQ BA 的方向为x 轴, y 轴,z 轴的正方向建立空间直角坐标系,易知11E CE 1则A (0,0,1),B (0,0,0),E 1(1,0,0),N (1,1,12). 因为AB ⊥平面1BCE ,所以=(m 0,0,1)为平面1BCE 的一个法向量,=(2,-1,2)n 为平面AE 1N 的法向量.从而22cos ,=,313||||n m n m n m 所以平面AE 1N 与平面1BCE 所成锐二面角的余弦值为23. (Ⅲ)方法3:CQN 为所求二面角的平面角,可求1,,2525CN CQ QN19(共14分)(Ⅰ)解:当1=a 时,()(1)1x f x x e =-+()x f 'x xe =()1f e '=,()11f =切线方程为1(1)y e x -=- 即10ex y e -+-=…………………………3分(Ⅱ)证明:()'()(1)x g x f x e x a ==-+(1)a +- ……………………4分'()(2)x g x e x a =-+解 '()(2)0x g x e x a =-+= 得 2x a =-a ,则函数)(x g 在)2,0(-a 上递减;在),2(+∞-a 上递增……………6分0)2(,0)0(<-∴=a g g ,又01)(>-+=a e a g a …………7分所以函数)(x g 在)2,0(-a 上无零点,在),2(+∞-a 上有唯一零点 因此 函数()g x 在),0(+∞上仅有—个零点;…………………………9分 (Ⅲ)当2≤a 时,解 '()(2)0x g x e x a =-+= 得 20x a =-≤[0,2],'()(2)0x x g x e x a ∈=-+≥,所以 函数)(x g 在]2,0[上是增函数, 0)0()(=≥∴g x g ,所以 函数)(x f 在]2,0[上单调递增,0)0()(=≥∴f x f ,不符题意 ……………………11分当2a >时,设0x 是函数()g x 在),0(+∞上的唯一零点 由(Ⅱ)知在),0(0x 上()0g x <,在),(0+∞x 上()0g x > 所以)(x f 在),0(0x 递减,),(0+∞x 递增,设)(x f 在[0,2]上最大值为M ,则)}2(),0(max{f f M =, 故对任意的]2,0[∈x ,恒有0)(≤x f 成立等价于⎩⎨⎧≤≤0)2(0)0(f f ,由0)2(≤f 得:022)2(2≤+-+-a a e a ,2342322222>-+=--≥∴e e e a 又0)0(=f ,22223e a e -∴≥- …………………………14分20(共13分)解:2= 得2c = 所以 28844n c =-=-= …………………………3分(Ⅱ)由(Ⅰ)知(2,0)F ,设直线l 方程为(2)y k x =-(0k)将(2)y k x =-代入22184x y +=得:2222(12)8880k x k x k +-+-=, 设1122(,)(,)A x y B x y 、 则22121222888,1212k k x x x x k k -+=⋅=++.121224()412k y y k x x k k -+=+-=+则线段AB 的中点坐标为(224,12k k +2212kk -+)线段AB 的垂直平分线的方程为 222214()1212k ky x k k k --=--++由 0x 得 2212ky k=+ 令 222123k k =+得 11,2k k…………………………8分(Ⅲ)显然直线AP BP 、的斜率存在,设直线AP BP 、的斜率分别为12,k k , 则 121212,y yk k x t x t==-- “PF 为APB ∠的平分线”,等价于“120k k +=” 即12120y y x t x t +=--, 1212(2)(2)0k x k x x t x t --+=--1221(2)()(2)()0k x x t k x x t --+--=12122(2)()40.x x t x x t -+++=将22121222888,1212k k x x x x k k -+=⋅=++代入上式, 化简得4t =所以存在点(4,0)P ,使得PF 为APB ∠的平分线,此时 4.t =…………13分。

高三数学试卷理科答案解析

高三数学试卷理科答案解析

一、选择题1. 答案:D解析:本题考查函数的奇偶性。

根据函数的定义域关于原点对称,可得f(-x) = -f(x),即函数为奇函数。

所以正确答案为D。

2. 答案:B解析:本题考查数列的通项公式。

由等差数列的通项公式an = a1 + (n-1)d,代入a1 = 2,d = 3,得an = 2 + 3(n-1)。

当n = 10时,an = 2 + 3(10-1) = 29。

所以正确答案为B。

3. 答案:A解析:本题考查导数的应用。

由题意,f(x)在x = 1处的导数为0,则f'(1) = 0。

所以正确答案为A。

4. 答案:C解析:本题考查复数的运算。

将复数z = 1 + i写成极坐标形式,得z =√2(cos(π/4) + isin(π/4))。

所以正确答案为C。

5. 答案:B解析:本题考查二项式定理的应用。

根据二项式定理,(a + b)^n = Σ(nCk)a^(n-k)b^k,其中k = 0, 1, ..., n。

代入n = 4,a = x,b = 2,得(2x + 1)^4 =16x^4 + 32x^3 + 24x^2 + 8x + 1。

所以正确答案为B。

二、填空题6. 答案:-1/2解析:本题考查三角函数的周期性。

由题意,sin(2x + π/6) = -1/2。

因为sin函数的周期为2π,所以2x + π/6的取值范围为[2kπ - 5π/6, 2kπ + π/6],其中k为整数。

解得x的取值范围为[kπ - π/2, kπ - π/6],其中k为整数。

所以x的值为-1/2。

7. 答案:-2解析:本题考查一元二次方程的根。

根据一元二次方程的求根公式,x = (-b ±√(b^2 - 4ac)) / (2a)。

代入a = 1,b = -2,c = 1,得x = (2 ± √(4 - 4)) / 2 = 1。

所以正确答案为-2。

8. 答案:3π/2解析:本题考查向量积的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学期末试卷及答案Revised by Petrel at 2021澄海区2008-2009学年度第一学期期末考试高三理科数学试卷本试卷分选择题和非选择题两部分,共4页,满分150分.考试时间120分钟. 注意事项:1.答第一部分(选择题)前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将第二部分(非选择题)的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将第一部分的答题卡和第二部分的答题卷都收回,试卷由考生自己保管. 参考公式:柱体的体积公式Sh V =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.第一部分(选择题,共40分)一、选择题:本大题共有8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.请把它选出后在答题卡上规定的位置上用铅笔涂黑.1.已知集合}|{},023|{2a x x N x x x M >=>-+=,若N M ⊆,则实数a 的取值范围是A .),3[+∞B .),3(+∞C .]1,(--∞D . )1,(--∞ 2.函数4sin 1)(2xx f +=的最小正周期是A .2πB .πC .π2D .π4 3.函数xx y 142+=的单调递增区间是A .),0(+∞B .),21(+∞C .)1,(--∞D .)21,(--∞4.已知||=3,||=5,且12=⋅,则向量在向量上的投影为A .512B .3C .4D .5 5.若tan 2α=,则sin cos αα的值为A .12B .23C .1D .256.记等差数列}{n a 的前n 项和为n S ,若||||113a a =,且公差0<d ,则当n S 取最大值时,=nA .4或5B .5或6C .6或7D .7或87.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ∥α,n ∥α,则m ∥n ; ④若α⊥γ,β⊥γ,则α∥β. 其中正确命题的序号是A .①和②B .②和③C .③和④D .①和④8.若定义在R 上的偶函数()x f 满足()()x f x f =+2,且当[]1,0∈x 时,(),x x f =,则函数()x x f y 3log -=的零点个数是A .多于4个B .4个C .3个D .2个第二部分(非选择题,共110分)二、填空题:本大题共7小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.OO 'MQP N BA(一)必做题:第9、10、11、12题是必做题,每道试题考生都必须做答. 9.记等差数列}{n a 的前n 项和为n S ,若431,,a a a 成等比数列,则3523S S S S --的值为 . 10.220(42)(43)x x dx --=⎰ .11.右图表示一个几何体的三视图及相应数据,则该几何体的体积是 .12.如果过点(0,1)斜率为k 的直线l 与圆04my kx y x 22=-+++ 交于M 、N 两点,且M 、N 关于直线x+y=0对称,那么直线l 的斜率k=__________;不等式组⎪⎩⎪⎨⎧≥≤-≥+-0y 0,my kx ,01y kx 表示的平面区域的面积是 . (二)选做题:第13、14、15题是选做题,考生只能选做二题,三题全答的,只计算前两题的得分.13.(坐标系与参数方程选做题)曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是 .14.(不等式选讲选做题)不等式5|2||1|<++-x x 的解集是 . 15.(几何证明选讲选做题)如右图,⊙'O 和⊙O 相交于A 和B , PQ 切⊙O 于P ,交⊙'O 于Q 和M ,交AB 的延长线于N ,MN =3,NQ =15,则 PN =__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤 16.(本小题满分13分)已知数列}{n a 中,02,311=-=+a a a n n ,数列}{n b 中,())( 1*N n a b n n n ∈-=⋅. (Ⅰ)求数列}{n a 通项公式;(Ⅱ)求数列}{n b 通项公式以及前n 项的和. 17.(本小题满分13分)已知ABC ∆中,1=⋅BC BA ,若ABC ∆的面积为S ,且2363≤≤S (Ⅰ)求角B 的取值范围; (Ⅱ)设)4sin(12cos 2sin )(π+++=B B B B f ,求)(B f 的值域.18.(本小题满分14分)如图,正方形ACDE 所在的平面与平面ABC 垂直,M 是CE 和AD 的交点,BC AC ⊥,且BC AC =.(Ⅰ)求证:⊥AM 平面EBC ;(Ⅱ)求直线AB 与平面EBC 所成的角的大小; (Ⅲ)求二面角C EB A --的大小. 19.(本小题满分14分)已知实数a ≠0,函数()()R x x ax x f ∈-=22)(. (Ⅰ)若函数)(x f 有极大值32,求实数a 的值; (Ⅱ)若对]1,2[-∈∀x ,不等式916)(<x f 恒成立,求实数a 的取值范围. 20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,若n a 是1与n S 的等差中项. (Ⅰ)求证}1{+n S 是等比数列,并求出n a 的表达式; (Ⅱ)若)1(2log 1≥=+n b n a n ,求12)5()(+++=n n b n b n f 的最大值及取得最大值时n 的值.21.(本小题满分12分)设函数2()(1)2ln(1)f x x x =+-+.BME DCA(Ⅰ)若在定义域内存在0x ,而使得不等式0()0f x m -≤能成立,求实数m 的最小值;(Ⅱ)若函数2()()g x f x x x a =---在区间[]0,2上恰有两个不同的零点,求实数a 的取值范围.澄海区2008-2009学年度第一学期期末考试高三理科数学参考答案一、选择题CDBA DCAB 二、填空题9、21或2; 10、8; 11、348π+; 12、1,41;13、2; 14、)2,3(-; 15、 三、解答题16、(本小题满分13分) 解:(1)∵021=-+n n a a ∴)1(21≥=+n a a nn -----------2分 又31=a∴{}n a 是首项为3,公比为2的等比数列 -----------4分 ∴*)(231N n a n n ∈⋅=- -----------6分(2)∵())( 1*N n a b n n n ∈-=⋅∴n n n a b 1)1(⋅-==1231)1(-⨯⋅-n n -----------8分 ∴121231)1(23131-⨯⋅-+⋅⋅⋅+⨯+-=+⋅⋅⋅++=n n n n b b b S -----------10分=211)21(131+⎥⎦⎤⎢⎣⎡---n=-⎥⎦⎤⎢⎣⎡--n )21(192=⎥⎦⎤⎢⎣⎡--1)21(92n -----------13分 17、(本小题满分13分)解:(Ⅰ)设ABC ∆的三边分别是c b a ,,∵1=⋅BC BA∴1cos =B ac ,即Bac cos 1= -----------2分 又2363≤≤S ∴23sin 2163≤≤B ac -----------4分 ∴3tan 33≤≤B -----------6分∴36ππ≤≤B ---------- 7分(Ⅱ))4sin(12cos 2sin )(π+++=B B B B f)cos (sin 22cos 2cos sin 22B B B B B ++=B cos 22= -----------9分∵36ππ≤≤B∴23cos 21≤≤B -----------11分 ∴6)(2≤≤B f -----------12分∴)(B f 的值域是]6,2[ ----------13分18、(本小题满分14分)解法一:(Ⅰ)∵四边形ACDE 是正方形,EC AM AC EA ⊥⊥∴, -----------1分∵平面⊥ACDE 平面ABC ,AC BC ⊥,⊥∴BC 平面EAC . -----------2分⊂AM 平面EAC ,⊥∴BC AM . -----------3分 又C EC BC =⊥∴AM 平面EBC . -----------4分 (Ⅱ)连结BM ,⊥AM 平面EBC ,ABM ∠∴是直线AB 与平面EBC 所成的角. -----------5分 设a BC AC EA 2===,则a AM 2=,a AB 22=, -----------7分21sin ==∠∴AB AM ABM , ︒=∠∴30ABM .即直线AB 与平面EBC 所成的角为︒30. -----------9分 (Ⅲ)过A 作EB AH ⊥于H ,连结HM .⊥AM 平面EBC , EB AM ⊥∴. ⊥∴EB 平面AHM .AHM ∠∴是二面角C EB A --的平面角. -------10分 ∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC .⊥∴EA AB . --------11分BMEDCAH BMEDCA在EAB Rt ∆中, EB AH ⊥,有AH EB AB AE ⋅=⋅. 由(Ⅱ)所设a BC AC EA 2===可得a AB 22=,a EB 32=,322aEB AB AE AH =⋅=∴. 23sin ==∠∴AH AM AHM . ︒=∠∴60AHM . -----------13分 ∴二面角C EB A --等于︒60. -----------14分 解法二: ∵四边形ACDE 是正方形 ,EC AM AC EA ⊥⊥∴,,∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC , -----------2分∴可以以点A 为原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC 和AE 为y 轴和z 轴,建立如图所示的空间直角坐标系xyz A -. 设2===BC AC EA ,则),0,2,2(),0,0,0(B A )2,0,0(),0,2,0(E C ,M 是正方形ACDE 的对角线的交点,)1,1,0(M ∴. -----------4分(Ⅰ)= )1,1,0(,)2,2,0()2,0,0()0,2,0(-=-=EC ,)0,0,2()0,2,0()0,2,2(=-=,0,0=⋅=⋅∴, -----------6分 ⊥∴AM 平面EBC . -----------7分 (Ⅱ) ⊥AM 平面EBC ,∴为平面EBC 的一个法向量, )0,2,2(),1,1,0(==AM ,21==∴.︒=60.∴直线AB 与平面EBC 所成的角为︒30. -----------10分(Ⅲ) 设平面EAB 的法向量为),,(z y x =,则⊥且⊥,0=⋅∴AE n 且0=⋅AB n .⎩⎨⎧=⋅=⋅∴.0),,()0,2,2(,0),,()2,0,0(z y x z y x 即⎩⎨⎧=+=.0,0y x z取1-=y ,则1=x , 则)0,1,1(-=n . -----------12分又∵为平面EBC 的一个法向量,且)1,1,0(=AM ,21-==∴AMn ,设二面角C EB A --的平面角为θ,则21cos cos ==θ, ︒=∴60θ.∴二面角C EB A --等于︒60. -----------14分19、(本小题满分14分)解:(Ⅰ)ax ax ax x ax x f 44)2()(232+-=-=)2)(32(3483)( 2--=+-=∴x x a a ax ax x f -----------2分令f x '()=0得0)2)(32(3=--x x a ∴x =23或x =2 -----------4分 () f x ax x x R ()()=-∈22有极大值32,又f ()20= ∴f x ()在32=x 时取得极大值 -----------6分27322732)32(===∴a a f , -----------7分 (Ⅱ)由)2)(32()( --=x x a x f 知: 当0>a 时,函数f x ()在]32,2[-上是增函数,在]1,32[上是减函数 此时,a f y 2732)32(max == -----------8分 又对]1,2[-∈∀x ,不等式916)(<x f 恒成立 ∴9162732<a 得23<a ∴230<<a -----------10分 当0<a 时,函数f x ()在]32,2[-上是减函数,在]1,32[上是增函数 又a f 32)2(-=-,a f =)1(,此时,a f y 32)2(max -=-= -----------11分又对]1,2[-∈∀x ,不等式916)(<x f 恒成立 ∴91632<-a 得181->a ∴0181<<-a -----------13分 故所求实数的取值范围是)23,0()0,181( - -----------14分 20、(本小题满分14分)证明:(Ⅰ)∵n a 是1与n S 的等差中项∴n n S a +=12 -----------1分又n n a a a S +⋅⋅⋅++=21∴当2≥n 时,1--=n n n S S a∴)2(1)(21≥+=--n S S S n n n ,即)2(121≥+=-n S S n n -----------3分 ∴)2)(1(211≥+=+-n S S n n ∴)2(2111≥=++-n S S n n又1112S a +=,则111==a S∴}1{+n S 是首项为2,公比为2的等比数列 -----------5分解:由前述知数列}1{+n S 是首项为2,公比为2的等比数列.∴n n S 21=+∴12-=n n S∴当111222,2---=-=-=≥n n n n n n S S a n 时∴)1(21≥=-n a n n -----------8分 (Ⅱ)解:∵12-=n n a∴n n a 21=+ -----------9分∴2log 1+=n a n bn1=-----------11分 ∵014 ,01>+>+n n , ∴12)5()(+++=n n b n b n f 514)1(1++++=n n 91≤ -----------13分 当且仅当n = 1时,取等号∴)(n f 的最大值是91. -----------14分21、(本小题满分12分)解:(Ⅰ)要使得不等式0()0f x m -≤能成立,只需min ()m f x ≥ 求导得:12(2)()2(1)211x x f x x x x +'=+-=++ -----------2分 ∵函数()f x 得定义域为(1,)-+∞,当(1,0)x ∈-时,()0f x '<,∴函数()f x 在区间(1,0)-上是减函数; -----------3分 当(0,)x ∈+∞时,()0f x '>,∴函数()f x 在区间(0,+∞)上是增函数. -----------4分 ∴min ()(0)1f x f ==,∴1m ≥,故实数m 的最小值为1. -----------6分 (Ⅱ)由2()(1)2ln(1)f x x x =+-+得:22()(1)2ln(1)()12ln(1)g x x x x x a x x a =+-+-++=+-+- -----------7分 ∵函数2()()g x f x x x a =---在区间[]0,2上恰有两个不同的零点 ∴方程(1)2ln(1)x x a +-+=在区间[]0,2上恰有两个相异实根.-----------8分 设()(1)2ln(1)h x x x =+-+∵()21111x h x x x -'=-=++, 列表如下:- 0 + ↘ ↗ ∵()()021(32ln3)2(ln31)2(ln 1)0h h e -=--=->-= ∴()()02h h >从而有()max 1h x =,()min 22ln 2h x =- -----------10分 画出函数()h x 在区间[]0,2上的草图(见右下)易知要使方程()h x a =在区间[]0,2上恰有两个相 异实根, 只需:22ln 232ln3a -<≤-,分 即:(]22ln 2,32ln3a ∈-- -----------12。

相关文档
最新文档