最新小学六年级数学易错题难题训练含详细答案
六年级小学数学毕业考试易错题目50道带完整答案(典优)

六年级小学数学毕业考试易错题目50道一.选择题(共10题, 共20分)1.下面四句话中错误的有()句。
①教师节、儿童节、国庆节所在的月份都是小月。
②四个圆心角是90°的扇形可以拼成一个圆。
③如果两个质数的和仍是质数, 那么它俩的积一定是偶数。
④如果ab+4=40, 那么a与b成反比例。
A.1B.2C.3D.42.同时同地, 物体的高度和影长()。
A.成正比例B.成反比例C.不成比例3.如果在银行存入1000元, 在存折上记作+1000元, 那么从银行取出600, 存折上应记作( )元。
A.+600元B.-600元4.圆柱的底面半径扩大到原来的3倍, 高不变, 圆柱的侧面积扩大到原来的()倍。
A.3B.9C.65.比零下8℃还低1℃的温度, 可表示为()。
A.9℃B.-9℃C.-7℃6.下列说法正确的有()个。
①8人进行乒乓球比赛, 如果每两人之间都比赛一场, 一共比赛28场。
②王叔叔把10000元人民币存入银行, 定期一年, 年利率是2.25%。
一年后他可得利息225元。
③山羊只数比绵羊多25%, 也就是绵羊只数比山羊少25%。
A.1B.2C.37.把一块三角形的地画在比例尺是1: 500的图纸上, 量得图上三角形的底是12厘米, 高8厘米, 这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米8.下面的说法错误的有()句。
①圆柱的底面积与高都扩大3倍, 它的体积就扩大6倍②既是2的倍数又是5的倍数的数的特征是个位必须是0③一条线段绕着它的一个端点旋转120°, 形成的图形是圆④在长方体上, 我们找不到两条既不平行也不相交的线段⑤公式S梯形 =(a+b)h÷2, 当a=b时, 就是平行四边形的面积计算公式A.1B.2C.3D.49.0.25∶2与下面()不能组成比例。
A.2.5∶20B.2∶C.0.05∶0.4D.1∶810.如果向东跑为正, 小华从0m跑到+200m处, 小明从0m跑到-200m处, 则()。
最新小学六年级数学易错题难题训练含答案

最新小学六年级数学易错题难题训练含答案一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.【答案】(1)解:原式=2×2+(﹣2)=2(2)解:根据题意可知:2[(a+1)+(﹣3)]+ =a+4,2(a﹣2)+ =a+4,4(a﹣2)+1=2(a+4),4a﹣8+1=2a+8,2a=15,a= .【解析】【分析】(1)根据定义的新运算,进行计算。
最新小学六年级数学易错题难题训练含详细答案

最新小学六年级数学易错题难题训练含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.4.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.5.瓶中装有浓度为的酒精溶液克,现在又分别倒入克和克的、两种酒精溶液,瓶中的浓度变成了.已知种酒精溶液浓度是种酒精溶液浓度的倍,那么种酒精溶液的浓度是百分之几?【答案】解:新倒入的纯酒精重量:(1000+100+400)×14%-1000×15%=210-150=60(克)设A种酒精溶液的浓度为x,则B种为。
最新小学六年级数学易错题难题专题训练含详细答案

最新小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
(1)2★5;(2)(-2)★(-5).【答案】(1)解:2★5=2×5-2-52+1=-16(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.4.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是________,第n个“正方形数”是________.(2)除“1”以外,请再写一个既是“三角形数”,又是“正方形数”的数________.(3)经探究我们发现:任何一个大于1的“正方形数”都可以看做两个相邻“三角形数”之和. 例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…请写出上面第4个和第5个等式.(4)在(3)中,请探究n2=________+________。
最新小学六年级数学易错题难题专题训练含答案

最新小学六年级数学易错题难题专题训练含答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.4.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.6.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.7.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次【解析】【分析】在做有关浓度的应用题时,为了弄清楚溶质质量、溶液质量的变化,尤其是变化多次的,常用列表的方法,使它们之间的关系一目了然。
最新六年级数学易错题难题试题含答案

(小时)。
答:丙帮助甲搬运了 3 小时,帮助乙搬运了 5 小时。
【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两 个仓库的货物,用工作量 2 除以三人的工作效率和求出共同完成工作量需要的时间。在这 段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。用甲的工作效率 乘共同完成的时间即可求出甲完成的工作量,用 1 减去甲完成的工作量即可求出丙帮甲完 成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的 时间即可。
【解析】【分析】 当甲完成任务的 时,乙完成了任务的 还差 40 个,这时乙比甲少完成 40 个;当乙完成全部任务时,甲还剩下 20 个零件没完成,这时乙比甲多完成 20 个;所以 在后来的 7.5 小时内,乙比甲多完成了(40+20)个,那么乙比甲每小时多完成(40+20) ÷7.5 个,然后求出乙提高工效后每小时完成的个数即可。
【解析】【分析】由于交换前后两容器中溶液的重量均没有改变,而交换一定量的硫酸溶 液其目的是将原来两容器中溶液的浓度由不同变为相同,而且交换前后两容器内溶液的重 量之和也没有改变,根据这个条件可以先计算出两容器中的溶液浓度达到相等时的数值, 从而再计算出应交换的溶液的量。
5.蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需 小时;排光一池 水,单开排水管需 小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序 轮流各开 小时.问:多长时间后水池的水刚好排完?(精确到分钟)
10.搬运一个仓库的货物,甲需 小时,乙需 小时,丙需 小时.有同样的仓库 和 ,甲在 仓库,乙在 仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬
运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?
最新六年级数学易错题难题提高含详细答案

(2)列式计算青少年宫与商场之间的距离.
【答案】(1)解:如图所示:
(2)解:由题意可得:300-(-200)=500 或︱-200-300︱=500. 答:青少年宫与商场之间的距离是 500 m 【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的 位置;(2)根据题意青少年宫与商场之间的距离是 300-(-200),再根据减去一个数等于 加上这个数的相反数,求出青少年宫与商场之间的距离.
桶
桶
原 桶液体:原 桶液体
原 桶液体:原 桶液体
初始状态
第一次 桶倒入 桶
第二次 桶倒入 桶
第三次 桶倒入 桶
由上表看出,最后 桶中的液体,原 桶液体与原 桶液体的比是 ,而题目中说“水比
牛奶多 升”,所以原 桶中是水,原 桶中是牛奶.
因为在 中,“
”相当于 1 升,所以 2 个单位相当于 1 升.由此得到,开始时, 桶
【答案】(1)15;
;25;n2
(2)36
(3)25=10+15;36=15+21
(4)2n;1
【 解 析 】 【解 答 】解 :( 1 )15 ,
, 25 , n2 ; ( 2 ) 1+2+3+4+5+6+7+8=36 ,
62=36 , 所 以 36 是 三 角 形 数 , 也 是 正 方 形 数 。 ( 3 ) 25=10+15 , 36=15+21 ; ( 4 )
最新六年级数学易错题难题提高含详细答案
一、培优题易错题
1.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年 宫在学校东 300m 处. 商场在学校西 200m 处,医院在学校东 500m 处.若将马路近似地看 做一条直线,以学校为原点,向东方向为正方向,用 1 个单位长度表示 100m.
六年级小学数学毕业考试易错题目50道含完整答案【易错题】

六年级小学数学毕业考试易错题目50道一.选择题(共10题, 共20分)1.下面说法正确的是()。
A.负数到0的距离比正数到0的距离小B.上升为正数, 下降为负数C.0大于一切负数, 小于一切正数2.小明的期末数学成绩高于平均分3分记为+3, 小亮的分数记为-4, 说明()。
A.高于平均分4分B.低于平均分4分C.小明和小亮相差4分3.下面各题中, 两种量成反比例关系的是()。
A.正方形的边长和周长B.订阅《小学生周报》的总价和数量C.被减数一定, 减数和差D.从武夷山东站到福州北站, 列车行驶的速度和所需的时间4.用铜制成的零件的体积和质量()。
A.成正比例B.成反比例C.不成比例5.学校举行自然科学知识竞赛, 抢答题的评分规则是答对一题加100分, 答错一题扣10分。
把加100分记作+100, 四年级同学答对了8道题, 答错了2道题, 他们的得分记作()。
A.+800B.-20C.+7806.把一块三角形的地画在比例尺是1: 500的图纸上, 量得图上三角形的底是12厘米, 高8厘米, 这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米7.李大爷用一块地种土豆, 去年收土豆4.5吨, 比前年增产五成, 前年这块地收土豆()。
A.9吨B.3吨C.1.5吨D.5吨8.在比例里,两个外项互为倒数,如果一个外项是1.6,那么另一个外项是()。
A.6.1B.1.6C.135D.9.1700多年前, 我国数学家()首次明确提出了正负数的概念。
A.祖冲之B.刘徽C.华罗庚D.陈景润10.根据下表中的两种相关联的量的变化情况, 判断它们成不成比例?成什么比例?总价一定, 单价和数量()。
A.成正比例B.成反比例C.不成比例D.不成反比例二.判断题(共10题, 共20分)1.若两个圆柱体的侧面积相等, 则它们的体积也相等。
()2.一张图纸的比例尺是1∶50, 这个比例尺表示图上距离1厘米相当于实际距离50千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新小学六年级数学易错题难题训练含详细答案
一、培优题易错题
1.用火柴棒按下图中的方式搭图形.
(1)按图示规律填空:
图形符号①②③④⑤
火柴棒根数________________________________________
【答案】(1)4;6;8;10;12
(2)2n+2
【解析】【解答】解:(1)填表如下:
图形符号①②③④⑤
火柴棒根数4681012
【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;
(2)由(1)可得规律:2+2n.
2.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):
(1)写出该厂星期一生产工艺品的数量.:
(2)本周产量最多的一天比最少的一天多生产多少个工艺品?
(3)请求出该工艺品厂在本周实际生产工艺品的数量.
(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.
【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),
答:该厂星期一生产工艺品的数量是305个.
(2)解:本周产量最多的一天是星期六,最少的一天是星期五,
∴(16+300)-【(-10)+300】=26(个),
答:本周产量最多的一天比最少的一天多生产26个工艺品.
(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】
=2100+10
=2110(个).
答:该工艺品厂在本周实际生产工艺品的数量是2110个.
(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).
根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).
答:该工艺厂在这一周应付出的工资总额是126500元.
【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.
(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.
(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.
(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额.
3.如果,那么我们规定 .例如:因为,所以 .
(1)根据上述规定,填空:
________, ________, ________.
(2)若记,, .求证: .
【答案】(1)3;0;-2
(2)解:依题意则
∵
∴
【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,
故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.
4.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.
(1)用含的代数式表示点对应的数:________;
(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.
①用含的代数式表示点在由到过程中对应的数:________ ;
②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);
③当PQ=3 时,求 t的值.________
【答案】(1)
(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,
【解析】(1)点所对应的数为:
( 2 )①
② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒
当时,:,:
,解之得
当时,:,:
,解之得
【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.
5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6
(1)收工时,检修小组在A地的哪一边,距A地多远?
(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?
【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米
(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3
=65×3=195(升),∵195>180,
∴收工前需要中途加油,
195-180=15(升),
答:应加15升.
【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;
(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.
6.有,两个桶,分别盛着水和某含量的酒精溶液.先把桶液体倒入桶,使桶中的液体翻番;再将桶液体倒入桶,使桶中的液体翻番.此时,,两桶的液体体积相等,并且桶的酒精含量比桶的酒精含量高.问:最后桶中的酒精含量是多
少?
【答案】解:因为最后桶的酒精含量高于桶,所以一开始桶盛的是酒精溶液.设一开始桶中有液体,桶中有.第一次从桶倒入桶后,桶有,桶剩;第二次从桶倒入桶,桶有,桶剩.由,得.
再设开始桶中有纯酒精,则有水.将酒精稀释过程列成表(如图):由题意知,,解得.所以最后桶中的酒精含量是
.
桶桶
纯酒精:水纯酒精:水
初始状态
第一次桶倒入桶
第二次桶倒入桶
液,B桶中是水。
设一开始A桶中有液体x,B桶中有y,然后分别表示出两次操作后溶液的量,并根据两种液体体积相等得到一个等式,再求出两桶溶液的容量比。
然后运用列表的方法确定A桶中酒精的含量即可。
7.甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的倍.将克甲瓶盐水与克乙瓶盐水混合后得到浓度为的新盐水,那么甲瓶盐水的浓度是多少?
【答案】解:设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。
100×3x+300x=(100+300)×15%
600x=60
x=0.1
0.1×3=0.3=30%
答:甲瓶盐水的浓度是30%。
【解析】【分析】设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。
等量关系:甲瓶水盐的质量+乙瓶水盐的质量=混合后盐的质量。
根据等量关系列方程解答即可。
8.、、三瓶盐水的浓度分别为、、,它们混合后得到克浓度为的盐水.如果瓶盐水比瓶盐水多克,那么瓶盐水有多少克?
【答案】解:设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。
(70-2x)×20%+(x+30)×18%+16%x=100×18.8%
14-0.4x+0.18x+5.4+0.16x=18.8
0.06x=19.4-18.8
x=0.6÷0.06
x=10
70-2×10=50(克)
答:A瓶盐水有50克。
【解析】【分析】设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。
等量关系:A瓶中盐的重量+B瓶中盐的重量+C瓶中盐的重量=混合后盐的总重量。
根据等量关系列方程求出x的值,进而求出A瓶盐水的重量。
9.一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?
【答案】解:甲做5天的工作量乙需要4天,乙独做需要:20+4=24(天),
甲的工作效率:,
合做:(天)。
答:如果甲、乙合作,天可以完成。
【解析】【分析】如图:
从图中可以直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。
于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件。
这样这项工程就相当于乙独做需要(20+4)天。
用乙的工作效率乘4再除以5即可求出甲的工作效率,用总工作量除以工作效率和即可求出合作完成的天数。
10.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?
【答案】解:
=
=
=1(天)
6-1=5(天)
答:当甲队撤出后,乙、丙两队又共同合修了5天。
【解析】【分析】甲队撤出,乙和丙一直修了6天,用两队的工作效率乘6求出乙、丙合修的工作量,用1减去乙、丙合修的工作量求出甲完成的工作量,用甲完成的工作量除以甲的工作效率即可求出甲的工作时间,用6减去甲的工作时间即可求出甲撤出后乙丙合修的时间。