大气污染气象学
污染气象学

1. 空气污染一般是指:由于人为或自然的因素,使大气组成的成分,结构和状态发生变化,与原本情况比增加了有害物质(称之为空气污染物),使环境空气质量恶化,扰乱并破坏了人类的正常生活环境和生态系统,从而构成空气污染(科学定义)。
2. 空气污染源分为两类:人工源和自然源。
3. 大气污染物(ppm, mg/m3):以各种方式排放进入大气层并有可能对人和生物、建筑材料以及整个大气环境构成危害或带来不利影响的物质。
按照其产生方式可分为:一次、二次污染物。
一次大气污染物:直接以原始形态排放入大气中并达到足够的排放量从而造成健康威胁的污染物。
二次大气污染物指大气中的一次污染物通过化学反应生成的化学物质。
4. P-T法确定稳定度类别分ABCDEF类,依次规定为极不稳定,中等不稳定,弱不稳定,中性,弱稳定,中等稳定状况。
P-T-C法确定稳定度的具体过程:1•先计算太阳高度角;2•由云量和太阳高度角按表查出太阳辐射等级;3•由太阳辐射等级与风速按表查出稳定度类别。
5. 源强:表示污染源排放污染物质量的速率。
源强的单位:对点源,g/s或kg/s;对线源,g/(s.m);对面源,g/(s.)或kg/(h.k);对瞬时源,kg或g。
6. 南极臭氧空洞:每年的春季(9、10月)在南极上空会出现一个面积与极涡范围相当的臭氧弄对低质区。
7. 大气的自净能力:由于大气自身的运动,使得大气污染物输送、稀释、扩散,从而起到对大气的净化作用。
机制:大气输送,大气扩散,沉降和化学转化。
8. 逆温:递减率<0的大气层与正常情况完全相反的现象称为逆温,这样的气层称为逆温层。
逆温分类及特征:根据逆温产生的原因不同,可分为辐射性逆温、沉降性逆温、湍流性逆温、锋面逆温和地形逆温五种。
逆温研究关注点(实际):逆温的频率、厚度、强度、种类、生消规律。
对污染物扩散的影响:由于逆温层的存在,大大抑制了对流,使大气处于稳定状态,像一个盖子一样阻碍着大气的垂直运动。
污染气象学大气扩散参数

污染气象学大气扩散参数大气扩散参数是指用于描述污染物在大气中传输和扩散的各种参数,包括平流、湍流和稳定度等。
这些参数主要通过气象观测和模拟来获得,并在大气扩散模型中应用,以预测和评估大气污染物的扩散范围和浓度分布。
首先,平流是指大气中水平风速和风向的变化情况。
平流对大气扩散起着主导作用,因为它决定了污染物在大气中的传输距离和速度。
平流可以通过气象观测和数值模拟来确定,常用的平流参数有水平风速、风向、风切变等。
其次,湍流是指大气中垂直风速和湍流强度的变化情况。
湍流对大气扩散起着重要作用,因为它决定了污染物在垂直方向上的混合和扩散效果。
湍流可以通过气象观测和湍流模型来确定,常用的湍流参数有垂直风速、湍流强度、湍流释放系数等。
最后,稳定度是指大气中温度垂直分布的变化情况。
稳定度对大气扩散也有重要影响,因为它决定了污染物在大气中的上升和下沉运动。
不同稳定度条件下的大气扩散情况差异很大,所以稳定度是影响空气质量的关键因素。
稳定度可以通过气象观测和数值模拟来计算,常用的稳定度参数有温度垂直梯度、温度倾角、位温等。
需要注意的是,大气扩散参数的确定和应用需要考虑多种因素的综合影响。
例如,在复杂地形和复杂气象条件下,大气扩散参数的计算和模拟更为困难,结果也更不准确。
此外,大气污染物的种类、浓度、释放方式等因素也会对大气扩散参数产生影响。
综上所述,大气扩散参数是研究大气污染传输和空气质量的关键指标,其包括平流、湍流和稳定度等参数。
这些参数通过气象观测和模拟来获得,并在大气扩散模型中应用,以预测和评估大气污染物的扩散范围和浓度分布。
了解和掌握这些参数对于污染物源治理和环境保护具有重要意义。
内科大大气污染控制工程课件第3章 大气污染气象学

主要气象要素
3.气湿
➢ 绝对湿度-1m3湿空气中含有的水汽质量 ➢ 相对湿度-空气的绝对湿度与同温度下饱和空气
的绝对湿度的百分比 ➢ 含湿量-湿空气中1kg干空气包含的水汽质量 ➢ 水汽体积分数-水汽在湿空气中所占的体积分数 ➢ 露点-同气压下空气达到饱和状态时的温度
主要气象要素
3.气湿
主要气象要素
云状:卷云(线),积云(块),层云(面),雨层云(无定形)
云
低 云 ( 米 以 下 )
2500
高云(5000m以上)
中 云 ( 2500-5000m )
主要气象要素
6.能见度
正常视力的人,在天空背景下能看清的水平距离 级别(0~9级,相应距离为50~50000米)
第二节 大气的热力过程
一.太阳、大气和地面的热交换
T0 P0
P0
位温:各高度均把压力换算为1000mb(10kPa)时的温度(绝热)
T (1000) RCp T (1000)0.288
P
P
气温的垂直分布(温度层结)
气温的垂直分布-温度层结
T
z
>0, = d , =0 , <0 ,
正常分布层结 中性层结(绝热直减率) 等温层结 逆温层结
Ozone layer
大气圈垂直结构
➢ 对流层(~10km左右)
➢ 集中了大气质量的3/4和全部的水蒸气,主要天 气现象都发生在这一层
➢ 温度随高度的增加而降低,每升高100m平均降 Leabharlann 0.650C➢ 强烈对流作用
➢ 温度和湿度的水平分布不均
大气边界层-对流层下层1~2km,地面阻滞和摩擦 作用明显
➢ 气温随高度升高而迅速降低 ➢ 对流运动强烈
大气污染气象学

第三章 大气污染气象学3.1 一登山运动员在山脚处测得气压为1000 hPa ,登山到达某高度后又测得气压为500 hPa ,试问登山运动员从山脚向上爬了多少米? 解:由气体静力学方程式,大气中气压随高度的变化可用下式描述:dP g dZ ρ=-⋅ (1)将空气视为理想气体,即有m PV RT M =可写为 m PMV RTρ==(2) 将(2)式带入(1),并整理,得到以下方程:dP gM dZ P RT=- 假定在一定范围内温度T 的变化很小,可以忽略。
对上式进行积分得:ln gMP Z C RT =-+ 即 2211ln ()P gM Z Z P RT =--(3) 假设山脚下的气温为10。
C ,带入(3)式得:5009.80.029ln10008.314283Z ⨯=-∆⨯ 得 5.7Z km ∆= 即登山运动员从山脚向上爬了约5.7km 。
3.2 在铁塔上观测的气温资料如下表所示,试计算各层大气的气温直减率:105.1-γ,3010-γ,5030-γ,305.1-γ,505.1-γ,并判断各层大气稳定度。
解:d m K z T γγ>=---=∆∆-=-100/35.25.1102988.297105.1,不稳定d m K z Tγγ>=---=∆∆-=-100/5.110308.2975.2973010,不稳定d m K z Tγγ>=---=∆∆-=-100/0.130505.2973.2975030,不稳定d m K z Tγγ>=---=∆∆-=-100/75.15.1302985.297305.1,不稳定d m K zTγγ>=---=∆∆-=-100/44.15.1502983.297505.1,不稳定。
3.3 在气压为400 hPa 处,气块温度为230K 。
若气块绝热下降到气压为600 hPa 处,气块温度变为多少?解:288.00101)(P PT T =, K P P T T 49.258)400600(230)(288.0288.00101===解:由《大气污染控制工程》P80 (3-23),m Z Z u u )(11=,取对数得)lg(lg 11Z Zm u u =设y u u=1lg ,x Z Z =)lg(1,由实测数据得由excel 进行直线拟合,取截距为0,直线方程为:y=0.2442x故m =0.2442。
空气污染气象学复习资料

空⽓污染⽓象学复习资料名词解释:1、空⽓污染⽓象学:是近代⼤⽓科学研究的⼀个新的分⽀学科,研究⼤⽓运动同⼤⽓中污染物相互作⽤的学科,它作为⼤⽓环境问题研究与应⽤的⼀个重要领域,研究排放进⼊⼤⽓层的空⽓污染物的扩散稀释、转化、迁移和清楚的规律,模拟并预测空⽓污染物的浓度分布及其对环境空⽓质量的影响。
2、⽓象要素:构成和反映⼤⽓状态和⼤⽓现象的基本因素,简称为⼤⽓状态的物理现象和物理量。
3、风:空⽓相对于地⾯的⽔平运动成为风,它有⽅向和⼤⼩,是⽮量。
4、湍流:是⼀种不规则运动,其特征是时空随机变量,包括机械因素和热⼒因素,由机械或动⼒作⽤⽣成的是机械湍流,地表⾮均⼀性和粗糙度均可产⽣这种机械湍流活动。
由各种热⼒因⼦的热⼒作⽤诱发形成的湍流称热⼒湍流,⼀般情况下,⼤⽓湍流的强弱取决于热⼒和动⼒两种因⼦。
在⽓温垂直分布呈强递减时,热⼒因⼦起主要作⽤,⽽在中性层结情况下,动⼒因⼦往往起主要作⽤。
5、⼤⽓温度:指1.5⽶的百叶箱温度。
6、⼲绝热递减率:绝热垂直递减率(绝热直减率):⽓块在绝热过程中,垂直⽅向上每升降单位距离时的温度变化值。
(通常取100m ),单位:℃/100m 。
7、⼲绝热垂直递减率γd (⼲绝热直减率): ⼲⽓块(包括未饱和湿空⽓)在绝热过程中,垂直⽅向上每升降单位距离的温度变化值。
(通常取100⽶),根据计算,得到γd 约为0.98℃/100m ,近似1℃/100m 。
8、混合层⾼度:在实践中,经常会出现这样的温度层结:低层是不稳定的⼤⽓,在离地⾯⼏百到上千⽶⾼空存在⼀个明显的逆温层,即通常所说的上部逆温的情况,它使污染物的垂直扩散受到限制,实际上只能在地⾯⾄逆温的扩散叫“封闭型”扩散。
存在封闭型扩散的空⽓层称混合层。
上部稳定层结的底部的⾼度称为混合层⾼度。
9、地⾯绝对最⼤浓度:两种作⽤的结果:定会在某⼀风速下出现地⾯最⼤浓度的极⼤值,称为地⾯绝对最⼤浓度,⽤Cabsm ,出现最⼤浓度的风速称为危险风速10、烟⽓抬升⾼度:烟囱⾼度He 为烟囱的有效⾼度.这个⾼度就是烟流中⼼线完全变成⽔平时的⾼度.它等于烟囱的实际⾼度Hs 和烟⽓的抬升⾼度△H 之和.He= Hs+ △H11、烟流宽度2y0(或2z0)定义为烟流中⼼线⾄等于烟流中⼼线浓度⼗分之⼀处的距离的⼆倍。
大气污染控制第三章 大气污染气象学

∵ U = H-PV 全微分 dU = dH-PdV-VdP
∴ dq = dH-VdP = CPdT-VdP (dH = CPdT )
对单位质量的空气, V
RT
,故
P
dq
CPdT
RT
dP P
式中:CP = 996.5J/kg.K,R = 287J/kg.K
对于绝热过程:dq = 0,则
dT R dP T CP P
u 3.02 F 3 ( km/h)
5. 能见度 在当时天气条件下,视力正常的人能够从天空背景中看到或辨
认出的目标物的最大水平距离 (m) 。 能见度大小反映了大气透明度或混浊程度。
6. 云:
云是发生在高空的水汽凝结现象。 ⑴ 云的分类 高云:5000m以上,由水晶组成,云体成白色,有蚕丝般光泽,
几乃至几十度。 ⑵ 由于气流运动受地面摩擦的影响,故风速随高度增加而增大。 ⑶ 大气上下有规则的对流和无规则的湍流运动都比较盛行,水气也比较充
足。 直接影响污染物的传输、扩散和转化。
二、气象要素
表示大气状态和物理现象的物理量。 1. 气温
指离地面1.5m高处百叶箱中观测到的空气温度。 2. 气压
指大气压强。气象上气压的单位为毫巴 (mb)。 1mb = 1000dyn/cm2 = 100 Pa
也慢。可见云和强风可抑制辐射逆温出现。
2.下沉逆温 下沉逆温范围广、厚度大、持续时间长,在离地数百米至数千
米的高空都可能出现。在冬季,下沉逆温与辐射逆温相结合,形成 很厚的逆温层。
3.平流逆温 当暖空气平流到冷地面时,下层空气受地面影响大,降温多,上层空气
降温少,故形成逆温。 当暖空气平流到低地、盆地内积聚的冷空气上面时,也可形成平流逆温。
气象学在大气环境污染治理中的应用

气象学在大气环境污染治理中的应用在当今社会,大气环境污染已成为全球面临的严峻挑战之一,对人类的健康和生态系统的平衡造成了巨大威胁。
而气象学作为一门研究大气现象和规律的科学,在大气环境污染治理中发挥着至关重要的作用。
通过对气象条件的深入研究和分析,我们能够更好地理解污染物的扩散、传输和转化过程,从而为制定有效的治理策略提供科学依据。
气象学在大气环境污染治理中的应用首先体现在对污染物扩散的预测和模拟方面。
气象因素如风速、风向、温度、湿度、大气稳定度等都会显著影响污染物在大气中的扩散和传输。
通过建立气象模型和污染物扩散模型,可以较为准确地预测污染物在不同时间和空间的分布情况。
这有助于提前采取措施,如调整工业生产布局、限制车辆行驶等,以减少污染物对人口密集区和生态敏感区的影响。
例如,在一个城市中,如果预计将出现不利于污染物扩散的气象条件,如静稳天气,环保部门可以提前通知相关企业减少污染物排放,并加强对空气质量的监测。
同时,公众也可以提前做好防护措施,减少户外活动,降低污染物对健康的危害。
气象学还能帮助我们分析大气污染物的来源和成因。
通过对气象数据的长期观测和分析,可以发现某些污染物浓度的变化与特定的气象条件之间存在关联。
比如,在特定的季节或天气条件下,某些地区的污染物浓度会明显升高。
这可能是由于当地的污染源排放增加,也可能是由于气象条件不利于污染物的扩散和稀释。
通过深入研究这些关联,可以有针对性地制定减排措施,从源头上控制污染物的排放。
此外,气象学在大气环境监测中也发挥着重要作用。
传统的大气环境监测主要依靠地面监测站点,但这些站点的分布往往有限,难以全面反映大气污染物的空间分布情况。
而气象卫星、气象雷达等先进的气象观测手段可以提供大范围、高时空分辨率的大气信息,有助于更全面、准确地监测大气污染物的分布和变化。
例如,气象卫星可以监测到大气中的气溶胶、颗粒物等污染物的分布情况,为评估大气污染的范围和程度提供重要依据。
气象学中的大气颗粒物和空气污染

气象学中的大气颗粒物和空气污染空气污染是现代社会公认的环境问题之一。
与此同时,气象学家对大气中颗粒物的关注也越来越多。
这些颗粒物不仅会对人类健康造成损害,还可能干扰气象现象的发展。
1. 大气颗粒物的种类和来源大气颗粒物是指在空气中悬浮的微小固体或液态物质,其直径一般小于10微米,其中更细小的颗粒物还被称作细颗粒物(PM2.5)。
这种颗粒物的来源复杂,包括自然因素(如沙尘暴、火山喷发等)、人为因素(如工业废气、机动车排放等)以及生物因素(如花粉、微生物等)。
这些颗粒物对人体健康的影响一直备受关注。
细颗粒物能够进入人体肺部和血液循环系统,引起呼吸系统疾病、心血管疾病等健康问题。
2. 大气颗粒物的分布和扩散大气颗粒物的分布和扩散是气象学家的研究重点之一。
大气中存在着复杂的气流、温度、湿度等因素,这些因素之间相互作用,影响着颗粒物在空气中的行为。
例如,气流的作用会使颗粒物向上或向下运动,更高的湿度则会让它们更容易被转化为液态形式,降落到地表。
这些因素的变化也会导致颗粒物浓度分布的变化。
3. 大气颗粒物的影响除了对人类健康造成的危害外,大气颗粒物还可能干扰气象现象的发展。
例如,云的形成和降水的发生都与颗粒物有关。
颗粒物会作为云凝结核,引导云的形成;而当颗粒物浓度过高时,它们也会影响降水的形成和降雨量。
此外,大气颗粒物还可能会影响光线的传播,潜在影响着气象探测技术、卫星遥感技术等。
4. 控制大气颗粒物控制大气颗粒物是一项重要的任务。
各国需要采取严格的法律法规和措施来防止大气污染和控制颗粒物排放,包括工业、交通等行业的限制和管理。
气象学家也需要加强研究,以便更好地评估和理解气象现象和空气质量之间的关系,为制定公共决策提供科学依据。
结语:空气污染和大气颗粒物的问题需要全球共同应对。
除了国际合作,各国还需要加强监测、研究和管理,积极探索新的减排技术和解决方案,共同打造一个更加健康的生态环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章大气污染气象学讲授2学时教学要求要求了解与大气污染相关的气象学基本知识,理解和掌握大气圈的结构、主要气象要素、大气稳定度和逆温的概念。
教学重点掌握大气层结构及大气的热力过程。
教学难点大气的热力过程、大气稳定度和逆温。
教学容:§3-1大气圈结构及气象要素§3-2大气的热力过程§3-3大气的运动和风污染物排入大气后是否引起严重大气污染除取决于污染物的排入量外与污染物在大气中的扩散稀释速度关系极大。
各区域常常进行环境监测,测定各污染物的情况,我们会发现在同天大气监测值差别很大。
而统一污染源不可能差别很大,有时监测值会几百倍,造成这种现象的原因是与污染物的传输扩散与气象条件有着密切的关系。
近年来,在研究各种气象条件对大气污染物的传输扩散作用和大气污染物质对天气和气候的影响条件中逐渐形成了一门新的分支学科——大气污染气象学。
本章只讨论气象条件对大气污染物的传输扩散作用,初步掌握厂址选择和烟囱设计中的一些问题,为进一步学习污染气象学知识打下基础。
§3-1 概述一.低层大气的成分:干洁空气、水汽、气溶胶粒子。
二.大气的垂直结构三.影响大气污染的主要气象要素气象要素(因子):表示大气状态和物理现象的物理量在气象上称之。
气象要素的数值是直接观测获得的,主要有:气温、气湿、气压、风向、风速、云况、能见度、降水、蒸发、日照时数、太阳辐射、地面辐射、大气辐射等,下面分别介绍几个:1. 气温:空气湿度是反映空气中水汽含量和空气潮湿程度的一个物理量,常用的表示方法有:绝对湿度、水蒸气压力、体积百分比、含湿量、相对湿度、露点等。
2.风a)定义:什么是风?空气水平方向的流动叫风。
b)形成:风主要由于气压的水平分布不均匀而引起的,而气压的水平分布不均是由湿度分布不均造成。
风的特性用风向与风速表示,它是一向量。
由于温度分布不均而形成的风从图a看出地面AB上,t1= t2,水平方向上的温度和气压到处相等,AB上空各高度在水平方向上的T、P也到处相等,则等压(各处气都相等的面)与地面平行,此时大气静止状(无风)。
B来看,A、B两地受热不均,A地气温高于B地(t1>t2),A地的空气因受热膨胀上升而使等压面抬高,因而在A地上空各高度上的气压比B地上空间高度要高,造成等压面自A 地的气压必高于B地的气压,在水平气压梯度力的作用下,空气自A地某高度流向B地。
C 来看,由于b 空气流动的结果,B 地上空因空气流入造成堆积而使质量增加,地面气压升高。
A 地上空空气质量减少,地面气压下降,于是地面上产生了自B 地指向A 地的水平气压梯度,因此空气自B 地流向A 地这样形成了高空自A 地流向B 地,地面自B 地流向A 地的空气环流。
风的形成除热力原因外,还有动力原因,自然界的风是由于这两种原因综合作用的结果,但只要有温差存在,空气就不会停止运动。
a) 风的度量风的大小有叫风速:在单位时间,空气水平流动的距离,m/s 。
风速的测定:EL 型电接风向风速仪(连续自动测定每10分钟的平均风速值),通常,气象台站测得的风向、风速都是指一定时间的平均值。
小时平均风速(一般在一年期间);10分钟平均风速(在实验室)风向:分为16方位,见图2-2,还有一表示方法,以北为零点,沿顺时针方向旋转。
注意字的写法:NE 东北 NNE 北东北随时在变化,如我国季风是我们的特色(冬天东北风);(1) 随高度变化,在一定围,风随高度的增大而增大。
地面有建筑物,树木的影响。
风速随高度变化的曲线叫风速廓线,其数学表达式叫风速廓线模式。
风速廓线模式都是在气象要素正常分布的情况下推导出来的。
在近地层中性层结情况下推导的两个表达式分别为:对数律:00_ln ln Z Z K U Z Z M u *== Z-------离地面的高度 Z 0-------粗糙度(m )M-------系数指数律:mZ Z u u ⎪⎪⎭⎫ ⎝⎛=--11 Z 1-------风速仪的高度-1u ------- Z 1高度处的平均风速(m/s )m---------指数(2) 随地理位置而变山区会产生山风、谷风,海区有海陆风(等)3.云云是发生在高空的水汽凝结现象。
形成的基本条件:水蒸汽和使水蒸汽达到饱和凝结的环境。
云的分类:高云:离地面5000m 以上,冰晶构成;中云:离地面2500—5000m 间,过冷的微小水滴及冰晶构成;低云:离地面2500m 以下,由微小水滴和冰晶构成。
云量:云量是指云遮蔽天空的成数。
将天空分为十份。
这十分中被云所遮盖的成数称为云量。
如在云层中还有少量空隙(空隙总量不到天空的1/20)记为10 ;当天空无云或云量不到1/20时,云量为0。
国外云量与我国云量间的关系,国际云量我国云量=⨯25.1(8分)总云量:指所有云遮蔽天空的成数,不论云的层次和高度。
低云量:低云的云掩盖天空的成数。
云量的纪录:一般云量/低云量的形式记录 如10/7。
云状:多种多样,1932年国际云学委员会出版的国际云图,云状分为四族十属。
云高:指云底距地面的垂直距离,以米为单位。
测定方法:激光测云仪、弧光测云仪等,目力测定法。
4.能见度在当时的天气情况下,正常人的眼睛所能看到的最大距离叫能见度。
能见就是能把目标物的轮廓从它的天空背景上分辨出来,为了知道能见距离的远近,首先必须选择若干固定的目标物,量出他们距测点的距离。
四.能见度的大小反应了大气的混浊程度,反应出大气中杂质的多少。
气压与高度的关系 任一点的气压值等于该地单位面积上的大气柱重量,可见气压总是随高度的增加而降低的。
气压随高度递减关系式可用气体静力学方程式描述设一单位截面积的垂直气柱,在Z 高度上气压为P ,在(Z+ΔZ )气压下降数量等ΔZ 这段气柱的重量,即:(P-ΔP )-P=ρg ΔZ 则ΔP=-ρg ΔZ 。
g---重力加速度; ρ----空气的密度微分式:dp=-ρgdz-------(a)即静力方程式,它表示空气在静止状态下,气压随高度的变化规律dzdp -称为气压梯度或单位高度的气压差将气体状态方程式P V = n R T V n T R p ⋅⋅= n RT P =ρ dz RT Pg dp -= 以T m 平均气温代替真实气温T 分别从P 1 P 2、Z 1 Z 2积分得:()1212ln ln Z Z RT g P P m--=- 此式即压高公式------静力方程式得积分式据实测近地层高度每升高100米,气压平均降低约12.4毫巴,在高层小于此值。
§3-2 大气的热力过程一.太阳辐射太阳的辐射能是地球表面和大气的唯一能量来源,地面和大气获得辐射能增热的同时,本身放出热辐射而冷却,所以大气部始终存在着冷与暖的变化,冷、暖在某种意义上讲决定着空气的干湿与降水,决定着低气压的分布,影响着大气的运动,也就影响了排放至大气的污染物质的扩散稀释。
1.什么是辐射自然界中的一切物体都以电磁波的形式时刻不停的向外传递能量,这种传递能量的方式称为辐射,以辐射的方式向四周输送的能量称辐射能,有时简称辐射。
辐射能的不同,在于电磁波的波长不同,波长即指两连续波间波峰至波峰的距离,物体放射的波长视物体的温度而定,物体的温度增加放射的波长减短,太阳由于温度很高,它的辐射波长在0.15—4.0μm(10-4cm)之间。
辐射最强在0.475μm附近。
地球表面平均温度在1,所15℃,辐射最强是在10μm附近,太阳放出主要辐射的波长只有地球放出的波长的20以我们称太阳辐射是短波,地球辐射是长波,太阳、地球和大气的辐射波长在0.15—120μm之间,其中0.4—0.76μm可见光波长。
波长<0.4μm为紫外线,波长>0.76μm的为红外线。
据估算一年中整个地球可以从太阳获得1.3×1024卡热量,在不计大气影响条件下,一分钟太阳投射到地球表面每一平方厘米面积上的能量称为太阳辐射强度。
据计算,在大气上界,即无大气影响条件下,与太阳成垂直的平面上,每平方厘米面积上每分钟获得的热量为1.94卡,这是在日地平均距离下求得的,称为太阳常数。
概括而言:(1)太阳表面温度6000K,它的辐射波长0.15—4.0μm,辐射最强在0.475μm长波;地球表面温度15℃,它的辐射波长2.0—120μm,辐射最强在10μm短波。
(2)各种物体接受辐射波长有选择性。
(3)各种物体高于0℃,就可辐射波长,也可接受辐射波。
1。
(4)太阳辐射的波长是地球的202.大气对太阳辐射的减弱及影响因素地球周围若没有大气圈,地面可能获得同样的太阳辐射强度,但由于大气的存在使到达地面的太阳辐射强度远比7.94卡少,这主要由于大气对太阳辐射有减弱、消耗等影响,主要通过下述作用。
(1)吸收辐射大气中的水蒸汽、CO2、吸收波长较长的红外部分,O3能强烈吸收紫外线(0.255μm 的吸收99%),N2不吸收太阳辐射。
大气吸收太阳辐射后变成了热能,因此在平流层臭氧比较集中的地方温度较高。
(2)散射作用散射:使太阳辐射的直线射程发生偏斜,向四面八方散开的现象称为散射。
大气中的云滴、尘粒、空气分子对太阳辐射有散射作用,散射只改变太阳辐射的方向,对大气的热能无影响,经散射,一部分到地面,一部分返宇宙。
(3)反射大气层云层和较大颗粒的尘埃能将一部分太阳辐射反射到空间去,所以阴天地面得到的太阳辐射很少。
上述三种作用以反射作用最大,散射次之,吸收最小。
(4)透过大气层辐射能传递关系:少上述中反射和散射返回宇宙空间的占43%,大气直接吸收的占14%,其余43%到达地面被地面吸收。
(包括直接到达地面的27%和散射回地面的16%两部分)3.大气温度依地面温度的变化关系辐射能力极大值对应的波长(λmax )同辐射体的绝对温度T 成反比。
()m T 6max 102897-⨯=λ温度越高,辐射波长越短。
地面温度为200—300K ,据此下地面辐射是种长波辐射,大气也以长波辐射方式向四周输送热量,其中一部分投向地面称为大气的逆辐射。
这样大气能防止地面热量的大量散失,对地面有保温作用。
地面辐射G 1与被地面吸收的大气逆辐射G 2之差称为地面有效辐射或称夜间有效辐射R=G 1-G 2。
若无大气,地面的温度不是15℃,而是-23℃(据计算)大气圈的存在防止了夜间地面热量迅速散失引起的急剧降温,因而减少了温度的日变辐。
大气对太阳的短波辐射吸收很少(仅臭氧对其有吸收),而大气中的水汽、CO 2能大量吸收地面的长波辐射,因此太阳辐射不是大气,特别不是近地层大气的主要热源。
近地层大气温度主要受地表温度的影响,据统计约有75—95%的地面长波辐射被大气吸收,而且几乎在近地面40—50米的气层中就完全被吸收了。
所以地面温度的同期性变化自然会引起空气温度的自然性变化。