2020届浙江省学军中学2017级高三3月月考数学试卷及答案

合集下载

2020学年浙江省杭州学军中学高三第二次月考数学试卷

2020学年浙江省杭州学军中学高三第二次月考数学试卷

2020学年浙江省杭州学军中学高三第二次月考数学试卷(理科)一.选择题(本大题共10小题,每小题5分,共50分) 1.复数)31(2i i--⋅的虚部是( ) A.23-B. 23C. 21- D.21 2.若352lim 222=--++→x x a x x x ,则=a ( ) A .2 B .2- C .61D .6-3.设随机变量ξ的分布列由,3,2,1,)31()(===k a k p kξ则a 的值为 ( )A .1B .139C .1311D .13274.已知1}|32||{:p >-x x , 0}6|{:q 2>-+x x x 则p ⌝是q ⌝的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件 D. 既不充分也不必要条件5.一个关于自然数n 的命题,如果1=n 时命题正确,且假设)1(≥=k k n 时命题正确,可以推出2+=k n 时命题也正确,则( )A.命题对一切自然数n 都正确B.命题对一切正偶数都正确C.命题对一切正奇数都正确D.以上说法都不正确6.已知{}{}φ≠-<<+=≤≤-=121|,72|m x m x B x x A ,若A B A =Y ,则( ) A.43≤≤-m B.43<<-m C. 42<<m D. 42≤<m7.=+++∞→)211()211)(211(lim 22n n Λ( )A .3B .2C .23D .8158.已知函数)(x f 在区间),1[+∞-上连续,当0≠x 时,1111)(3-+-+=x x x f ,则=)0(f ( )A .23 B .1 C .32D .0 9.已知二次函数c bx ax x f ++=2)(的导数为0)0(),(>'f x f ,对于任意的实数x ,有0)(≥x f 恒成立,则)0()1(f f '的最小值为( ) A. 3 B.25 C.2 D. 2310.设集合{123456}M =,,,,,, 12k S S S L ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈L 、,,,,),都有⎭⎬⎫⎩⎨⎧i i i i a b b a ,min ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠j j j j a b b a ,min (min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( ) A .10 B .11 C .12 D .13二.填空题(本大题共7小题,每小题4分,共28分,请把答案填在题中横线上)11.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号的产品有16件,则=n12.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于 13.若12332lim 21112=⋅+⋅-++-∞→nn n n n a a ,则=a14.设函数()x e x f x22-=,则1)('lim 0-→x x e x f =15.某公司有5万元资金用于投资项目,如果成功,一年后可获利%22,一旦失败,一年后将丧失全部资金的%50,右表是过去200例类似项目开发的实施结果:则该公司一年后估计可获得的收益的期望是(元)16.设集合⎭⎬⎫⎩⎨⎧≤≤-=⎭⎬⎫⎩⎨⎧+≤≤=n x n x N m x m x M 32|,43|,且N M ,都是集合{}10|≤≤x x 的子集,如果把a b -叫做集合{}b x a x ≤≤|的“长度”,那么集合N M I 的长度的最小值是 17.设d cx bx x x f +++=23)(,又k 是一个常数,已知当0<k 或4>k 时,0)(=-k x f 只有一个实根;当40<<k 时,0)(=-k x f 有三个相异实根,现给下列命题: (1)04)(=-x f 与0)(='x f 有一个相同的实根; (2)0)(=x f 与0)(='x f 有一个相同的实根;(3)03)(=+x f 的任一实根大于01)(=-x f 的任一实根;(4)05)(=+x f 的任一实根小于02)(=-x f 的任一实根。

浙江省名校学考选考高2020届高2017级高三仿真训练卷数学一及参考答案解析

浙江省名校学考选考高2020届高2017级高三仿真训练卷数学一及参考答案解析

21.名校仿真训练卷(一)数学本试卷满分150分,考试时间120分钟.参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+ 如果事件A ,B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率为p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,,)k k n kn n P k C p p k n -=-=台体的体积公式()112213V S S S S h =+,其中12,S S 表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=,球的体积公式343V R π=,其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|22,[0,4]A x x B =+≤=,则()R C A B =( )A.RB.{}0C.{}|,0x x R x ∈≠D.φ【参考答案】C 【试题解析】先解含绝对值不等式得集合A,再根据集合的交集与补集定义求结果. 由集合{|22}A x x =+≤解得{||40}A x x =-≤≤ 则{||0}A B x x ⋂==故(){|,0}R C A B x x R x ⋂=∈≠, 故选C .本题考查含绝对值不等式以及交集与补集定义,考查基本求解能力. 2.若复数2i z =-,i 为虚数单位,则(1)(1)z z +-= A .24i +B.24i -+C.24i --D.4-【参考答案】B 【试题解析】()()11z z +-=2211(2)1(34)24z i i i -=--=--=-+ ,选B.,3.如图是半球和圆柱组合而成的几何体的三视图,则该几何体的体积为( )A.53π B.83π C.103πD.1223π+ 【参考答案】B 【试题解析】由三视图知半球的半径为1,圆柱的底面圆半径为1,高为2,根据球的体积公式和柱体体积公式,即可求得该几何体的体积.由三视图知半球的半径为1,圆柱的底面圆半径为1,高为2, 根据球的体积公式和柱体体积公式:∴该几何体的体积32418112323V πππ=⨯⨯+⨯⨯=, 故参考答案:B.本题主要考查三视图、圆柱与球的体积,意在考查考生的逻辑思维能力、空间想象能力、运算求解能力,考查的核心素养是直观想象、数学运算.4.已知,a b 为实数,22:0,:0p a b q a b +=+=,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【参考答案】B 【试题解析】根据充分条件、必要条件的定义即可得出结果.由0a b +=,取1,1a b ==-则220a b +≠,所以p 是q 的不充分条件; 由220a b +=则有0ab ,0a b +=成立,所以p 是q 的必要条件.综上,p 是q 的必要不充分条件. 故参考答案:B本题考查了充分条件、必要条件的定义,属于基础题.5.若实数,x y 满足条件0222x y x y x y -≤⎧⎪+≥-⎨⎪-≥-⎩,则2z x y =+的最大值是( )A.10B.8C.6D.4【参考答案】C 【试题解析】试题分析:画出0{222x y x y x y -≤+≥--≥-所表示的可行,如图,当直线2y x z =-+过()2,2时,z 的最大为2226⨯+=,故选C.考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.若用红、黄、蓝、绿四种颜色填涂如图方格,要求有公共顶点的两个格子颜色不同,则不同的涂色方案数有A.48种B.72种C.96种D.216种【参考答案】C 【试题解析】分析:直接按照乘法分步原理解答. 详解:按照以下顺序涂色,111111432212::::::A C B C D C C C E C F C →→→→→, 所以由乘法分步原理得总的方案数为111114322296C C C C C ⋅⋅⋅⋅=种.所以总的方案数为96, 故答案为:C:(1)本题主要考查排列组合计数原理的应用,意在考查学生的逻辑思维能力和排列组合的基本运算能力.解答排列组合时,要思路清晰,排组分清.(2)解答本题时,要注意审题,“有公共顶点的两个格子颜色不同”,如C 和D 有公共的顶点,所以颜色不能相同. 7.函数21()cos 2f x x x =+的大致图象是( ). A. B. C.D.【参考答案】C 【试题解析】根据函数的奇偶性和利用导数得出其单调性,即可得出答案.函数21()cos 2f x x x =+的定义域为R 21()()2f x x -=-21cos()cos ()2x x x f x +-=+=,所以函数21()cos 2f x x x =+为偶函数,函数图象关于y 轴对称,排除A,D ;()sin f x x x '=-,令()sin g x x x =-,()1cos 0g x x '=-≥,故函数()g x 在R 上单调递增由(0)0sin 00g =-=可知,当0x >时,()sin 0f x x x '=->,函数21()cos 2f x x x =+单调递增,排除B,只有C 选项中的图象符合. 故参考答案:C本题主要考查了函数图象的识别,函数的图象可以从定义域、值域、增减性、奇偶性、图象经过的特殊点等方面判断,属于中档题. 8.已知两个平面,αβ和三条直线,,m a b ,若m αβ=,a α⊂且,a m b β⊥⊂,设α和β所成的一个二面角的大小为1θ,直线a 和平面β所成的角的大小为2θ,直线,a b 所成的角的大小为3θ,则( )A.123θθθ=≥B.312θθθ≥=C.1323,θθθθ≥≥D.1232,θθθθ≥≥【参考答案】D 【试题解析】在一个平行六面体中,对三个角进行比较,即可选出正确答案. 如图,在平行六面体中,1190,90A AD A AB ∠=∠>不妨设面11AA D D 为α,面ABCD 为β,BC b =.则AD m =,1AA a = 此时,由图可知,12390,90,90θθθ><=.只有C 选项符合. 故选:D.本题考查了线面角,考查了面面角的概念.一般情况下,涉及到线面角和面面角问题时可借助空间向量进行求解.但在本题中,没有具体的几何体,因此,我们可以采取举实例的方法,在一个具体地几何体中探究角的大小关系.9.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 510C.4D.5【参考答案】B 【试题解析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值.()22224419||=1||3m m n m nn m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m nm m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+,令()(0x x f x x n =<≤=,则()'1f x =+,令()'0f x =,得x =∴当0x <<, ()'0f x >,x <<, ()'0f x <, ∴当2x =时, ()f x 取得最大值2f ⎛⎫= ⎪ ⎪⎝⎭故选B.向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 10.当(,]x a b ∈时,不等式2112x x -≤+恒成立,则实数a 的取值范围为( ) A.[2,3)- B.(2,3]-C.(2,3)-D.{2}-【参考答案】A 【试题解析】 解不等式2112x x -≤+可得23x -<≤,(,]x a b ∈时不等式恒成立转化为(,](2,3]a b ⊆-即可. 由2112x x -≤+,得2131022x x x x ---=≤++, 解得23x -<≤,因为当(,]x a b ∈时,不等式2112x x -≤+恒成立, 所以(,](2,3]a b ⊆-, 则[2,3)a ∈-, 故参考答案:A本题主要考查不等式恒成立问题,转化思想,子集,正确求解不等式得到不等式的解集是解题的关键,属于中档题.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中的横线上.11.等差数列{}n a 的前n 项和为n S ,若335,12a S ==,则公差d =__________;通项公式n a =__________.【参考答案】 (1).1 (2).2n + 【试题解析】 因335,12a S ==,所以1111253,(1)31211332122n a d a a a n d n n d a d +=⎧=⎧⎪∴=+-=+-=+⎨⎨=+⨯⨯=⎩⎪⎩12.已知函数()()2220log 10x x x f x x x ⎧+≤⎪=⎨+>⎪⎩,,,,则()()3f f -=____,()f x 的最小值为_____.【参考答案】 (1).2 (2).1- 【试题解析】利用分段函数,分别求的各段函数的最小值,即可求解分段函数的最小值.函数()()222,0log 1,0x x x f x x x ⎧+≤⎪=⎨+>⎪⎩,则()()()()23963log 42ff f f -=-===,当0x ≤时,二次函数开口向上,对称轴1x =-,∴函数的最小值为()1121f -=-=-;当0x ≥时,函数是增函数,0x =时函数取得最小值为0,0x ∴>时,()0f x >,综上函数的最小值为1-,故答案为 2, 1-.求分段函数的最值要注意:分段函数的最小值是各段最小值中最小值,最大值是各段最大值中最大值,值域是各段值域的并集. 13.已知随机变量ξ分布列为若,,a b c 成等差数列,且1()3E ξ=,则b 的值是___________,()D ξ的值是________. 【参考答案】 (1).13(2).59【试题解析】由等差中项及分布列可得2b a c =+,1a b c ++=,1()3E a c ξ=-+=,联立求解,然后结合方差公式运算即可.解:由,,a b c 成等差数列得2b a c =+①, 又由分布列得1a b c ++=②,1()3E a c ξ=-+=③, 联立①②③解得111,,632a b c ===, 则2221111115()1013633329D ξ⎛⎫⎛⎫⎛⎫=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故答案为:13;59. 本题考查离散型随机变量的分布列、期望和方差,熟记离散型随机变量的期望和方差公式是解题的关键,属基础题.14.若3nx ⎛- ⎝的展开式中所有项的系数的绝对值之和大于100,则n 的最小值为________;当n 取最小值时该展开式中的常数项是__________. 【参考答案】 (1).4 (2).-12 【试题解析】根据题意可知3nx ⎛+ ⎝的展开式中所有项的系数和大于100,令1x =,解得3n >,即n 的最小值为4,再利用二项式展开式的通项即可求解.3nx ⎛ ⎝的展开式中所有项系数的绝对值之和等于3nx⎛+ ⎝的展开式中所有项的系数和, 令1x =,得4100n >,解得3n >. 因为*n ∈N ,所以n 的最小值为4.当4n =时,该展开式的通项444431443((1)3rr r r r r rr T C C xx ---+⎛⎫==-⋅⋅ ⎪⎝⎭⋅⋅,由4403r -=,得3r =,所以该展开式中的常数项是334(1)312C -⋅⋅=-. 故答案为:4;-12本题考查了赋值法求二项式的系数和以及二项式展开式的通项,需熟记公式,属于基础题. 15.在ABC 中,3A π=,3BC =,点D 在线段BC 上,且2BD DC =,则AD 的最大值是________.1 【试题解析】由角A 和边BC 可求出外接圆半径R ,设外接圆的圆心为O ,利用余弦定理求出OD , 而OA R =,再由AD AO OD ≤+,求出AD 的最大值.设ABC 的外接圆的圆心为O ,则由正弦定理得2sin BCOA OB OC A====又因为223BOC BAC π∠=∠=,所以1()26OBC BOC ππ∠=-∠=, 则在BOD 中,由余弦定理得222222cos 222cos6OD BO BD BO BD OBC π=+-⋅∠=+-⨯1=,所以1OD =,则1AD AO OD ≤+=+,当且仅当A ,O ,D 三点共线时,等号成立,所以AD 1.1本题考查正弦定理、余弦定理,利用正弦定理和余弦定理求解相关线段的长度是解题的关键. 16.已知点M 为单位圆221x y +=上的动点,点O 为坐标原点,点A 在直线2x =上,则AM AO ⋅的最小值为_____.【参考答案】2 【试题解析】设出动点坐标(2,)A t ,(cos ,sin )M θθ,用坐标运算计算出向量的数量积242cos sin AM AO t t θθ⋅=+--,然后由辅助角公式和二次函数性质可求得最小值.设(2,)A t ,(cos ,sin )M θθ,则(cos 2,sin ),(2,)AM t AO t θθ=--=--, 所以242cos sin AM AO t t θθ⋅=+--.又max (2cos sin )t θθ+=,故24AM AO t ⋅≥+令s =,则2s ≥,又2242t s s +=-≥, 当2s = 即0t =时等号成立,故min ()2AM AO ⋅=. 故答案为2.本题考查平面向量的数量积的最值,解题关键是建立一个函数式,本题中有两个动点,因此要有两个变量,为此设(2,)A t ,(cos ,sin )M θθ,这样建立关系后,注意到两变量之间没有任何关系,因此可分别求最值,即先对θ求最值,再对t 求最值. 17.设函数()1411f x a x a x =--++-有两个零点,则实数a 的值是_________. 【参考答案】17,,422⎧⎫-⎨⎬⎩⎭ 【试题解析】分析:将原问题进行换元,转化为两个函数有两个交点的问题,然后结合函数图像的特征整理计算即可求得最终结果.详解:不防令11tx=-,则11xt=+.原问题转化为函数1y t a a=-+与函数2144113yt t⎛⎫=+-=+⎪⎝⎭的图像有2个交点,函数243yt=+的图像是确定的,如下所示(三个函数图像对应满足题意的三种情况),而函数1y t a a=-+是一动态V函数,顶点轨迹y=x,当动态V函数的一支与反比例函数相切时,即为所求.联立1243y a t a t ayt=-+=-+⎧⎪⎨=+⎪⎩可得()23240t a t+-+=,则满足题意时:()232160a∆=--=,解得:1217,22a a=-=,注意到当V函数的顶点为()4,4时满足题意,此时4a=.综上可得:实数a的值是17,,422⎧⎫-⎨⎬⎩⎭.:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.三、解答题:本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.18.已知函数()2cos cos 6f x x x π⎛⎫=⋅- ⎪⎝⎭在,(0)44a a a ππ⎡⎤-+>⎢⎥⎣⎦上是减函数. (Ⅰ)求()f x 的最小正周期和对称轴方程; (Ⅱ)求实数a 的取值范围. 【参考答案】(Ⅰ)=T π;212k x ππ=+,k Z ∈;(Ⅱ)06a π<≤.【试题解析】(Ⅰ)利用三角恒等变换化简函数解析式,再借助正弦函数的图象与性质求解即可; (Ⅱ)求出函数()f x 的单调递减区间,由此得到关于a 的不等式组,通过解不等式组,并结合a 的范围,即可得解.【详解】(Ⅰ)()2cos cos 6f x x x π⎛⎫=⋅-⎪⎝⎭12cos sin 2x x x ⎫=⋅+⎪⎪⎝⎭12cos 2cos sin 2x x x x =+⋅ 1cos 2)sin 222x x =++ 1cos 2sin 2222x x =++ sin 23x π⎛⎫=+ ⎪⎝⎭. 所以()f x 的最小正周期为22=2T πππω==, 令232x k πππ+=+,k Z ∈,解得212k x ππ=+,k Z ∈, 所以()f x 的对称轴方程为212k x ππ=+,k Z ∈.(Ⅱ)由(Ⅰ)可知()3sin 23f xx π⎛⎫=++ ⎪⎝⎭, 3222232k x k πππππ+≤+≤+,k Z ∈, 解得71212k x k ππππ+≤≤+,k Z ∈, 所以,()f x 在7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数, 所以4127412a k a k ππππππ⎧-≥+⎪⎪⎨⎪+≤+⎪⎩,k Z ∈,即36a k a k ππππ⎧≤+⎪⎪⎨⎪≤-+⎪⎩,k Z ∈,因为()f x 在,44a a ππ⎡⎤-+⎢⎥⎣⎦上是减函数,所以4422T a a πππ⎛⎫⎛⎫+--≤=⎪ ⎪⎝⎭⎝⎭, 即04a π<≤,结合3a k ππ≤+,且6a k ππ≤-+,k Z ∈,解得0k =,所以06a π<≤.所以实数a 的取值范围为06a π<≤.本题考查了三角恒等变换及正弦函数的图象与性质,具体考查了两角差的余弦公式、二倍角公式、两角和的正弦公式、正弦型函数的周期性、正弦型函数的对称轴和正弦型函数的单调性等知识点,考查学生对这些知识的掌握能力,属于中档题. 19.在三棱锥A BCD -中,2,2,2AB AD BD BC DC AC ======.(1)求证:BD AC ⊥;(2)若点P 为AC 上一点,且3AP PC =,求直线BP 与平面ACD 所成的角的正弦值.【参考答案】(1)证明见解析;(2)43【试题解析】(1)取BD 的中点E ,连接,AE CE ,然后由等腰三角形的性质推出,AE BD CE BD ⊥⊥,从而利用线面垂直的判定定理与性质可使问题得证;(2)以E 为坐标原点建立空间直角坐标系,然后求出相关点的坐标,再求出平面ACD 的一个法向量,从而利用空间向量的夹角公式求解即可.解:(1)证明:取BD 的中点E ,连接,AE CE , ∵2AB AD BD ===,∴AE BD ⊥, 同理可得CE BD ⊥, 又AECE E =,∴BD ⊥平面ACE ,又AC ⊂平面ACE ,∴BD AC ⊥. (2)∵2,2AB AD BD BC DC =====∴BCD 为等腰直角三角形,且3,1AE CE ==,∴222AE EC AC +=,∴2AEC π∠=,即AE EC ⊥,又AE BD ⊥,且BD EC E ⋂=,∴AE ⊥平面BCD ,∴以E 为坐标原点,EC 所在直线为x 轴,ED 所在直线为y 轴,EA 所在直线为z 轴建立如图所示的空间直角坐标系.∴(0,1,0),(0,1,0),(1,0,0),3)B D C A -, 设()000,,P x y z ,∵3,(1,0,3)4AP AC AC ==-,(000,,3AP x y z =-, ∴(0003333,,3(1,0,3),0,44x y z ⎛-== ⎝⎭,∴0003,40,333x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩∴33,0,44P ⎛ ⎝⎭,∴33,1,44BP ⎛= ⎝⎭,又(0,1,3),(1,1,0)DA DC =-=-, 设()111,,n x y z =是平面ACD 的法向量,则11110,30,00,n DA y z n DC x y ⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅=-=⎪⎪⎩⎩令11x =,得1131,3y z ==,∴31,1,3n ⎛= ⎝⎭, 设直线BP 与平面ACD 所成角为θ, 则sin |cos ,|||||n BPn BP n BP θ⋅=<>=4377734==⨯,∴直线BP 与平面ACD 所成角的正弦值为43. 本题考查空间中直线与平面的位置关系、利用空间向量解决直线与平面所成角问题. (1)求出直线的方向向量与平面的法向量所夹的锐角后(求出是钝角时取其补角),取其余角即为直线与平面所成的角.(2)若求线面角的余弦值,要注意利用平方关系221sin cos θθ+=求出其值.不要误认为直线的方向向量与平面的法向量所成夹角的余弦值即为所求.20.已知数列{}n a 为递增的等差数列,其中35a =,且125,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)设()()1111n n n b a a +=++记数列{}n b 的前n 项和为n T ,求使得n mT 5<成立的m 的最小正整数.【参考答案】(1)21n a n =-;(2)2. 【试题解析】(1)利用待定系数法,设出首项1a 和公差d ,依照题意列两个方程,即可求出{}n a 的通项公式; (2)由()()1111n n n b a a +=++,容易想到裂项相消法求{}n b的前n 项和为n T ,然后,恒成立问题最值法求出m 的最小正整数. (1)在等差数列中,设公差为d ≠0, 由题意,得,解得.∴a n =a 1+(n ﹣1)d =1+2(n ﹣1)=2n ﹣1; (2)由(1)知,a n =2n ﹣1.则=,∴T n ==.∵T n +1﹣T n ==>0,∴{T n }单调递增,而,∴要使成立,则,得m,又m ∈Z ,则使得成立的m 的最小正整数为2.本题主要考查等差、等比数列的基本性质和定义,待定系数法求通项公式,裂项相消求数列的前n 项和,以及恒成立问题的一般解法,意在考查学生综合运用知识的能力.21.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点()0,1M ,中心都在坐标原点,且椭圆1C 与2C 的离心率均为3. (Ⅰ)求椭圆1C 与椭圆2C 的标准方程;(Ⅱ)过点M 的互相垂直的两直线分别与1C ,2C 交于点A,B (点A 、B 不同于点M ),当MAB ∆的面积取最大值时,求两直线MA,MB 斜率的比值.【参考答案】(1)2214x y +=,22+114x y =997-【试题解析】分析:(1)根据题的条件,得到对应的椭圆的上顶点,即可以求得椭圆中相应的参数,结合椭圆的离心率的大小,求得相应的参数,从而求得椭圆的方程;(2)设出一条直线的方程,与椭圆的方程联立,消元,利用求根公式求得对应点的坐标,进一步求得向量的坐标,将S 表示为关于k 的函数关系,从眼角函数的角度去求最值,从而求得结果.详解:(Ⅰ)依题意得对1C :1b =,2222324a b e e a-=⇒==,得1C :2214x y +=; 同理2C :22+114x y =. (Ⅱ)设直线MA MB ,的斜率分别为12k k ,,则MA :11y k x =+,与椭圆方程联立得:2222111414041x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(),得22114180k x k x ++=(),得1A 218=41k x k -+,21A 2141=41k y k -++,所以2112211841A(,)4141k k k k -+-++ 同理可得222222224,44k k B k k ⎛⎫-- ⎪++⎝⎭.所以221122222211228822=(,),,414144k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,从而可以求得()()()221221122122222212211216822811==24144412414k k k k k k k k S k k k k k k -----⋅-⋅++++++因为121k k =-,所以()()3112218+=41k k S k+,不妨设()()()()34211111242211+4910,4141k k k k k f k f k kk'--+>==++,()42211190491=0=8f k k k k ,,=∴--+',所以当S 最大时,219=8k ,此时两直线MA,MB 斜率的比值2112=k k k -. :该题考查的是有关椭圆与直线的综合题,在解题的过程中,注意椭圆的对称性,以及其特殊性,与y 轴的交点即为椭圆的上顶点,结合椭圆焦点所在轴,得到相应的参数的值,再者就是应用离心率的大小找参数之间的关系,在研究直线与椭圆相交的问题时,首先设出直线的方程,与椭圆的方程联立,求得结果,注意从函数的角度研究问题. 22.已知函数()()ln 12xf x ex =+-,()xg x e=.(Ⅰ)求()f x 的单调区间;(Ⅱ)()()()F x f x g x =+,记min ()M F x =,求证:M >.【参考答案】(Ⅰ)单调递减区间是(,)-∞+∞,无单调递增区间.(Ⅱ)见解析【试题解析】(Ⅰ)首先求出()f x ',然后根据()f x '与0的大小关系求得函数()f x 的单调性;(Ⅱ)首先求出()F x ',然后通过研究函数()F x 的单调性求得min ()F x ,从而利用放缩法可使问题得证. 解:(Ⅰ)∵2()211x xx x e e x e ef --=-=+'+,∴()0f x '<, ∴()f x 的单调递减区间是(,)-∞+∞,无单调递增区间.(Ⅱ)证明:∵()()ln 12x xF x e x e =+-+, ∴211(2)2x x x x xe e x e e e F ---='+=++,∴当(x ∈-∞时,()0F x '<,()F x 单调递减,当)x ∈+∞时,()0F x '>,()F x 单调递增,∴min ()ln(1M F x F ===-1ln 2+=+>. 本题考查导数与函数单调性的关系、导数在不等式证明中的应用.由()0f x '>确定函数()f x 的增区间,由()<0f x '确定函数()f x 的减区间,确定了单调性后可得函数的极值和最值.。

圆锥曲线中的三角形问题(含解析)

圆锥曲线中的三角形问题(含解析)

专题12 圆锥曲线中的三角形问题一、题型选讲题型一 、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1B .2C .3D .9例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( )A .5B .5C .2413D .1913例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF ⊥.(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____.2、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .43、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P为抛物线上异于原点的任一点,过点P作抛物线的切线交y轴于点Q,证明:2∠=∠.PFy PQF ()2A,B是抛物线上两点,线段AB的垂直平分线交y轴于点()D(AB不与x轴平行),且0,4+=.过y轴上一点E作直线//6AF BFm x轴,且m被以AD为直径的圆截得的弦长为定值,求ABE△面积的最大值.一、题型选讲题型一、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1 B .2C .3D .9【答案】C 【解析】设准线与x 轴的交点为T ,直线l 与准线交于R ,||||3||3NF EF MF a ===,则||||3NF EF a ==,||MF a =,过M ,N 分别作准线的垂线,垂足分别为,P Q ,如图,由抛物线定义知,||MP a =,||3NQ a =,因为MP ∥NQ ,所以||||||||PM RM QN RN =, 即||3||4a RM a RM a=+,解得||2RM a =,同理||||||||FT RF QN RN =,即||336FT aa a=,解得 3||2FT a =,又||FT p =,所以32a p =,23a p =,过M 作NQ 的垂线,垂足为G ,则||MG ===,所以1||||2MNES EF MG =⋅=△ 132a ⨯⨯=2a =,故332p a ==. 故选:C.例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.【答案】12【解析】作点B 关于原点的对称点B 1,可得S 21'BOF B OF S =,则有11275A B y S S y ==,所以175A B y y =-. 将直线AB 1方程4x c =-,代入椭圆方程后,222241x y c x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩, 整理可得:(b 2+8a 2)y 2﹣b 2cy +8b 4=0,由韦达定理解得12228A B cy y b a+=+,142288A B b y y b a -=+, 三式联立,可解得离心率12c e a ==. 故答案为:12. 例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( ) A.5B.5C .2413D .1913【答案】D 【解析】如图,先固定直线AB ,设()BM f M AM =,则()()()f C f D f P ==,其中()BPf P AP=为定值, 故点P ,C ,D 在一个阿波罗尼斯圆上,且PCD 外接圆就是这个阿波罗尼斯圆,设其半径为r ,阿波罗尼斯圆会把点A ,B 其一包含进去,这取决于BP 与AP 谁更大,不妨先考虑BP AP >的阿波罗尼斯圆的情况,BA 的延长线与圆交于点Q ,PQ 即为该圆的直径,如图:接下来寻求半径的表达式, 由()2,2AP BP r BP BQ r AP AQ AP AP AQ BP ⋅+==+=+,解得111r AP BP=-, 同理,当BP AP <时有,111r BP AP=-, 综上,111r AP BP=-; 当直线AB无斜率时,与椭圆交点纵坐标为1,1AP BP ==,则1912r =; 当直线AB 斜率存在时,设直线AB 的方程为()12y k x -=-,即21y kx k =-+, 与椭圆方程联立可得()()()22224548129610k x k k x k k ++-+--=,设()11,A x y ,()22,B x y ,则由根与系数的关系有,()()12221224821245961245k k x x k k k x x k ⎧-+=⎪+⎪⎨--⎪=⎪+⎩,211112r AP BP x ∴=-=-,注意到12x -与22x -异号,故1119r ===,设125t k =+,则11121226131919192419r ==≤⋅=,,当15169t =,即1695t =,此时125k =,故1913r ≥,又19191213>,综上外接圆半径的最小值为1913. 故选:D .例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==.所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.【答案】(△)223144x y +=;(△)221x y +=,⎡⎢⎣⎦.【解析】(△)由题意可得,22||48F A F B AB a ++==, 故2a =,又有3c e a ==,∴c = 椭圆的标准方程为223144x y +=;(△)法1:设||OA m =,||OB n =,∵0OA OB ⋅=,∴OA OB ⊥, 设点(cos ,sin )A m m θθ,点(sin ,cos )B n n θθ-,22222222cos 3sin 144cos 3sin 144m m n n θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相加得22131144m n +=+, 2222m n m n +=⋅,222AB OA OB =⋅,∴1r =,442222222111||1111n n AB m n n n n n -+=+===++---,24,43n ⎡⎤∈⎢⎥⎣⎦,∴AB ⎡∈⎢⎣⎦,OABS ⎡∈⎢⎣⎦△. 法2:()2222234136340x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩, ()()22222236434131248160k m m k m k ∆=--+=-++>,1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++222444013m k k--==+, ∴221m k =+,∴1r ===,122||13AB xk=-==+当0k=时,||2AB=,当0k≠时,||AB=≤213k=时取到等号,此时243m=符合>0∆∴1,3OABS⎡∈⎢⎣⎦△.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x=的焦点为F,准线为l,过点F 的直线交抛物线于A,B两点,点B在准线l上的投影为E,若C是抛物线上一点,且AC EF⊥.(1)证明:直线BE经过AC的中点M;(2)求ABC∆面积的最小值及此时直线AC的方程.【答案】(1)详见解析;(2)面积最小值为16,此时直线方程为30x y±-=.【解析】(1)由题意得抛物线24y x=的焦点()1,0F,准线方程为1x=-,设()2,2B t t,直线AB:1x my=+,则()1,2E t-,联立1x my=+和24y x=,可得244y my=+,显然40A By y+=,可得212,At t⎛⎫-⎪⎝⎭,因为EFk t=-,AB EF⊥,所以1AC k t=, 故直线AC :2211y x t t t ⎛⎫+=- ⎪⎝⎭, 由224120y xx ty t ⎧=⎪⎨---=⎪⎩, 得224480y ty t---=. ∴4A C y y t +=,248A C y y t =--, 所以AC 的中点M 的纵坐标2M y t =,即M B y y =, 所以直线BE 经过AC 的中点M .(2)所以A C y A C =-== 设点B 到直线AC 的距离为d ,则2212t d ++==.所以1162ABCS AC d ∆=⋅=≥=,当且仅当41t =,即1t =±,1t =时,直线AD 的方程为:30x y --=,1t =-时,直线AD 的方程为:30x y +-=.另解:2221112222ABC A C S BM y y t t t ∆=⋅-=++-3222122t t ⎛⎫=++ ⎪⎝⎭.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____. 【答案】[]0,1【解析】依题意,122F F =,所以120122PF F S y ∆=⨯=0y =,而2200214x y m +=,所以2200224124144y x m m m ⎛⎫=-=- ⎪-⎝⎭.由于02m <<,204m <<,根据二次函数的性质可知:()(]22424240,4m m m -=--+∈,所以241234m m -≤--,所以22412414x m m =-≤-,解得[]00,1x ∈.故答案为:[]0,12、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得M,3(,22N -,所以||3MN ==,故选B . 3、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______. 【答案】258π【解析】设三个切点分别为222(,),(,),(,)444a b c A a B b C c ,若在点A 处的切线斜率存在,设方程为2()4a y a k x -=-与24y x =联立,得,222440,164(4)0ky y a k a k a k a --+=∆=--+=, 即222440,a k ak k a-+=∴=, 所以切线PA 方程为2202a x ay -+= ①若在点A 的切线斜率不存在,则(0,0)A , 切线方程为0x =满足①方程,同理切线,PB MN 的方程分别为2202b x by -+=,2202c x cy -+=,联立,PA PB 方程,22202202a x ay b x by ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得42ab x a b y ⎧=⎪⎪⎨+⎪=⎪⎩,即,42ab a b P +⎛⎫ ⎪⎝⎭同理,,,4242ac a c bc b c M N ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(),42a c b c b PM --⎛⎫= ⎪⎝⎭, ()(),,,4242b c a c a c b a b a PN MN ----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设PMN ∆外接圆半径为R ,|||||||||PM b c PN a c MN a b =-=-=-,11||||sin ||||22PMN S PM PN MPN PM PN ∆=∠=21||||()2||||PM PN PM PN ===||||||1||||||1622a b b c a c MN PM PN R---==,||||||4PM PN MN R S ⋅⋅==08c =≥时取等号,点P在直线40,4,8422ab a b ab x y a b +-+=∴+=∴+=+,8R =∴≥8==4≥=, 当且仅当1,6,0a b c =-==或6,1,0a b c ==-=时等号成立, 此时PMN ∆外接圆面积最小为258π. 故答案为:258π.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.【答案】(1)2y x =(2)最小值 【解析】(1)当1s =时,5||24p PF s =+=, 所以12p =,故所求抛物线方程为2y x =. (2)点(),P s t 为抛物线2y x =上的动点,则2s t =,设过点2(,)P t t 的切线为2()x m y t t =-+, 21=, 得22222(1)2(2)(2)10(*)t m t t m t -+-+--=, 12,m m 是方程(*)式的两个根, 所以21222(2)1t t m m t -+=-,2123m m t =-, 设()()221122,,,A y y B y y ,因直线2:()l x m y t t =-+,与抛物线2:C y x =交于点A ,则212()x m y t t y x⎧=-+⎨=⎩得22110y m y m t t -+-=, 所以211ty m t t =-,即11y m t =-,同理22y m t =-,设直线()1212:AB x y y y y y =+-,则12||||AB y y =-,d =,又12122221t y y m m t t -+=+-=-, 2121223()()1t y y m t m t t -=--=-, 所以212121211|||||()|22PAB S AB d y y t t y y y y ==--++22222311t t t t t --=-⨯+--=令210u t=->,4(PAB S u u =++当且仅当2u =,即t =时,PAB S 取得最小值5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.【答案】(1)24y x =;(2)【解析】(1)由已知得焦点F 的坐标为(1, 0), 2p ∴=,∴抛物线C 的方程为:24y x =;(2)设直线AB 的方程为:2x my =+,设()11,A x y ,()22,B x y ,()00,M x y ,联立方程224x my y x=+⎧⎨=⎩,消去x 得:2480y my --=, 216320m ∴∆=+>,124y y m +=,128y y =-,设直线l 方程为:()11y y k x x -=-,联立方程()1124y y k x x y x ⎧-=-⎨=⎩,消去x 得:2114440y y y x k k-+-=, 由相切得:112164440k k y x ⎛⎫∆=--= ⎪⎝⎭,112110y x k k ∴-+=, 又2114y x =,21121104y y k k ∴-+=, 21102y k ⎛⎫∴-= ⎪⎝⎭,12k y ∴=, ∴直线l 的方程为:11220x y y x -+=,由4AB AM →→=,得12034x x x +=,12034y y y +=, 将12034y y y +=代入直线l 方程,解得221121888N yy y y x +-==, 所以01212ABN N S x x y y =-⨯-△212112138248x x yy y +-=-⨯-2212121632y y y y ++=⨯-31232y y -=311832y y +=,又118y y +≥ 所以42ABN S △,当且仅当1y =±时,取到等号,所以ABN面积的最小值为6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P 为抛物线上异于原点的任一点,过点P 作抛物线的切线交y 轴于点Q ,证明:2PFy PQF ∠=∠. ()2A ,B 是抛物线上两点,线段AB 的垂直平分线交y 轴于点()0,4D (AB 不与x 轴平行),且6AF BF +=.过y 轴上一点E 作直线//m x 轴,且m 被以AD 为直径的圆截得的弦长为定值,求ABE △面积的最大值.【答案】()1证明见解析; ()2 【解析】()1由抛物线的方程可得()0,1F ,准线方程:1y =-,设200,4x P x ⎛⎫ ⎪⎝⎭, 由抛物线的方程可得2x y '=,所以在P 处的切线的斜率为:02x k =, 所以在P 处的切线方程为:()200042x x y x x -=-, 令0x =,可得204x y =-, 即2040,Q x ⎛-⎫ ⎪⎝⎭, 所以2014x FQ =+,而P 到准线的距离2014x d =+,由抛物线的性质可得PF d = 所以PF FQ =,PQF QPF ∠=∠,可证得:2PFy PQF ∠=∠.()2设直线AB 的方程为:y kx m =+,()11,A x y ,()22,B x y ,直线与抛物线联立24y kx mx y =+⎧⎨=⎩,整理可得:2440x kx m --=,216160k m ∆=+>,即20k m +>,124x x k +=,124x x m =-,()21212242y y k x x m k m +=++=+,所以AB 的中点坐标为:()22,2k k m +,所以线段AB 的中垂线方程为:()212(2)y k m x k k -+=--,由题意中垂线过()0,4D ,所以2224k m ++=,即222k m +=,① 由抛物线的性质可得:1226AF BF y y +=++=,所以24226k m ++=,即222k m +=,②设()0,E b ,()222114AD x y =+-,AD 的中点的纵坐标为142y +,所以以AD 为直径的圆与直线m 的相交弦长的平方为:2214442y AD b ⎡⎤+⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()()()222112114444444y y x b b y ⎡⎤-+=+--++⎢⎥⎢⎥⎣⎦()221111444434y b b y by b y b b ⎡⎤-+-+=-+-⎣⎦⎡⎤⎣⎦,要使以AD 为直径的圆截得的弦长为定值则可得3b =,时相交弦长的平方为定值12,即()0,3E所以E 到直线AB的距离为:d = 而弦长AB ==,所以1232EAB S AB d =⋅==-将①代入可得2322212ABE S k k =-+=+=设()6424472f k k k k =-+++为偶函数,0k >>的情况即可,()()()()5342222416142126722167f k k k k k k k k k k ++=---=-+=--' 令()0f k '=,6k =当06k <<,()0f k '>,()f k 单调递增;当k 6<<()0f k '<,()f k 单调递减,所以(k ∈且0k ≠上,66f f ⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为最大值9,所以ABE S的最大值为:212+=。

2020届浙江省杭州学军中学2017级高三上学期期中模拟考试数学试卷及解析

2020届浙江省杭州学军中学2017级高三上学期期中模拟考试数学试卷及解析

2020届浙江省杭州学军中学2017级高三上学期期中模拟考试 数学试卷★祝考试顺利★(解析版) 1.设全集U =R ,集合{}1M x x =>,{}21P x x =>则下列关系中正确的是( ) A. M P =B. M P M =C. M P M =D. ()U M P =∅【答案】C【解析】 对集合P 进行化简,然后得到集合M 和集合P 的关系,得到答案.【详解】集合{}{}2111P x x x x x =>=><-或, 集合{}1M x x =>,所以MP M =, 故选C.2.设纯虚数z 满足1i 1i a z -=+(其中i 为虚数单位),则实数a 等于 A. 1B. -1C. 2D. -2【答案】A【解析】本题考查的是复数运算.设,则,所以.解得,应选A . 3.若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是A. [0,6]B. [0,4]C. [6, +∞)D. [4, +∞)【答案】D解:x 、y 满足约束条件,表示的可行域如图:目标函数z=x+2y 经过C 点时,函数取得最小值, 由解得C (2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D .4.已知,a b ∈R ,下列四个条件中,使a b >成立的充分不必要的条件是( )A. 1a b >-B. 1a b >+C. a b >D. 22a b > 【答案】B【解析】根据充分不必要条件的定义,逐一分析给定四个选项与a >b 的关系,可得答案.【详解】B 选项1a b >+是a b >的充分不必要的条件;A 选项1a b >-是a b >的必要不充分条件;C 选项a b >是a b >的即不充分也不必要条件;D 选项22a b >是a b >的充要条件;故选B .5.函数2ln x xy x =的图象大致是( )A. B.。

2020年3月浙江省学考选考高2020届高2017级高三宁波十校联考技术试题参考答案

2020年3月浙江省学考选考高2020届高2017级高三宁波十校联考技术试题参考答案

宁波“十校”2020届高三3月联考技术参考答案第一部分:信息技术参考答案一、单项选择题(24分,每题2分)二、填空题:共26分,其中第13题4分,第14题8分,第15题7分,第16题7分。

13.(1)=D3/SUM($D$3:$D$15)*100或=D3/SUM(D$3:D$15)*1001分(2)C8:H11或C8:I11 1分(3)C8,E8,C13,E13 1分(4)3 1分14.(1)C E 2 分(2)影片剪辑 1分(3)在音乐图层的第1帧执行复制帧命令,并在音乐图层的第37帧粘贴帧或在音乐图层的第37帧插入关键帧,然后再添加音频素材。

2分(4)11 2分(5)gotoAndStop("ningbo",1);1分15.(1)D 1分(2)i Mod m=0 2分(3)①((i-1)\m+1)*m 2分②s=s+str(a(i)) 2分16.(1)8 1分(2)①a(k)=a(k+1) And a(k)=1 或 a(k)=1 And a(k+1)=1或a(k)=a(k+1) And a(k+1)=1 2分②List1.AddItem GetStr(i, n) 2分③m=m\2 2分第二部分:通用技术参考答案一、选择题(本大题共13小题,每小题2分,共26分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

)二、非选择题(本大题共4小题,第14小题5分,第15小题10分,第16小题3分,第17小题6分,共24分)14.(每空1分,共5分)(1)C(2)B(3)D(4)C(5)D15.(10分)(1)A(1分);(2)、(3)草图及尺寸标注如下图:连接件设计材料使用4mm厚钢板(1分),连接件可与镜框木质背板可靠连接(1分),可实现支架转动、支架展开(1分),可实现限定约30度角并固定(1分),草图美观有立体感(1分)。

尺寸:约30°角并固定(1分),与支架上端尺寸相配合(1分)。

专题03 充分、必要、充要问题的研究(解析版)

专题03 充分、必要、充要问题的研究(解析版)

专题03 充分、必要、充要问题的研究一、题型选讲题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 例1、【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选A .1-1、【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.1-2、(2020届浙江省台州市温岭中学3月模拟)已知,x y 是非零实数,则“x y >”是“11x y<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】 因为11x y <,所以00x y x y xy xy >⎧->⇒⎨>⎩或0x y xy <⎧⎨<⎩ ,所以x y >是“11x y <”的既不充分也不必要条件,选D 1-3、(2020·浙江省温州市新力量联盟高三上期末)已知0a >且1a ≠,则“()log 1a a b ->”是“()10a b -⋅<”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由()log 1a a b ->当1a >时,a b a ->得0b <,推出()10a b -<, 当01a <<时,0a b a <-<得0b >,推出()10a b -<, 则()log 1a a b ->是()10a b -<的充分条件,但当()10a b -<时不一定能推出()log 1a a b ->(比如:01a <<,1b >,这时0a b -<无意义) 则()log 1a a b ->是()10a b -<的不必要条件, 故选:A.1-4、(2020届浙江省温丽联盟高三第一次联考)已知m 为非零实数,则“11m<-”是“1m >-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由11m <-,得10m m +<,解得10m -<<,故“11m<-”是“1m >-”的充分不必要条件.故选A.例2、【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选B.2-1、(2020·浙江学军中学高三3月月考)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当“直线a 和直线b 相交”时,平面α和平面β必有公共点,即平面α和平面β相交,充分性成立; 当“平面α和平面β相交”,则 “直线a 和直线b 可以没有公共点”,即必要性不成立. 故选A.例3、【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】(1)当存在k ∈Z 使得π(1)kk αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)kk αβ=+-.所以,“存在k ∈Z 使得π(1)kk αβ=+-”是“sin sin αβ=”的充要条件.故选C .3-1、(2020届浙江省宁波市余姚中学高考模拟)在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.3-2、(2020·浙江温州中学3月高考模拟)“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】cos cos αβαβ=⇒=所以cos cos αβαβ≠⇒≠ (逆否命题)必要性成立当cos cos αβαβ=-⇒=,不充分 故是必要不充分条件,答案选B3-3、(江苏省南通市通州区2019-2020学年高三第一次调研抽测)将函数()sin 4f x x π⎛⎫=+⎪⎝⎭的图象向右平移ϕ个单位,得到函数y g x =()的图象.则“34πϕ=”是“函数()g x 为偶函数”的________条件,(从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中选填一个) 【答案】充分不必要【解析】由题意,将函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,可得sin 4()=πϕ⎛⎫+- ⎪⎝⎭gx x 的图像, 当34πϕ=时,可得3sin sin cos 442()=πππ⎛⎫⎛⎫+-=-=- ⎪ ⎪⎝⎭⎝⎭gx x x x ,显然()g x 为偶函数, 所以“34πϕ=”是“函数()g x 为偶函数”的充分条件; 若函数()g x 为偶函数,则,42ππϕπ-=+∈k k Z ,即,4πϕπ=--∈k k Z ,不能推出34πϕ=, 所以“34πϕ=”不是“函数()g x 为偶函数”的必要条件, 因此“34πϕ=”是“函数()g x 为偶函数”的充分不必要条件. 故答案为:充分不必要例4、【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.4-1、(2020届山东省日照市高三上期末联考)设,a b 是非零向量,则2a b =是a abb =成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =可知:a b , 方向相同,a ba b , 表示 a b , 方向上的单位向量所以a b a b=成立;反之不成立. 故选B例5、(2020届浙江省嘉兴市高三5月模拟)已知,R a b ∈,则“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】直线10ax y +-=和直线2(2)10x a y +--=垂直, 则()220a a +-=,解得2a =-或1a =,所以,由“1a =”可以推出“直线10ax y +-=和直线2(2)10x a y +--=垂直”,由 “直线10ax y +-=和直线2(2)10x a y +--=垂直”不能推出“1a =”,故“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的充分不必要条件, 故选:A.5-1、(2020·浙江温州中学高三3月月考)“直线()1330m x y +-+=与直线220x my -+=平行”的充要条件是m =( ) A .-3 B .2 C .-3或2 D .3或2【答案】A【解析】当0m =或1m =-时,显然直线不平行, 由132m m+=,解得:3m =-或2m =, 3m =-时,直线分别为:2330x y --+=和2320x y ++=,平行, 2m =时,直线分别为:3330x y -+=和2220x y -+=,重合,故3m =-, 故选:A .例6、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】设等比数列{}n a 公比为q ,当1q =时,19910990a S a >⇔=>,当1q ≠时,999999111,011q q S a q q --=⋅>--, 19900a S >⇔>∴,所以“10a >”是“990S >”的充要条件. 故选:C.6-1、(2020·浙江高三)等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,则“d =0”是“2nnS S ∈Z ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,若d =0,则{a n }为常数列,故a n =1a , 即2112,n n S na S na ==⇒“2nnS S ∈Z ”,当2nnS S ∈Z 时,d 不一定为0, 例如,数列1,3,5,7,9,11中,631357911135S S +++++==++4,d =2, 故d =0是2nnS S ∈Z 的充分不必要条件. 故选:A .题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。

浙江省学考选考浙江省杭州市杭州二中2017学年高三年级第三次月考数学试题参考答案

浙江省学考选考浙江省杭州市杭州二中2017学年高三年级第三次月考数学试题参考答案

二、填空题11.1024;2,2i i +--12.y =;213.283π-;241)π+ 14..95;925 15.417 16.22186x y += 17. 78三、解答题18. (Ⅰ)令sin cos x x t ⎡-=∈⎣,则22sin cos 1x x t =-+ 当1a =时,()2215124f t t t t g t ⎛⎫=-++=--+= ⎪⎝⎭() 故()max 1524f tg ⎛⎫== ⎪⎝⎭(Ⅱ)根据(Ⅰ)得()2-1f x t at g t =++=(),t ⎡∈⎣ 0=0g >()1,故不存在满足条件的a .19. (Ⅰ)∵//BC MN ,且MN ⊂平面SMN ,∴//BC 平面SMN .(Ⅱ)过S 向底面作垂线垂足为O ,连接BC 的中点P 与MN 的中点Q ,根据对称性可知O 在PQ 上,过O 向NC作垂线垂足为H ,根据对称性H 为NC 的中点,连接ON ,则SNO ∠是所求的线面角.根据对称性知,在三角形SPQ 中,22SP SQ PQ === 则SO=7,则sin cos 77SNO SNO ∠=∠=. (Ⅲ)解三角形SPQ可得:tan 5θ=. 20. (Ⅰ)1a =,则()21ln 2f x x x =+, ()()1'00f x x x x=+>>, 故()f x 在()0,+∞上单调递增,又()221110,1022e f f e e e⎛⎫=-<=+> ⎪⎝⎭ 故存在唯一零点(Ⅱ)根据题意,不等式21ln 22a x x ax ⎛⎫-+≤ ⎪⎝⎭对任意[)1,x ∈+∞恒成立 当12x ≤<时,()221ln 22x x a h x x x -≥=- 由()()max 1'012h x x h x =⇒=⇒=- 当2x ≤时,()221ln 1222x x a h x x x -≤=→-,故11,22a ⎡⎤∈-⎢⎥⎣⎦21.(Ⅰ)设()1200001,2112PF F P x y S c y y ∆⇒=⨯=⇒=±所以点P的坐标为1,1,1,13333⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(Ⅱ)设椭圆存在满足条件的,A B ,则AB 的方程可设为14y x b =-+ 设()()1122,,,A x y B x y则联立椭圆方程可得2213816480x bx b -+-=()()2284131648022b b b ∆=-⨯->⇒-<<根据维达定理有()1212128124213413b x x y y x x b b +=⇒+=-++= 因AB 的中点在直线L 上,故12124422131313y y x x b m m m ++=+⇒=-⇒-<< 22.(Ⅰ)∵111123n a n =++++ ∴20181111112345131024a ⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭20181111112345131024125121111062410242a ⎛⎫⎛⎫>+++++++ ⎪ ⎪⎝⎭⎝⎭>++++=+⨯= (Ⅱ)根据题意有()11112k k k k a a k a a k k ---=≥⇒=-将式子两边平方得: 222211221122k k k k k k a a a a a a k k k k --⎛⎫⎛⎫=-+⇒-=- ⎪ ⎪⎝⎭⎝⎭222222222211223211312222111212312k k k k k k k n a a a a a a a a a a a a a a n n -----=-+-+-++-+⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭ ()221111111122212231n n n n +++<++++=-<⨯⨯- ∴对一切2n ≥都有231222123n n a a a a a n ⎛⎫+>++++⎪⎝⎭。

2020届浙江省湖州中学2017级高三3月月考(网络考试)数学试卷及答案

2020届浙江省湖州中学2017级高三3月月考(网络考试)数学试卷及答案

第1页(共7页)浙江省湖州中学2019学年第二学期高三3月检测

数学

参考公式:()()()PABPAPB若事件A,B互斥,则

()()()PABPAPB若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率()C(1)(0,1,2,,)kknknnPkppkn



台体的体积公式1122

1()

3VSSSSh

其中12

,SS分别表示台体的上、下底面积,h表示

台体的高

柱体的体积公式VSh

其中S表示柱体的底面积,h表示柱体的高锥体的体积公式13VSh

其中S表示锥体的底面积,h表示锥体的高球的表面积公式24SR

球的体积公式343VR

其中R表示球的半径选择题部分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知集合1,0,1,2A为全集,2|20,BxxxxZ,则CAB

A.1,0,1B.1,0C.1,2D.0,1,2

2.已知双曲线C的离心率2e,其中一个焦点的坐标为0,2,则该双曲线C的标准方程是

A.2213yxB.221

5

yx

C.2215xyD.221

3

xy

3.某正三棱锥的三视图(单位:cm)如右图所示,该三棱锥的体积是

A.33B.93

C.3D.634.若fx是定义在R上的函数,则“fx是奇函数”是“fxyfxfy”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第2页(共7页)

5.若1cos

2

,则

A.3sin

2B.

3sin

22







C.1cos2D.1cos

2

6.已知实数,xy满足22010220

xyxyxy







,则关于目标函数3zxy的描述正确的是

A.最小值为2B.最大值为3C.最大值为2D.无最大值也无最小值

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
B
C
设an 是等差数列,bn 是等比数列.已知 a1 4,b1 6 , b2 2a2 2,b3 2a3 4
(Ⅰ)求an 和bn 的通项公式;
(Ⅱ)设数列cn 满足 c1
1, cn
1, 2k n
bk
,
n
2k
,
2k 1 ,
其中 k
N* .
(ⅰ)求数列 a2n c2n 1 的通项公式;,
ABCD 中, AB BC 1 AD , BAD ABC 90 ,又 E 是 PD 的中点. 2
(Ⅰ)证明:直线 CE ∥平面 PAB ;
P
(Ⅱ)点 M 在棱 PC 上,且直线 BM 与底面 ABCD
所成角为 45 ,求二面角 M AB D 的余弦值。
M
E
20.(本小题满分 15 分)
A
16.已知 a,b R ,且满足 2ab 4a 3b 8 0 ,则 a2 2b2 3a 8b 的最小值是 ▲ .
17.在长方体 ABCD A1B1C1D1 中, AB BC 4, AA1 1, E 是底面 ABCD 的中心,又
AF AB(0 1) ,则当 ▲ 2
(Ⅰ)求 的值; (Ⅱ)求 f (x) 在区间[ , 3 ] 上的最大值和最小值.
2
高三数学学科 试题 第 3 页(共 4 页)
2020届浙江省学军中学2017级高三3月月考数学试卷
19.(本小题满分 15 分)
如图,四棱锥 P ABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD ,底面四边形
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.
11.若复数 z 3 i ( i 为虚数单位),则 z ▲ ,复数 z 对应的点在坐标平面的第 ▲ 象限. 1i
12.在二项式
x2
2 x
6
的展开式中,常数项是

,所有二项式系数之和是


13.在 ΔABC 中,内角 A , B , C 的对边分别为 a , b , c .若 ΔABC 的面积是 2 2 ,
1.设集合 A {1,1, 2,3,5}, B {2,3, 4}, C {x R |1 x 3} ,则 (A C) B
A. 2
B. 2, 3
C.1, 2,3
D. 1, 2, 3, 4
2.双曲线
x2 a2
y2 b2
1 (a
0, b
0) 的离心率为
3 ,则其渐近线方程为
A. y 2 x 2
C.[ 1 ,1] 18
D.[ 3 ,1] 4
8.抛物线 y2 2 px( p 0) 的焦点为 F,直线 l 过点 F 且与抛物线交于点 M,N(点 N 在 轴上
方),点 E 为 轴上 F 右侧的一点,若| NF || EF | 3 | MF |, SMNE 12 3 ,则 p
A.1
B.2
C.3
时,长方体过点 A1, E, F 的截面面积的最小值为 ▲
三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤.
18.(本小题满分 14 分)设函数 f (x) 3 3 sin2 x sin x cos x ( 0) ,且 y f (x) 2
的图象的一个对称中心到最近的对称轴的距离为 . 4
D.9
9.已知函数f(x)ຫໍສະໝຸດ (x 4)2, 5 x
3 ,若函数 g(x)
f (x) | k(x 1) | 有 9
个零点,则实数
f (x 2), x 3
k 的取值范围是
A. ( 1 , 1) (1 , 1) 4 6 64
B. ( 1 , 1) (1 , 1) 3 5 53
C. (1 , 1) D. (1 , 1)
B. y 3 x 2
C. y 2x
D. y 3x
2x 3y 3≤ 0 3.设 x , y 满足约束条件 2x 3y 3≥ 0 ,则 z 2x y 的最小值是
y 3≥ 0
A. −9
B. −15
C.1
D.9
4.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面
积为
A. 20
在[, ] 的图像大致为
A.
B.
C.
D.
7.已知 a,b 为实数,随机变量 X ,Y 的分布列如下:
X
1
01
P1 3
1
1
2
6
Y
1
a
P
0
1
bc
若 E(Y ) P(Y 1) ,随机变量 满足 XY ,其中随机变量 XY 相互独立,则 E( ) 取值
范围的是
A.[ 3 ,1] 4
B.[ 1 , 0] 18
B. 24
C. 28
D. 32
5.已知直线 a,b 分别在两个不同的平面 , 内,则“直线 a 和直线 b 相
交”是“平面 和平面 相交”的
A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
高三数学学科 试题 第 1 页(共 4 页)
6.函数
f(x)=
sinx x cosx x2
b 3, cos C 1 ,则 c ▲ ; sin 2B ▲
3
sin C
14. 某公司有 9 个连在一起的停车位,现有 5 辆不同型号的轿车需停放,若停放后恰有 3 个空车位
连在一起,则不同的停放方法有 ▲ 种.
15.已知 e 为单位向量,平面向量 a,b 满足| a e || b e | 1 ,则 a b 的取值范围是 ▲
(ii)求 a1c1 a2c2 a2n c2n (n N )
21.(本小题满分 15 分)
64
53
10.已知函数
f
(x)
ex
x 1 ,数列an 的前 n 项和为 Sn
,且满足 a1
1 2
,an1
f
an ,则下列有
关数列an 的叙述正确的是
A. a5 | 4a2 3a1 |
B. a7 a8
C. a10 1
D. S100 26
高三数学学科 试题 第 2 页(共 4 页)
非选择题部分(共 110 分)
2019 学年第二学期高三年级数学月考试卷
考生须知: 1.本卷满分 150 分,考试时间 120 分钟; 2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号. 3.所有答案必须写在答题卷上,写在试卷上无效; 4.考试结束后,只需上交答题卷.
选择题部分(共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是 符合题目要求的.
相关文档
最新文档