2019六年级数学计算竞赛卷
最新2019六年级数学竞赛试题及答案.docx

2019 六年级数学竞赛试题及答案一、填空:( 1—— 8 题每题 3 分, 9—— 12 每题 4 分,共 40 分)1、已知a =b=c÷,a,b,c的关系是()<且 a, b, c 不等于 0,则()<().2、王师傅加工了15 个零件,其中 14 个合格,只有 1 个是不合格的(比合格品轻一些),如果用天平称,至少称()次能保证找出这个不合格零件.3、用小棒按照如下方式摆图形(如下图),摆一个八边形需要8 根小棒,摆n 个把八边形需要()个小棒,如果有106 根小棒,可以摆()个这样的八边形.4、若3x+2y+5=10.8,则6x+4y-5=()5、有一个分数,分子加 1 可以化简成,分母减去1可以化简成,这个分数是().6、质数 a,b,c 满足( a+ b)× c =99,则满足条件的数组(a,b, c)共有()组.7、袋子里装有红色球80 只,蓝色球70 只,黄色球60 只,白色球50 只,它们的质量与大小都一样,不许看,只许用手摸,要保证摸出10 对同色球,至少应摸出()只球 .8、后勤邱主任为学校买文体用品.他带的钱正好可以买15 副羽毛球拍或者24 副乒乓球拍.如果已他买了10 副羽毛球拍,那么剩下的钱还可以买()副乒乓球拍.9、甲乙丙三人进行60 米赛跑 .当甲到达终点时,乙跑了50 米,丙跑了45 米 .如果乙丙赛跑速度不变,那么乙到达终点时,丙离终点还有()米10、设 a※ b=[ a, b] +(a, b),其中[ a,b]表示 a 与 b 的最小公倍数,( a, b)表示 a 与 b 的最大公因数,则18※ 27=().11、 AB 两地相距 24 千米,妹妹7 点钟从 A 地出发走向 B 地 .哥哥 9 点骑自行车从 A 地出发去 B 地(如下左图).哥哥在()点钟和妹妹相遇.哥哥到了 B 地,妹妹离B 地还有()千米 .12 、(如上右图)一根圆柱形钢材,沿底面直径割开成两个相等的半圆柱体.已知一个剖面的面积是100 平方厘米,半圆柱的体积为301.44 立方厘米 .原来钢材的侧面积是()平方厘米(∏取 3.14)二、选择:(把正确答案的序号填在括号里,每题 2 分,共 12 分)1、已知 m 是真分数,那么与2m的大小关系()A、不能确定B、> 2m C 、=2m D、< 2m2、a, b, c 是三个不同的质数,且a> b, a+b=c,那么 b=()A、不能确定B、 C 、D、3、把一根木头锯成 3 段要 12 分钟,照这样计算,锯成 6 段要()分钟 .A、24B、 C 、D、4、从正面看是从右面看也是的图形是()5、在下面的图形中,每个大正方形网格都是由边长为 1 的小正方形组成,则图中阴影部分面积最大的是() .6、甲、乙、丙、丁与乐乐五位同学一起比赛下象棋,每两位都要比赛一盘,到现在为止,甲已赛了 4 盘,乙已赛了 3 盘,丙已赛了 2 盘,丁已赛了 1 盘,则乐乐已赛了()盘.A、4B、C、D、三、计算:(每题 3 分,共 18 分)1、选择自己喜欢的方法计算:3.6× 2.7+18× 0.56- 1.8× 10%÷ 10%[(-)×+]÷2++ +⋯+(1+++)×(+++)-(1++++)×(+ + )2、解方程:=: 0.1(x+7)× 13=(x+11)× 12四、解决问题:(每题 5 分,共 30 分)1、妈妈给一批上衣缝纽扣,如果每天缝15 件,就比规定的工期晚 2 天完成,如果每天缝18 件,就可以提前 3 天完成 .这批上衣共多少件?2、元旦,武汉广场门前打出了“迎新年,全场满400 元减 100 元”的促销广告,小明在活动中购买了一件商品刚好整整花了700 元,那么小明实际是享受了打多少折的优惠?3、一个容器中装有10 升纯酒精,倒出 5 升后,用水加满,再倒出 5 升,再用水加满,如此反复三次后,容器中酒精的浓度是多少?4、学校总务处买来的白色粉笔比彩色粉笔多72 盒,用了一学期之后,白色粉笔用去了彩色粉笔用去了,余下的两种粉笔的盒数正好相等.原来买的白色粉笔和彩色粉笔各有多少盒?5、半径为1 厘米的一个圆沿边长分别是 3、4、 6 厘米的三角形滚动一周,圆心经过的路程是多少厘米?(∏取 3.14)6、如图是参加某次数学竞赛同学做对题目的统计图.其中做对 2 题和 5 题的人数未知,对此次竞赛的情况有如下统计:①本次竞赛共有 8 题;②做对 5 题及 5 题以上的人,平均每人做对 6 题 .③做对 5 题以下的人,平均每人做对 3 题⑴参加本次竞赛的同学共有多少人?⑵若 10%的同学做了 8 题, 70%的同学只做了 6 题, 20%的同学只做了 4 题,那么在所有做过的题目当中做错了多少题?班级姓名2018~ 2019 学年度六年级数学思维检测题及答案一、填空:1、c<a<b2、33、7n+1 154、6.65、6、47、778、89、610、6311、10:30 6 12、314二、:1、D2、B3、C4、C5、D6、C三、算:1、182、1041四、解决:1、(2+3)÷(-)=450(个)2、700÷( 400-100)=2(个)⋯ 100(元)700 ÷( 400×2+100)≈ 78%七八折3、10÷2÷2÷2÷10=12.5%4、法一:彩色: x,白色: x+72(1-)(x+72)=(1-)x x=90白色: 90+72=162法二:白色粉笔盒数:彩色粉笔盒数=9:5一份: 72÷( 9-5 )=18(盒)白色: 18×9=162(盒)彩色:18×5=90(盒)5、3+4+5+2×3.14 ×1=19.28(厘米)6、做 5x 5x+6 ×4+7×2+8× 1=6×( x+4+2+1) x=4做对 2 题为 y 1 ×1+2y+3×6+4× 8=3(y+1+1+6+8) y=3共有人数: 1+1+3+6+8+4+4+2+1=30(人)共做题数: 30×10%×8+30×70%×6+30×20%×4=174(题)共对题数:0× 1+1× 1+2× 3+3× 6+4× 8+5×4+6× 4+2× 7+1×8=123(题)做错的题: 174-123=51 题。
2019年六年级数学竞赛试题及答案

2019年六年级数学竞赛试题及答案一、填空:( 前7题每题5分,后3题每题6分,共53分 )1、如果x ÷y=z (x 、y 、z 均为整数,且y 不等于0),那么x 和y 的最大公因数是( y ),最小公倍数是( x )。
2、已知x+20142013=y+20132012=z+20152014,( z )<( x ) <( y ) 3、☆、○、◎各代表一个数,已知:☆+◎=46, ☆+○=91, ○+◎=63 , ☆=(37 ),○=( 54 )◎= ( 9 )。
4、学校买来历史、文艺、科普三种图书各若干本,每个学生从中任意借两本。
那么,至少( 7 )个学生中一定有两人所借的图书属于同一种。
5、李伟和王刚两人大学毕业后合伙创业,李伟出资1.6万元,王刚出资1.2万元,一年后盈利1.4万,如果按照出资多少来分配利润,李伟分得( 8000 )元,王刚分得( 6000 )元。
6、某商场由于节日效应一月份的营业额是150万元,二月份的营业额延续节日需求,比一月份增长了10%,三月份和一月份相比增长率为-9%,一季度营业额( 451.5 )万元。
7、庆“六一”,学校决定进行现场绘画比赛吗,按照如下摆放桌子和椅子,如果每个椅子坐一位同学,1张桌子可以坐6人,2张桌子可以10人,……,n 张桌子可以做( 4n+2 )人。
如果像这样摆20张桌子,最多可以坐( 82 )人。
8、数学小组的同学在一次数学比赛中成绩统计如左下图。
如果得优良和及格的同学都算达标。
达标同学的平均成绩是80分,而全体同学的平均成绩是70分,则不及格同学的平均成绩( 40 )分。
9、如右上图,已知长方形的面积是282cm ,阴影部分的面积(9.44 2cm )。
10、“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年( 90 )岁。
二、用自己喜欢的方法计算:(每题5分,共15分)1、0.78×7-5039+4×5039 2、12.5×8÷12.5×8 (754) (64)3、(88-81)×81+(78-81)×81+(68-81)×81+……+(18-81)×81( 5287)三、应用题:(每题8分,共32分)1、中国北部地区严重缺水,节约用水是美德,某地生活用水收费标准规定如下:已知大伟家在本月应交水费33.6元,算一算他家这个月用了多少吨水?(12吨)2、王大妈买了一套售价为32万元的普通商品房。
六年级下册数学试题-2019小学数学-数学竞赛部分-乘方(含答案)(全国通用)

2019小学数学六年级(全国通用)-数学竞赛部分-乘方(含答案)一、单选题1.生物学家指出:在生态系统中,每输入一个营养级的能量,大约只有10%的能量流动到下一级,在H1→H2→H3→H4→H5→H6这条生物链中(H n表示第n个营养级,n=1、2、3、…、6),要使H6获得10个单位的能量,需要H1提供的能量约为下列选项中的.A.个单位B.个单位C.个单位D.个单位2.我们知道:2个10相乘可记作102,3个10相乘可记作103,按这样的方法1.6×105结果应该是()A.800B.16000C.160000D.16000003.下列能用平方差公式计算的是()A.(x+y)(﹣x﹣y)B.(﹣a+b)(a﹣b)C.(﹣a﹣b)(﹣a+b)D.(x﹣y)(x﹣y)4.把351000用科学记数法表示正确的是()A.0.351×B.3.51×C.3.51×D.35.1×5.a3=( )A.3aB.a×a×aC.a+a+a6.1=(1)21+3=(2)21+3+5=(3)2,那么1+3+5+7=().A. B. C.7.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.B.C.D.A.﹣1B.﹣1C.D.8.下列各式不成立的是()A.=1×2=2B.2×2=C.a×b×4=4ab9.要使算式﹣34□[23﹣(﹣2)3]的计算结果最大,在“□”里填入的运算符号应是()A.+B.﹣C.﹣D.÷二、填空题10.计算:22011×32×52009×7得数是个________位数.11.在1991,1992,1993,1994,1995,1996,1997,1998这八个数中,不能写成两个自然数的平方差的数是________.12.计算;512+522+532+…+992+1002=________.13.a3=________14.已知1=12,1+3=22,1+3+5=32,1+3+5+7=42那么1+3+5+7+9+11+13=________.15.像28这样的数,它的所有约数为________,除了它本身这个约数以外,其余约数之和刚好与它本身相等,像这样的数就叫做完全数.那么10以内的完全数有________.16.用科学计数法表示的数4.39×10n+1的整数位是________.17.在括号内填上适当的项:a2﹣b2+2b﹣1=a2﹣________.18.计算:a2•(﹣a3)•(﹣a)3=________.19.如果(a+2)2+|1﹣b|=0,那么(a+b)2013=________.20.19951697+2001592×1998741结果的个位数字是________.21.假如今天是星期六,再过20082008是星期________.三、计算题22.已知a2+a﹣1=0,求a3+2a2+2014的值.23.计算:642×12.52.24.992﹣972+952﹣932+….+32﹣12.25.先化简再求值:[(2x+y)2﹣(2x+y)(﹣y+2x)]÷2y,其中x=4,y=5.26.简算:202﹣192+182﹣172+…+22﹣12.四、综合题27.我们把“n个相同的数a相乘”记为“a n”,例如23=2×2×2=8.(1)计算:29=________,55=________.(2)观察以下等式:(x﹣1)×(x+1)=x2﹣1(x﹣1)×(x2+x+1)=x3﹣1(x﹣1)×(x3+x2+x+1)=x4﹣1…由以上规律,我们可以猜测(x﹣1)×(x n+x n﹣1+…+x+1)=________(3)计算:32011+32010+…+3+1.答案解析部分一、单选题1.【答案】A【考点】乘方【解析】【解答】解:10÷10%÷10%÷10%÷10%÷10%,=10÷0.1÷0.1÷0.1÷0.1÷0.1,=1000000,=106(个单位);答:需要H1提供的能量约为106个单位.故选:A.【分析】从后向前推算,H5提供的能量为10÷10%,H4提供的能量为10÷10%÷10%,依此类推,据此解答.2.【答案】C【考点】乘方【解析】【解答】解:1.6×105=1.6×10×10×10×10×10=160000,故选:C.【分析】2个10相乘可记作102,3个10相乘可记作103,那么105就是5个10相乘,再与1.6相乘即可.3.【答案】C【考点】乘方【解析】【解答】解:A.(x+y)(﹣x﹣y)=﹣(x+y)(x+y)=﹣(x+y)2,B.(﹣a+b)(a﹣b)=-(a﹣b)(a﹣b)=﹣(a﹣b)2,C.(﹣a﹣b)(﹣a+b)=﹣(a+b)(b﹣a)=﹣(b2﹣a2)=a2﹣b2,D.(x﹣y)(x﹣y)=(x﹣y)2故答案为:C.【分析】我们可以把每一道题目进行整理得出结果,然后哪一个能用平方差公式计算就会一目了然.4.【答案】B【考点】乘方【解析】【解答】解:将351 000用科学记数法表示为3.51×105.故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.5.【答案】B【考点】乘方【解析】【解答】a3=a×a×a故答案为:B【分析】a的三次方表示三个a相乘6.【答案】B【考点】乘方【解析】【解答】解:1+3+5+7=16=(4)2,故选:B.【分析】计算可得1+3+5+7=16=(4)2,据此选择即可.7.【答案】C【考点】乘方【解析】【解答】解:设S=1+5+52+53+ (52012)则5S=5+52+53+54+ (52013)所以5S﹣S=(5+52+53+54+...+52013)﹣(1+5+52+53+ (52012)=5+52+53+54+…+52013﹣1﹣5﹣52﹣53﹣…﹣52012=52013﹣1,即4S=52013﹣1所以S=;故选:C.【分析】观察题目中所给的推理方法:可以发现,当乘方的底数为2的时候,把原式乘上2,再与原式相减即可得出答案;因此当乘方中底数为5时,把原式乘上5,得到与原式类似的式子,再减去原式即可得到答案.据此解决.8.【答案】A【考点】乘方【解析】【解答】解:A.12=1×1=1,故本项错误;B.22=2×2=4,故本项正确;C.a×b×4=4ab,故本项正确.故选:A.【分析】根据乘方的运算、乘法运算以及属于字母相乘的表示方法,计算后判断即可.9.【答案】D【考点】乘方【解析】【解答】解:﹣34×[23﹣(﹣2)3]=﹣81×[8﹣(﹣8)]=﹣81×16=﹣1296﹣34÷[23﹣(﹣2)3]=﹣81÷[8﹣(﹣8)]=﹣81÷16=﹣﹣34+[23﹣(﹣2)3]=﹣81+[8﹣(﹣8)]=﹣81+16=﹣65﹣34﹣[23﹣(﹣2)3]=﹣81﹣[8﹣(﹣8)]=﹣81﹣16=﹣97要使算式﹣34□[23﹣(﹣2)3]的计算结果最大,在“□”里填入的运算符号应是÷.故选:D.【分析】分别进行加减乘除的运算,根据所计算的结果判断选择即可.二、填空题10.【答案】2012【考点】乘方【解析】【解答】解:22011×32×52009×7=(2×5)2009×(2×3)2×7=102009×36×7=2.52×102011.故22011×32×52009×7得数是个2011+1=2012位数.故答案为:2012.【分析】根据乘法交换律和结合律进行计算,根据得数即可作出判断.11.【答案】1994,1998【考点】乘方【解析】【解答】解:1994、1998是偶数,1994÷4=498...2,1998÷4=499 (2)其它数可写成的两个自然数的平方差是:1991=9962﹣9952,1992=4992﹣4972,1993=9972﹣9962,1995=9982﹣9972,1996=5002﹣4982,1997=9992﹣9982.故答案为:1994,1998.【分析】因为只有当自然数是奇数或4的倍数时,才能将此自然数写成两个自然数的平方差,由此解决问题.12.【答案】295425【考点】乘方【解析】【解答】解:512+522+532+…+992+1002= ﹣=338350﹣42925=295425故答案为:295425.【分析】首先根据12+22+32+…+(n﹣1)2+n2=,分别求出前100个数、前50个数的平方和各是多少;然后用前100个数的平方和减去前50个数的平方和,求出算式512+522+532+…+992+1002的值是多少即可.13.【答案】a×a×a【考点】乘方【解析】【解答】a³=a×a×a故答案为:a×a×a【分析】a的3次方表示3个a相乘14.【答案】49【考点】乘方【解析】【解答】解:1+3+5+7+9+11+13=72=49;故答案为:49.【分析】通过观察,发现从1开始,有几个奇数相加,就等于几的平方;1+3+5+7+9+11+13有7个奇数相加,所以1+3+5+7+9+11+13=72,计算出结果即可.15.【答案】1,2,4,7,14,28;6【考点】乘方【解析】【解答】解:28=1×28=2×14=4×7,28的约数为1,2,4,7,14,28;6有四个约数1、2、3、6,除本身6以外,还有1、2、3三个约数.6=1+2+3,恰好是所有约数之和,所以6就是“完全数”,那么10以内的完全数有6,故答案为:1,2,4,7,14,28;6【分析】找一个数的因数,可以利用乘法算式,按因数从小到大的顺序一组一组地找;根据完全数的定义,找出10以内的完全数即可.16.【答案】n+2【考点】乘方【解析】【解答】解:由分析可知:用科学计数法表示的数4.39×10n+1的整数位是n+2.故答案为:n+2.【分析】当n=1时,4.39×10n+1=4.39×100=439,整数部分是3位;当n=2时,4.39×10n+1=4.39×1000=4390,整数部分是4位;当n=3时,4.39×10n+1=4.39×10000=43900,整数部分是5位;所以整数的位数比n多2,由此求解.17.【答案】(b﹣1)2.【考点】乘方【解析】【解答】解:a2﹣b2+2b﹣1=a2﹣(b2﹣2b+1),=a2﹣(b﹣1)2.故答案为:(b﹣1)2.【分析】根据减法的性质可知,a2﹣b2+2b﹣1=a2﹣(b2﹣2b+1),所以本题可根据公式:(a ﹣b)2=a2﹣2ab+b2进行分析完成.18.【答案】a8【考点】乘方【解析】【解答】解:a2•(﹣a3)•(﹣a)3=a2•(﹣a3)•(﹣a3)=a8.故答案为:a8.【分析】根据乘方的运算法则解答即可.19.【答案】﹣1【考点】乘方【解析】【解答】解:根据题意得,a+2=0,1﹣b=0,解得a=﹣2,b=1,所以(a+b)2013=(﹣2+1)2013=﹣1.故答案为:﹣1.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.20.【答案】9【考点】乘方【解析】【解答】解:19951697的个位数字是5,2001592的个位数字是1;因为8×8=64,个位数字是4;8×8×8=512,个位数字是2;8×8×8×8=4096,个位数字是6;8×8×8×8×8=32768,个位数字是8;8×8×8×8×8×8=262144,个位数字是4;…,因为741÷4=185…1,所以1998741的个位数字是4,所以2001592×1998741结果的个位数字是4,所以19951697+2001592×1998741结果的个位数字是9.答:19951697+2001592×1998741结果的个位数字是9.故答案为:9.【分析】首先判断出19951697的个位数字是5,2001592的个位数字是1,然后根据8×8=64,个位数字是4;8×8×8=512,个位数字是2;8×8×8×8=4096,个位数字是6;8×8×8×8×8=32768,个位数字是8;8×8×8×8×8×8=262144,个位数字是4;…,据此判断出1998741的个位数字是多少,进而判断出19951697+2001592×1998741结果的个位数字是多少即可.21.【答案】天【考点】乘方【解析】【解答】解:将20082008表示为(2009﹣1)2008,根据n次方项展开式可知,每一项都含有2009这个因数,除了最后一项是1,而2009能被7整除,所以20082008除以7的余数是1;所以再过20082008是星期天;故答案为:天.【分析】首先知道每一个星期七天一循环,进一步利用乘方的展开式得出20082008除以7的余数即可解决问题.三、计算题22.【答案】【解答】解:因为:a2+a﹣1=0所以:a2+a=1所以:a3+2a2+2014=a(a2+a)+a2+2014=a2+a+2014=1+2014=2015答:a3+2a2+2014的值是2015.【考点】乘方【分析】由已知条件得到a2+a=1,再利用因式分解得到a3+2a2+2014=a(a2+a)+a2+2014,【解析】利用整体代入的方法计算得到a3+2a2+2014=a2+a+2014,然后再利用整体代入的方法计算即可.23.【答案】【解答】解:642×12.52=(8×8×12.5)2=8002=640000.【考点】乘方【解析】【分析】把原式写成(8×8×12.5)2是解题的关键.24.【答案】【解答】解:992﹣972+952﹣932+…+32﹣12,=(992﹣972)+(952﹣932)+…+(32﹣12),=(99+97)(99﹣97)+(95+93)(95﹣93)+…+(3+1)(3﹣1),=2(99+97+95+…+3+1),=5000.【考点】乘方【解析】【分析】首先数字分组,从第一个数起两两为一组,一正一负,进一步利用平方差公式分解,化为2(99+97+95+…+3+1),进一步计算求得结果即可.25.【答案】【解答】解:[(2x+y)2﹣(2x+y)(﹣y+2x)]÷2y=[4x2+4xy+y2﹣(4x2﹣y2)]÷2y,=[4x2+4xy+y2﹣4x2+y2]÷2y,=[4xy+2y2]÷2y,=4xy÷2y+2y2÷2y,=2x+y.则当x=4,y=5时,原式=2×4+5=13.【考点】乘方【解析】【分析】本题根据公式:(a+b)2=a2+2ab+b2与(a+b)(a﹣b)=a2﹣b2进行分析化简即可.26.【答案】【解答】解:202﹣192+182﹣172+…+22﹣12=(20+19)(20﹣19)+(18+17)(18﹣17)+…+(2+1)(2﹣1)=20+19+18+17+…+2+1=(20+1)×20÷2=21×10=210【考点】乘方【解析】【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b);原式可化为:(20+19)(20﹣19)+(18+17)(18﹣18)+…+(2+1)(2﹣1)=20+19+19+17+…+2+1,再利用高斯求和公式即可解决.四、综合题27.【答案】(1)512;3125(2)x n+1﹣1(3)32011+32010+…+3+1,=(32012﹣1)÷(3﹣1),=.【考点】乘方【解析】【解答】解:(1)计算:29=512,55=3125.(2)(x﹣1)×(x n+x n﹣1+…+x+1)=x n+1﹣1.(3)32011+32010+…+3+1,=(32012﹣1)÷(3﹣1),=.故答案为:512,3125;x n+1﹣1.【分析】(1)根据乘方的运算法则计算即可;(2)根据给出的材料可看出,等号右边x的指数规律是n+1,所以(x﹣1)×(x n+x n﹣1+…+x+1)=x n+1﹣1.(3)运用(2)的规律计算即可求解.。
六年级下册数学试题 - 数学竞赛 二进制数与十进制数的互相转化 全国通用(含答案)

2019小学数学六年级(全国通用)-数学竞赛部分-二进制数与十进制数的互相转化(含答案)一、填空题1.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1).它们两者可以相互换算,如将二进制数(101)2改成十进制数:(101)2=1×22+0×21+1×20=4+0+1=5.(1)将二进制数(10101)2换成十进制数是________ .(2)将十进制数13换成二进制数是________ .2.将下列十进制数改写成二进制数(1)(106)10=________ 2(2)(19)10=________ 2(3)(987)10=________ 2(4)(1993)10=________ 2.3.把下列十进制数化成二进制数:(1)139(10)=________ .(2)312(10)=________ .(3)477(10)=________ .4.将6个灯泡排成一行,用○和●表示灯亮和灯不亮,如图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么○●●○●○表示的数是________ .5.(1010101.1011)2=________ 10.6.日常生活中经常使用十进制来表示数,要用10 个数码:0、1、2、3、4、5、6、7、8、9.在电子计算机中用二进制,只要用两个数码0和1.正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到以下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+1=11,…那么,二进制中的“111100”用十进制表示是________ .7.229的十进制表示共有9位数字,且两两不同,问:数字________ 没有出现过.8.把二进制数(10111)2化为十进制数是________ 10;把十进制数(37)10化成二进制数是________ 2.9.二进制数10111.0011表示成十进制数为________ .10.把(11011)2改写成十进制数等于________ .12.将下列二进制数,改写成十进制数(1)(10101)2=________ 10(2)(1001100)2=________ 10(3)(11101101)2=________ 10(4)(101110111)2=________ 10.二、计算题13.(1)把二进制数101011100写成十进制数是什么?(2)把十进制数234写成二进制数是什么?14.将下面的数转化为十进制的数:(1111)2,(1010010)2,(4301)5,(B08).1615.把二进制数11011化为十进制数.16.将下列二进制数化为十进制数:(1)110111(2);(2)110000(2);(3)1000001(2).17.将十进制数107.625转换成二进制数.18.二进制是计算技术中广泛采用的一种计数方法,二进制数是用0和1两个数字来表示的.其加、减法的意义我我们平时学习的十进制类似.(1)二进制加法.在二进制加法中,同一数位上的数相加只有四种情况:0+0=0,0+1=1,1+0=1,1+1=10.二进制加法算式和十进制写法一样,算法也一样,也要求数位对齐,从低位到遍位依次运算,但“满二进一”.例:(2)二进制减法.二进制减法算式和十进制写法一样,算法也一样,也要数位对齐,从低位到高位依次运算,相同数位上的数不够减时,向高一位借,但“借一当二”.例:阅读以上关于二进制的介绍,请你完成以下二进制计算.(要求列竖式计算)(1)101﹣11 (2)10110+1101.19.一个十进制的三位数,其中a、b、c均代表某一个数码,它的二进制表达式是一个七位数,试求这个数.20.把十进制数11.25化为二进制数.三、解答题21.二进制是计算技术中广泛采用的一种技术方法,二进制数是用0和1两个数字来表示的。
小学6年级袋鼠数学2019竞赛题

(A) 1
(B) 2
(C) 3
(D) 6
(E) 9
3
Singapore Math Kangaroo Contest 2019 – Primary 6 / Grade 6
Question 13 Pia plays with a yardstick consisting of 10 sticks shown below. Which of the following figures cannot be formed with the yardstick?
(A)
(B)
(C)
(D)
(E)
Question 2 The Mayan people wrote numbers with dots and bars. A dot is written for 1 and a bar for 5. How did they write 17?
(A)
(B)
(C)
(D)
(A) 7
(B) 8
(C) 9
(D) 10
(E) 11
Question 12 Riri the frog usually eats 5 spiders a day. When Riri is very hungry, she eats 10 spiders a day. She ate 60 spiders in 9 days. How many days was she very hungry during these 9 days?
Question 7 How many 2 × 2 squares
are there in the figure below?
(A) 5
(B) 6
湖州市2019年第十届“期望杯”小学数学竞赛试题及参考答案(六年级)

小学数学竞赛试题及参考答案(六年级)一、填空(第1~2题每题6分,第3~11题每题7分,共计75分)1. 计算:201.8×20.17-20.16×201.7 =( )。
2. 计算:[(1-12)×(1-13)×(1-14)×……×(1-12017)]×[(1+12)×(1+13)×(1+14)×……×(1+12017)] =( )。
3. 在□里填上适当的数字,使得七位数□7358□□是8、9、25的公倍数,那么这个七位数是( )。
4. 甲、乙、丙三个柜台的总营业额为5.7万元。
其中甲、乙柜台的营业额之比是2:3,乙、丙柜台营业额之比也是2:3。
甲柜台的营业额是( )万元。
5. 单独完成某项工作,师父需6小时,徒弟需9小时。
如果按照师、徒、师、徒……的顺序轮流工作,每次1小时,那么完成这项工作需要( )小时。
6. 有五颗同样的骰子放成一排(如右图),五颗骰子底面的点数之和是( )。
7. “20172017”表示2017个2017相乘,那么这个积的个位数字是( )。
8. 5397除以一个质数,所得余数是15。
这个质数是( )。
9. 右图圆环面积为141.3cm²,则阴影部分面积是( )cm ²。
10.在一条公路上,每隔10千米有一座仓库(如下图),共有五座。
图中数字表示各个仓库里的货物的重量。
现在要把所有的货物集中到一个仓库,如果每吨货物运输1千米的运费为0.9元,那么运费至少是( )元。
11.黑板上从1开始写了若干个连续自然数:1,2,3,4,……然后擦去三个数(其中有两个质数),如果剩下的数平均数是1989,那么擦去的两个质数之和最大是( )。
二、解答题(要求写出必要的解题过程,每题9分,共计45分)12.果园里苹果大丰收。
摘下全部苹果的38时,装满3筐后还多24千克。
六年级下册数学试题 - 数学竞赛 奇阶幻方问题 全国通用(含答案)

2019小学数学六年级(全国通用)-数学竞赛部分-奇阶幻方问题(含答案)一、填空题1.把4~12这九个自然数填入九宫图内(如图),使每行、每列、每条对角线上三个数的和都等于24(每个数用一次).2.把11、12、13、14、15、16、17、18、19填在图合适的方格里,使每横行、竖行、斜行的三个数相加都得45.3.字1~9被填入到下面3×3的方格中,其中每个数字都恰好被用了一次.如果在方格的右边和下边所写的数字代表的是该行或该列中所填数的乘积,则在“*”格中所填的数字应该是________ .4.如图是九宫格,每个格子中有一个数(图中没有全部标出),已知它每行、每列、每条对角线上三个数的和都相等,则A格中的数是________ .5.用11﹣﹣﹣35填出下列五阶幻方:6.在九宫格中,填入的都是大于0的整数,且每行,每列,每条对角线上三数之积相等,则图中A表示的整数等于________ .7.请你在图中的空格里填上数,使横、竖的三个数的和都相等.8.将8、12、16、20、24、28、32、36、40这9个数,分别填入右图方格内,使每行每列及对角线上的三个数的和都相等.9.在如图中每个没有数字的格内各填一个数,使每行、每列及每条对角线的三个格中的数之和都等于108.那么,画有“?”的格内所填的数是________ .10.将不大于12且互不相同八个自然数填入图中八个方格中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.九个小方格,每个小方格内都有一个数,每行、每列以及对角线上三个数的和都相等,这样的九个数所组成的方块叫做九宫图!如表一就是一个九宫图.在表二的空格中分别填入________ .表一表二.12.在右面的9个方格中分别填入﹣2,﹣1,0,1,2,3,4,5,6,使得每一行的三个数、每一列的三个数、斜对角的三个数之和都相等.13.在如图所示的3×3方格表中填入合适的数,使每行、每列以及每条对角线上的三个数的和相等.那么标有“★”的方格内应填入的数是________ .14.在图的九个方格里,每行、每列、每条对角线上的三个数的和都相等,则N=________ .15.所谓“三阶乘法幻方”是指在3×3的方格中填入9个不等于0的整数,使得每行、每列及每条对角线上的三个数之积都相等.请将如图的“乘法幻方”补充完整,则其中的“X”所代表的数是________ .二、解答题16.把2,3,4,…,10这九个数字填到图中的3X3方格内,使每行、每列及对角线上的三个数的和都相等.三、综合题17.智力填空(1)如图个正方形中各有一个数字,已知每一行、每一列及每条对角线上的三个数之和都相等那么右上角的数x=________ .(2)一个三位数与其数字之和之比可能取得的最大值是________ .(3)计算:(÷×÷×÷)×÷×÷×÷…,那么算到第130个数的结果是________ .四、应用题18.在如图中的空格内填入适当的数,使每行、每列、每条对角线上各数的和都等于27.19.你将﹣2,﹣1,0,1,2,3,4,5,6这9个数分别填入图中的9个空格内,使每行的3个数、每列的3个数、斜对角的3个数相加均为6.20.将1~9填在右面的方格中,使每一横行、竖行、斜行的数相加的和都相等21.把20个棋子放到图中的方格里,每个格子都要放,怎样放才能使每边的棋子加起来都是6个?22.在下面的空格里填上合适的数,使每一横行、竖行、斜行的三个数的和都相等.45.答案解析部分一、填空题1.【答案】【考点】奇阶幻方问题【解析】【解答】解:中间数是24÷3=8;剩下的两个数的和是16,16=4+12=5+11=6+10=7+9;这个幻方是:【分析】根据题意,要使三阶幻方的幻和为24,所以中心数必为24÷3=8,那么与20在一条直线上的各个组的其余两个数的和为16,调整和为16两个数的位置填入幻方即可.2.【答案】【考点】奇阶幻方问题【解析】【解答】解:中间数是:45÷3=15;经过推算其它各数位置如下:【分析】先求出中间数:45÷3=15;剩余的每两个数的和是30;由30=11+19=12+18=13+17=14+16;调整每一对数的位置填入表格即可.3.【答案】4【考点】奇阶幻方问题【解析】【解答】解:有分析可知因为20=1×4×5,1×9×8=72,8×3×6=144,9×7×2=126,1,×4×5=20,填表如下:故答案为:4.【分析】首先从最小的数20开始分析,20=1×4×5,所以下面一行的数字只能是1、4、5,而由于与1、4、5再乘得出72、105、48,5只能在中间位置,如果第一个数字是4,则得出第一行的第一个数字是2;105=5×21,只有3×7=21,正中间数是3,得不出9×3×()=126,是7,则有9×7×2=126,就与4×9×2矛盾,因此下面一行的数字顺序为1、4、5,得出*=4,进一步经过计算得出答案即可.4.【答案】9【考点】奇阶幻方问题【解析】【解答】解:由以上分析可得答案如下:因此A=9.故答案为:9.【分析】已知它每行、每列、每条对角线上三个数的和都相等,设中间的数为x,则幻和为3x,由图可知,B=2x﹣5,10+1+(2x﹣5)=3x,解得x=6;由此求得幻和为18,进一步推出C=3,A=9,B=7,D=11,E=2.5.【答案】【考点】奇阶幻方问题【解析】【解答】解:可以写出这个五阶幻方是:【分析】本题用爬楼梯的方法求解:最小的数(11)放在第一行正中;按以下规律排列剩下的24个数:(1)、每一个数放在前一个数的右上一格;(2)、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4).6.【答案】9【考点】奇阶幻方问题【解析】【解答】解:如图,因为3×4×C=C×1×B,所以B=12;因为3×B×x=4×x×A,3所以A=9.故答案为:9.【分析】已知它每行、每列、每条对角线上三个数的积都相等,由图可知,3×4×C=C×1×B,得出B=12,再由3×B×x=4×x×A,得出A=9;由此求得答案解决问题.7.【答案】【考点】奇阶幻方问题【解析】【解答】解:幻和是6×3=18;第二行第三列的数是:18﹣10﹣6=2;第三行第三列的数是:18﹣7﹣2=9;第一行第一列的数是:18﹣6﹣9=3;第一行第二列的数是:18﹣3﹣7=8;第三行第一列的数是:18﹣3﹣10=5;第三行第三列的数是:18﹣8﹣6=4;这个幻方就是:【分析】中间数是6,那么幻和是6×3=18;由此进行逐步推算即可.8.【答案】【考点】奇阶幻方问题【解析】【解答】解:8+12+16+20+24+28+32+36+40=216;幻和:216÷3=72;中间数:72÷3=24;这个幻方是:【分析】先求出这个9个数的总和,总和除以3就是幻和,再用幻和除以3就是中间数,根据中间数依次找出剩下数两两之和相等,填入方格.9.【答案】46【考点】奇阶幻方问题【解析】【解答】解:中间的数:108÷3=36;右下角:108﹣(54+36),=108﹣90,=18;左下角:108﹣(64+18),=108﹣82,=26;右上角:108﹣(36+26),=108﹣62,=46;要求的数是46;这个格子是:故答案为:46.【分析】使每行、每列及每条对角线的三个格中的数之和都等于108.那么最中间的数就是108÷3=36;由此求出右下角的数;再根据右下角的数和64两个数推算出左下角的数;进而推算出要求的数.10.【答案】【考点】奇阶幻方问题【解析】【解答】解:21÷3=7,中间数是7;21﹣7=14=2+12=4+10=5+9=6+8调整各个数的位置可得:【分析】幻和是21,所以中间数是21÷3=7,由此可以先前推算出前面的4个数是6、5、4、2,后面的四个数就是8、9、10、12;21﹣7=14=2+12=4+10=5+9=6+8,由此进行求解即可.11.【答案】90【考点】奇阶幻方问题九个数的和是:9×10=90;故答案为:90.【分析】表一中填入的是1~9这九个不同的自然数,中心数是5;表二中的中心数是10,还有另外两个数9、11,这三个数都是表一中相应位置上的数加5得来的,由此可把表一其它格中的数也加5填入表二即可;要求表二中九个数的和可用中心数乘9求得即可.12.【答案】【考点】奇阶幻方问题【解析】【解答】解:这个方格如下:【分析】(1)首先计算幻和:[(﹣2)+(﹣1)+0+1+2+3+4+5+6)]÷3=18÷3=6;再算出中心数:6÷3=2;剩余的每两个数的和是4:(﹣1)+5=4+0=(﹣2+6)=3+1;调整每一对数的位置填入表格即可.13.【答案】8【考点】奇阶幻方问题【解析】【解答】解:3+7+★=★+□+4,得出□=6,6×3=18,所以★=18﹣7﹣3=8;具体答案如下,故答案为:8.【分析】如图,首先由3+7+★=★+□+4,推出中间的数字为6;又因每行、每列以及每条对角线上的三个数的和相等,说明行、列以及对角线上的三个数的和是6的3倍为18,由此解决问题.14.【答案】18【考点】奇阶幻方问题【解析】【解答】解:每行、每列、每条对角线上的三个数的和是:8+6+16=30;中心数是:30﹣8﹣12=10,右上角的数是:30﹣16﹣10=4;第一行中间的数是:N=30﹣8﹣4=18.【分析】先确定每行、每列、每条对角线上的三个数的和,8+6+16=30;再确定对角线上的中心数:30﹣8﹣12=10,然后求出右上角的数:30﹣16﹣10=4;最后得出第一行中间的数N=30﹣8﹣4=18.15.【答案】8【考点】奇阶幻方问题【解析】【解答】解:如图:由20×16×A=A×4×B得出B=80,20×C×80=4×C×D得出D=400,20×400×X=80×E×X得出E=100,20×16×A=20×400×X得出A=25X,16×C×100=20×400×X得出C=5X,所以A×C×X=20×C×80,25X×X=1600X×X=64,X=8.故答案为:8.【分析】如图:因为每行、每列及每条对角线上的三个数之积都相等,可以得到20×16×A=A×4×B=B×E×X=X×D×20=A×C×X=20×C×B=4×C×D=16×C×E,选择合适的等式求得结论即可.二、解答题16.【答案】【考点】奇阶幻方问题【解析】【解答】解:2+3+…+8+9+10=54,幻和:54÷3=18;中间数:18÷3=6;剩下两个数=18﹣6=12=10+2=9+3=8+4=7+5,所以幻方如下:【分析】只看行,有三行,三行的总和是:2+3+…+8+9+10=54,由于每行上的三个数的和都相等,所以幻和是:54÷3=18;由于三个数的和是18,所以中心格的数字必须是:18÷3=6;然后把剩下的和为18﹣6=12的两个数:2和10,3和9,4和8,5和7,调整填入方格即可.三、综合题17.【答案】(1)16(2)100(3)【考点】奇阶幻方问题【解析】【解答】解:(1)如图,①X+a+b=c+d+19,②X+c+e=e+f+13,③X+d+f=X+a+b,所以3X+a+b+c+d+e+f=X+a+b+c+d+e+f+13+19X=16;(2)设三位数的百位、十位、个位分别是a,b,c,三位数表示为100a+10b+c;设(100a+10b+c):(a+b+c)=k则100a+10b+c=ka+kb+kc;由于abc均为自然数,可知,k最大值是100,此时b,c均为0;(3)130÷6=21…4,(÷×÷×÷)×(÷×÷×÷)×…×(÷×÷)=1×1×1×…×(÷)=×=.故答案为:(1)16;(2)100;(3).【分析】(1)如图,为了便于分析推导,先在方格内填入相应的字母来代替数,由于方格内已填好了两个数19和13,还有一个未知数x,根据“每一行、每一列以及两条对角线上的三个数的和都相等”可得等式:①X+a+b=c+d+19,②X+c+e=e+f+13,③X+d+f=X+a+b,三个等式左右两边各相加整理得出答案即可;(2)设三位数的百位、十位、个位分别是a,b,c;三位数表示为100a+10b+c;比值为k,探讨k的最大值得出答案即可;(3)÷×÷×÷=1每6个数为一组,用130除以6,看得到的余数是多少,确定最后算到那个数,进一步计算得出答案即可.四、应用题18.【答案】解:中心数为27÷3=9;第三列第二行的数为:27﹣5﹣10=12;第一列第三行的数为:27﹣5﹣9=13;第一列第一行的数为:27﹣13﹣6=8;第二列第一行的数为:27﹣8﹣5=14;第二列第三行的数为:27﹣14﹣9=4;把数填入图中得:【考点】奇阶幻方问题【解析】【分析】因为每行、每列、每条对角线上各数的和都等于27,所以幻和为27,中心数为27÷3=9,再据表格中的其它数,利用幻和取出即可.19.【答案】解:根据分析可得:【考点】奇阶幻方问题【解析】【分析】根据幻和是6,可得中心数是:6÷3=2;那么对角线、第二行、第二列剩下两个数的和就为:6﹣2=4;所以只要凑成:4=3+1=5+(﹣1)=0+4=﹣2+6,然后稍微调整一下即可得出答案.20.【答案】解:幻和:(1+2+3+4+…+9)÷3=45÷3=15;中间数:15÷3=5;其它两个数的和是10,1+9=2+8=3+7=4+6;【考点】奇阶幻方问题【解析】【分析】先求出这9个数的和,用这个9个数的和除以3求出幻和,再用幻和除以3求出中间数;再根据幻和减去中间数,就是剩下两个数的和,根据幻和,调整这些数的位置,得出幻方.21.【答案】解:四个角各放一个,其余四格各放4个,这样每边都是6个;如下图:【考点】奇阶幻方问题【解析】【分析】要使每边都是6个,从最简单的情况着手,即四个角的数量相等;如果四个角的数量都是3个,那么每边两个方格就有6个棋子,每边会空出一格不合适,所以角上的棋子数量不会超过2个;如果每个角上都是2个,那么每边中间的空格也是2个棋子,这样一共是2×8=16个棋子,不是20个,不合题意;如果每个角上都是1个,那么每边的中间的空格就是4个棋子,一共是1×4+4×4=20个棋子,符合题意.四个角各放一个,其余四格各放4个,这样每边都是6个.22.【答案】解:给未知的数编号如下:幻和是60×3=180a=180﹣48﹣60=72;b=180﹣72﹣12=96c=180﹣48﹣96=36d=180﹣24﹣72=84这个幻方就是:【考点】奇阶幻方问题【解析】【分析】中间数是60,那么幻和就是60×3=180,用这个幻和减去已知的数,即可得出其它的数,从而得解.23.【答案】解:第3行第3列的数是:45﹣24﹣3=18第3行第1列的数是:45﹣21﹣18=6第2行第2列的数是:45﹣24﹣6=15第2行第1列的数是:45﹣15﹣3=27第1行第1列的数是:45﹣27﹣6=12第2行第1列的数是:45﹣15﹣21=9【考点】奇阶幻方问题【解析】【分析】(1)根据横、竖、斜行的三个数的和都是45,用45减去24和3,求出第3行第3列的数是多少;(2)根据横、竖、斜行的三个数的和都是45,用45减去第3行第2列和第3行第3列的数,求出第3行第1列的数是多少;(3)根据横、竖、斜行的三个数的和都是45,用45减去24和第3行第1列的数,求出第2行第2列的数是多少;(4)根据横、竖、斜行的三个数的和都是45,用45减去第2行第2列和第2行第3列的数,求出第2行第1列的数是多少;(5)根据横、竖、斜行的三个数的和都是45,用45减去第2行第1列和第3行第1列的数,求出第1行第1列的数是多少;(6)根据横、竖、斜行的三个数的和都是45,用45减去第2行第2列和第3行第2列的数,求出第1行第2列的数是多少.。
六年级鹏程杯数学竞赛

2.如图所示,四边形 ABCD 中,DAB 的平分线、ABC 的平分线、BCD 的平分线 及 CDA平分线,交成四边形 EFGH .已知 AEB 110 ,则 CGD ________.
a2b2 a2 b2
10
_________
.
7.如图,四边形 ABCD 中, AD CD BC ,∠C 90 ,∠D 150 ,则∠ABC ______ .
8.设 a ,b ,c ,d 是 1~9 之间的四个不同数字,用这四个数字(不能重复)可以组成 很多不同的四位数,小明把所有可能组成的四位数加起来,但他不小心把其中一个四位数 多加了一遍,结果为128313 .那么,正确的结果应该是_________.
(考试时间 100 分钟,满分 120 分)
一、 填空题(满分 60 分,每小题 6 分)
1.计算:
4780
99
476.4
284
4764
71.6
1
1 99
(
).
2.不同的字母 A,B ,C ,D 代表不同的数码,恰使得 AAAA BBB CC D 2014 成 立.则 A B C D __________.
大耕地________亩.
3.设 a 1 21 22 23 24 2999 21000 ,则 a被 3 除的余数是________.
4.某班教室全部是双人课桌,被学生坐满没有空位.其中 60%男学生的同桌也是男生, 而 20%女学生的同桌也是女生.那么,这个班的女生占全班学生总数的________%.