第八章--水平地震作用下的内力和位移计算
2.7水平地震作用内力计算

2.7⽔平地震作⽤内⼒计算2.7 ⽔平地震作⽤内⼒计算设计资料:根据《建筑抗震设计规范》(GB50011—2001)第5.1.3条:屋⾯重⼒荷载代表值Gi =屋⾯恒载+屋⾯活荷载+纵横梁⾃重+楼⾯下半层的柱及纵横墙⾃重;各楼层重⼒荷载代表值G i =楼⾯恒荷载+50%楼⾯活荷载+纵横梁⾃重+楼⾯上下各半层的柱及纵横墙⾃重;总重⼒荷载代表值∑==ni iGG 1。
主梁与次梁截⾯尺⼨估算:主梁截⾯尺⼨的确定:当跨度取8000L mm =,主梁⾼度应满⾜:1111(~)(~)8000667~1000812812h L mm mm ==?=,考虑到跨度较⼤,取700h mm =,则:1111(~)(~)700233~3502323b h mm mm ==?=,取350b mm =。
当跨度取6000L mm =,主梁⾼度应满⾜:1111(~)(~)6000500~750812812h L mm mm ==?=,考虑到跨度较⼤,取500h mm =,则:1111(~)(~)500167~2502323b h mm mm ==?=,取250b mm =。
⼀级次梁截⾯尺⼨的确定:跨度取4800L mm =,次梁⾼度应满⾜:1111(~)(~)4800320~40012181218h L mm mm ==?=,考虑到跨度较⼤,取350h mm =,则:1111(~)(~)350117~1752323b h mm mm ==?=,取200b mm =。
⼆级次梁截⾯尺⼨的确定:跨度取3000L mm =,次梁⾼度应满⾜:1111(~)(~)3000167~25012181218h L mm mm ==?=,考虑到跨度较⼤,取300h mm =,则:1111(~)(~)300100~1502323b h mm mm==?=,取200b mm =。
柱的截⾯尺⼨估算: 根据公式:11C c r nAN C A =公式来估算每层柱的截⾯尺⼨其中1r 为放⼤系数,通常范围为1.1—1.3 n 为层数,A :代表柱的受荷⾯积)(2m:1N 代表每平⽅⽶的重量 13~~182M KN:C υ表⽰轴压⽐:c f 表⽰混凝⼟的抗压强度)(2MM N根据设计图纸可得柱的截⾯尺⼨如下:2.7.1 各层楼⾯的重⼒荷载代表值计算梁柱⾃重计算列表2.7.2 重⼒荷载代表值的计算 2.7.2.1 楼板恒活荷载标准值屋⾯(8层):⼆毡三油铺⼩⽯⼦ 0.3530mm ⽔泥砂浆找平层 20.0320=0.60kN/m ? 150mm 加⽓混凝⼟保温层 20.156=0.9kN/m ? 120mm 现浇混凝⼟楼板20.1225=3kN/m ? 20mm 厚⽯灰砂浆抹底 20.0217=0.34kN/m ? 恒荷载标准值:合计:25.19kN/m 活载标准值: 20.5kN/m 楼⾯(1~7层):25mm ⽔磨⽯⾯层 20.02525=0.625kN/m ? 30mm ⽔泥砂浆找平层 20.0320=0.60kN/m ? 120mm 现浇混凝⼟楼板 2 0.1225=3kN/m ? 20mm 厚⽯灰砂浆抹底 20.0217=0.34kN/m ? 恒荷载标准值:合计:24.6kN/m 活载标准值: 22.0kN/m 屋⾯:总板⾯积:21393.5m81393.527.636183 5.196621.92G kN =---??=恒载()81393.527.6361830.5637.95G kN =---??=活载()80.56621.920.5637.956940.9G G G kN kN kN =+?=+?=8恒载8活载第⼀~七层:1~71393.527.636183 4.65869.14G kN =---??=恒载()1~71393.527.63618322551.8G kN =---??=活载()1~71~71~70.55869.140.52551.87145.04G G G kN kN kN =+?=+?=恒载活载建筑物总重⼒荷载代表值:81i i G =∑=6940.9+7145.04×7=56956.18N k2.7.2.2 楼梯恒活荷载标准值1)平梯段⾯层:20mm 厚⽔泥砂浆 0.02×20=0.42kN/m 梯板:120厚混凝⼟板 0.12×25=32kN/m 板底:15mm 厚⽯灰浆粉刷:0.015×17=0.255 2kN/m 恒荷载标准值:k g =3.662kN/m 活荷载标准值:k q =2.02kN/m2)⼀层的斜梯段⾯层:0.02×20×(0.27+0.175)/0.27=0.662kN/m 梯踏步:0.175×25/2=2.192kN/m 梯斜板:0.12×25/cos θ=3.582kN/m 板底:0.015×17/cos θ=0.32kN/m 恒荷载标准值:k g =6.732kN/m 活荷载标准值:k q =2.02kN/m3)⼆~⼋层的斜梯段⾯层:0.02×20×(0.27+0.15)/0.27=0.622kN/m 梯踏步:0.15×25/2=1.882kN/m 梯斜板:0.12×25/cos θ=3.432kN/m 板底:0.015×17/cos θ=0.292kN/m 恒荷载标准值:k g =6.222kN/m 活荷载标准值:k q =2.02kN/m第⼀层楼梯:6.7383 3.66475.49G kN=??+??=1恒载(27.6+36+18-83)2163.2G kN =?=1活载(27.6+36+18)10.5475.490.5163.2557.09G G G kN kN kN =+?=+?=1恒载1活载第⼆~⼋层楼梯:6.2283 3.66446.11G kN=??+??=2~8恒载(27.6+36+18-83)2163.2G kN =?=2~8活载(27.6+36+18)2~8~8~80.5446.110.5163.2527.71G G G kN kN kN =+?=+?=2恒载2活载电梯荷载标准值:0.50.57182126G G G kN =+?==电梯电梯恒载电梯活载质点重⼒荷载值如下:1557.09527.717145.04225497.875830.923899.0633514.16520765.0622G KN=++++++=2527.717145.045830.923899.0633514.1652142.7220231.1822G KN=+++++=3527.717145.045830.923899.0632142.7219545.45G KN=++++=4527.717145.045830.923899.0632142.7219545.45G KN =++++= 5527.717145.045830.923899.0631964.162142.7219456.1722G KN=+++++=6527.717145.045830.923899.0631946.1619366.89G KN=++++=75830.92928.456940.93899.06321964.1619297.972G KN=++++=8527.711267145.045830.923899.06321946.1619229.04G KN=+++++= 如下图所⽰:2.7.3 ⽔平地震作⽤计算横向框架⾃振周期:按顶点位移法计算框架的⾃振周期,对于质量和刚度沿⾼度分布⽐较均匀的⾼层钢筋混凝⼟框架,可以简化为等截⾯悬臂杆,得到由结构顶点位移表⽰的计算结构基本周期的半经验公式,按以下公式计算:1 1.7T α=式中:0α——基本周期调整系数。
水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文3 抗震设计的基本要求3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。
3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。
对不利地段,应提出避开要求,当无法避开时应采取有效的措施。
对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。
3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。
不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。
注:形体指建筑平面形状和立面、竖向剖面的变化。
3.5.2结构体系应符合下列各项要求:1应具有明确的计算简图和合理的地震作用传递途径。
2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。
3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。
4对可能出现的薄弱部位,应采取措施提高其抗震能力。
3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。
3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。
3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。
3.9.2 结构材料性能指标,应符合下列要求:1 砌体结构材料应符合下列规定:1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5;2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应低于Mb7.5。
2混凝土结构的材料应符合下列规定:1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20;2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋在最大拉力下的总伸长率实测值不应小于9%。
横向水平荷载作用下框架结构的内力和侧移计算

结构等效总重力荷载
F
G
G
G
G3
质点i的水平地震作用Fi 若: 不考虑顶部附加地震作用 若: 考虑顶部附加地震作用 查表1.19
(3)判别
楼层位移
01
弹性角位移
02
层间位移 查表1.21 钢筋混凝土框架1/550
节点平衡
左地震M图
方向:
01
剪力:使物体顺时针转为正 轴力:压力为正
02
左地震剪力、轴力图
03
梁端剪力、柱轴力
(二)横向风荷载作用下框架结构内力和侧移计算 1、风荷载标准值 :风振系数 :体型系数 :高度变化系数,表1.11 :基本风压 0.65 压 吸 ……
03
3、水平地震作用下的位移验算
4、水平地震作用下框架内力计算
D值法(改进反弯点法)
柱端弯矩:
--标准反弯点高度比(表2.4) --上、下层梁线刚度比修正系数(表2.6) --上层层高变化的修正值(表2.7)底层 --下层层高变化的修正值(表2.7)二层 --本层层高
梁端弯矩:
柱左侧受拉为正
以梁线刚度分配
六、横向水平荷载作用下框架结构的内力和侧移计算
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
(一)横向水平地震作用下框架结构的内力和侧移计算 1、横向自震周期(基本自震周期)T1 Gi 为计算单元范围内各层楼面上的重力荷载代表值及上下各半层的墙柱等重量 注:突出屋面部分面<30%屋面面积,则按附属结构计算;>30%按一层计算 计算时,先将突出屋面部分重力荷载折算到顶层: Ge=Gn×(1+3h/2H)
自振周期计算公式:
考虑非承重墙影响的折减系数,框架0.6~0.7; 计算结构基本自振周期用的结构顶点假想位移 对于带屋面局部突出间的房屋,应取主体结构顶点的位移。
地震作用下框架内力和侧移计算

6 地震作用下框架内力和侧移计算6.1刚度比计算刚度比是指结构竖向不同楼层的侧向刚度的比值。
为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。
根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。
根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。
计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。
7.0939.0/1136076/1066908211>===∑∑mmN mmN DDγ,满足规范要求;()8.0939.0/113607611360761136076/10669083343212>=++⨯=++=∑∑∑∑mmN mmN DD D D γ,满足规范要求。
依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。
将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑iD ,见表6-4。
6.2水平地震作用下的侧移计算根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。
T T T μψ7.11= (6-1)式中:1T ——框架的基本自振周期;T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ; T ψ——基本自振周期考虑非承重砖墙影响的折减系数。
根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第4.3.17条规定:1、框架结构可取0.6~0.7;2、框架-剪力墙结构可取0.7~0.8;3、框架-核心筒结构可取0.8~0.9;4、剪力墙结构可取0.8~1.0。
第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算8.1重力荷载代表值计算顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自 重,半层墙体自重。
其他层重力荷载代表值包括:楼面恒载, 50滋面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。
8.1.1第五层重力荷载代表值计算层高H=3.9m 屋面板厚h=120mm 8.1.1.1半层柱自重(b x h=500mr K 500mm :4 X 25X 0.5 X 0.5 X 3.9/2=48.75KN 柱自重:48.75KN8.1.1.2屋面梁自重3.16kN/m 7.6m 0.3m2 1.495kN /m (3m 0.3m)3.16 6.6 0.5 4 1.495kN/m (6.6m 0.25m) 2 147.16kN屋面梁自重:147.16KN8.1.1.3半层墙自重8.1.1.4 屋面板自重顶层无窗墙(190 厚):14.25 0.19 20 0.02 2 390.66.6 31.25KN带窗墙(190厚):3.914.25 0.19 20 0.02 2 0.6 6.621 5 1 814.25 0.1920 0.020.4523 82.98 KN女儿墙: 14.25 0.19 20 0.02 21.6 6.6 37.04KN2墙自重:114.23 KN8.1.1.5 第五层重量48.75+147.16+114.23+37.04+780.78=1127.96 KN8.1.1.6 顶层重力荷载代表值G 5 =1127.96 KN8.1.2第二至四层重力荷载代表值计算层高H=3.9m,楼面板厚h=100mm8.1.2.1 半层柱自重:同第五层,为48.75 KN则整层为48.75 X 2=97.5 KN 8.1.2.2 楼面梁自重:3.3kN /m 7.6m 0.3m 2 1.6kN /m (3m 0.3m)3.3 6.6 0.5 4 1.6kN / m (6.6m 0.25m) 2154.3kN8.1.2.3 半墙自重:同第五层,为27.66KN则整层为2X27.66 X 4=221.28 KN 8.1.2.4 楼面板自重:4X 6.6 X( 7.6+3+7.6 ) =480.48 KN8.1.2.5 第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN8.1.2.6第二至四层各层重力荷载代表值为:G2-4953.56 50% 2.5 6.6 7.6 2 3.5 6.6 3 1113.61KN活载:Q2-4=(2.5 6.6 7.6 2 3.5 6.6 3) 50% 160.05KN8.1.3第一层重力荷载代表值计算层高H=4.2n,柱高H2=4.2+0.45+0.55=5.2m,楼面板厚h=100mm8.1.3.1 半层柱自重:(b X h=500m X 500mm :4 X 25X 0.5 X 0.5 X 5.2/2=65 KN则柱自重:65+48.75=113.75 KN8.1.3.2 楼面梁自重:同第2层,为154.3 KN半层墙自重(190mr)4.214.25 0.19 20 0.02 20.6 6.62「5「814.25 0.19 20 0.02 0.45 31.14KN二层半墙自重(190mr): 27.66 KN则墙自重为:(31.14+27.66 ) X 4=235.2 KN8.134 楼面板自重:同第2层,为480.48KN第 1 层重量=113.75+154.3+235.2+480.48=983.73KN第1层重力荷载代表值为:G i=983.73+50%X( 2.5 X 6.6 X 7.6 X 2+3.5 X 6.6 X 3) = 1143.78 KN活载:Q=50X( 2.5 X 6.6 X 7.6 X 2+3.5 X 6.6 X 3) =160.05 KN综上所述,结构等效总重力荷载代表值为:G e q 0.85G E 0.85 G1 G2 G3 G4 G50.85 1013.46 917.37 3 1106.65 4141.39 KNG eq=0.85G E=0.85 X (G+G+G+G+G)=0.85 X (1127.96+1113.61 X 3+1143.78)=4770.68KN8.2水平地震作用计算和位移计算8.2.1结构基本自振周期的计算8.2.1.1 框架梁柱的抗侧刚度计算见表6-1、表6-2、表6-3.考虑梁柱线刚度比,用D值法计算各楼层框架柱的侧向刚度。
水平荷载作用下的内力计算

水平荷载作用下的内力计算
- 反弯点法:柱子的抗侧移刚度可以通过柱顶产生单位水平位移在柱顶所施加的水平力计算得出。
柱子的线刚度越大,柱子的抗侧移刚度越好,抵抗水平荷载的能力也就越强。
- 平面协同分析模型:通过对交错桁架结构在水平荷载作用下受力特点的分析,把结构中的楼板等效为与横向框架铰接的刚性链杆,建立了构件内力、层间侧移和楼层侧移计算的平面协同分析模型。
在进行水平荷载作用下的内力计算时,需要根据实际情况选择合适的计算方法,并对计算结果进行详细的分析和验证。
如果你需要更详细的计算方法或有其他相关问题,请提供更多信息继续向我提问。
水平地震作用下框架结构的内力计算抗震设计

2 抗震设计(水平地震作用下框架结构的内力计算)抗震计算单元及动力计算简图取整个衡宇或抗震缝区段(设防震缝时)为计算单元,动力计算简图为串联多自由度体系。
即将各楼层重力荷载代表值集中于每一层楼盖或屋盖标高处。
多自由度体系的抗震计算可采用振型分解反映谱法和底部剪力法。
本工程总高不超过40m,以剪切变形为主,且质量和刚度沿高度散布比较均匀,近似于单质点体系,故采用底部剪力法。
此法是先计算出作用于结构的总水平地震作用,然后将其按必然规律分派给各质点。
计算简图2—1 如下示:图2—1重力荷载代表值按照抗震规范1.0.2 抗震设防烈度为6度及以上地域的建筑,必须进行抗震设计。
按照抗震规范5.1.3 计算地震作用时,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。
各可变荷载的组合值系数,应按表2—1采用。
组合值系数重力荷载代表值计算:1)屋面及楼面的永久荷载标准值1.屋面(上人)苏J01—2005:a. 10厚防滑地砖铺面,干水泥擦缝,每3—6m留10宽缝m2b. 20厚1:水泥砂浆加建筑胶结合层找平层20×= kN/m2厚C20细石混凝土,内配Φ4@150双向钢筋25×= kN/m2d.隔离层/e. 三粘四油沥青油毡防水层m2f. 冷底子油一道/g. 20厚1:3水泥砂浆找平层20×= kN/m2h.保温层5×= kN/m2厚1:3水泥砂浆找平层20×= kN/m2j.现浇或预制钢筋混凝土屋面25×= kN/m2 合计kN/m2 2.1~4层楼面苏J01—2005a. 15厚1:2白水泥白石子磨光打蜡kN/m2b.耍素水泥浆结合层一道/c. 20厚1:3水泥砂浆找平层20×= kN/m2d.现浇钢筋混凝土楼面25×= kN/m2合计kN/m2 2)屋面及楼面的可变荷载标准值上人屋面均布荷载标准值kN/m2 楼面活荷载标准值kN/m2 屋面雪荷载标准值S k=μr×S o=×= kN/m2式中:μr为屋面积雪散布系数,取μr=3)梁、柱、墙、窗、门重力荷载计算:a.梁、柱可按照截面尺寸、材料容重及粉刷等计算出的单位长度上的重力荷载;对墙、门、窗等可计算出单位面积上的重力荷载,计算结构如表2—2梁、柱重力荷载标准值表b.墙、门、窗重力荷载标准值:外墙体为200mm厚的粘土空心砖,外墙面贴马赛克(kN/m2),内墙面为20mm厚的抹灰,则外墙的单位墙面重力荷载为:+15×+17×= kN/m2内墙为200mm厚的粘土空心砖,双侧均为20mm厚抹灰,则内墙单位面积重力荷载为:15×+17××2= kN/m2电梯井墙为240mm粘土空心砖,双侧均为20mm厚抹灰,则电梯井墙单位面积重力荷载为:15×+17××2= kN/m2木门单位墙面重力荷载为kN/m2,钢铁门单位墙面重力荷载为kN/m2铝合金单位墙面重力荷载为kN/m2门、窗、雨棚重力荷载代表值:一层门窗:×(2××2+××2+××3+××1+××2)+×××13+××1+××2+××2+××3+××2) +×××2)=二~四层门窗:×××2+××3)+×××16+××2+××2+××2+××3+××2)= kN五层门窗:×××2+×+×××3+××2)= kNA轴的雨蓬:25×(2××+×××3+×××2= kN9轴雨蓬:25×××= kN五层雨蓬:25×××3= kN楼梯重力荷载代表值:一层:25××××2+25×××+25××××10+25×××9×2= kN二~四层:25××××2+25×××12+25×××12= kN外墙的重力荷载代表值:一层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××13-××1-××2-××2-××3-××2-××2-2××2-××1-××2-×]=二~四层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××16-××2-××2-××2-××3-××2]= kN五层(包括女儿墙):×[×4+×2) ×+4××+××1-××2-××3-××3]+25×[+59+9+9+--×2)×2+--×2)×5]××+25×[4×4+×4+9×2]××=内墙的重力荷载代表值:一层:×[(4×2+×2)×++×-×++++×-×-×+4×3×-××2]= kN二~四层:×[+++×+4×3×-××3-×+×+×-×]= kN五层:×4×=电梯井墙重力荷载代表值:一层:×[+-×+(4+×]= kN二~四层:×[+-×+(4+×]= kN屋顶装饰架重力荷载代表值:25××5+×2)××= kN总的重力荷载代表值:恒荷载取全数,活荷载取50%(按均布等效荷载计算),则集中于各楼层的标高出的重力荷载代表值为:G i的计算进程:一层:×(59×-×4×2-4×+++++++++×4×59×= kN二~三层:×(59×-4××2-4×+++++++×4×59×= kN四层:×9×4+++++++×(59×-×4×2-9×4)+×4×(9×4+×4×2)+××(59×-×4×2-9×4)= kN五层:××4×2+9×4)+++++++××(9×4+×4×2)= kN 故G1=G2= kNG3= kNG4= kNG5=图2—2如下:G5=3124.87kNG4=18184.16kNG1=17311.22kNG2=17311.22kNG5=18568.35kN图2—2 各质点的重力荷载代表值框架侧移刚度计算梁线刚度:i b=E c I b/l,I b=(中框架梁),I b=(边框架梁)。
第八章-结构的位移计算

绝对位移
相对位移
截面A角位移A ,
A点线位移 A 包含: 水平线位移 AH 竖向线位移 AV
CD两点的水平相对线位移:
(CD )H C D
AB两截面的相对转角:AB A B
以上线位移、角位移及相对位移统称为广义位移
一.局部变形时的位移公式
如图所示,为一悬臂梁在B点附近有微段ds 有局部变形,结构其他部分没有变形,微
段 ds 局部变形包括三部分:
⑴ 轴向应变 ;⑵ 平均剪切应变 0 ;
⑶ 轴线曲率 ( 1 R,R 为轴线变形后
§8-2 结构位移计算的一般公式
—般情况下,结构发生位移在结构内部产生应变,因此,结构的位移计算 属于变形体体系的位移计算问题。计算变形体体系的位移采用的方法以虚 功原理最为普通。推导结构位移(变形体)计算的一般公式有两种途径:
一是根据变形体体系的虚功原理,然后由此导出变形体体系的位移公式, 另一种是先应用刚体体系的虚功原理导出局部变形时的位移公式,然后应 用叠加原理,导出整体变形时的位移公式。
第 六 章 结构位移计算
本章主要内容
➢ 应用虚功原理求刚体体系的位移 ➢ 结构位移计算的一般公式 ➢ 荷载作用下的位移计算 ➢ 图乘法 ➢ 温度作用及支座移动时的位移计算 ➢ 广义位移的计算 ➢ 互等定理
§8-1 应用虚功原理求刚体体系的位移
一.结构位移计算概述
◆结构位移的种类:结构在外界因素作用下发生变形。因此而使结构各点的 位置发生相应的改变,这种改变称为结构的位移。
在材料力学中,曾学过求梁的位移计算方法(如直接积分法等)。但这
些方法对于结构力学的研究对象,如多跨静定梁、桁架、刚架等结构,是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 水平地震作用下的内力和位移计算8.1 重力荷载代表值计算顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。
其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。
8.1.1第五层重力荷载代表值计算层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重(b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重()()kNm m m kN m m m kN m m m kN 16.1472)25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=⨯-⨯+⨯-⨯++⨯+⨯-⨯ 屋面梁自重:147.16KN 8.1.1.3 半层墙自重顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯ 带窗墙(190厚):()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⨯+⨯⨯⨯-⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯ 墙自重:114.23 KN女儿墙:()KN 04.376.66.1202.02019.025.14=⨯⨯⨯⨯+⨯ 8.1.1.4 屋面板自重kN m m m m kN 78.780)326.7(6.6/5.62=+⨯⨯⨯8.1.1.5 第五层重量48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN8.1.2 第二至四层重力荷载代表值计算层高H=3.9m ,楼面板厚h=100mm8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重:()()kNm m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=⨯-⨯+⨯-⨯++⨯+⨯-⨯8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为:()KN G 61.111336.65.326.76.65.2%5056.9534-2=⨯⨯+⨯⨯⨯⨯+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=⨯⨯⨯+⨯⨯⨯)(8.1.3 第一层重力荷载代表值计算层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重:(b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ):()()KN 14.3145.002.02019.025.1428.15.16.66.022.4202.02019.025.14=-⨯+⨯⨯⨯-⨯⎪⎭⎫⎝⎛-⨯⨯⨯+⨯二层半墙自重(190mm ):27.66 KN则墙自重为:(31.14+27.66)×4=235.2 KN 8.1.3.4 楼面板自重:同第2层,为480.48KN第1层重量=113.75+154.3+235.2+480.48=983.73KN 第1层重力荷载代表值为:G 1=983.73+50%×(2.5×6.6×7.6×2+3.5×6.6×3)= 1143.78 KN 活载:Q=50%×(2.5×6.6×7.6×2+3.5×6.6×3)=160.05 KN 综上所述,结构等效总重力荷载代表值为:()()123450.850.850.851013.46917.3731106.654141.39eq E G G G G G G G KN==⨯++++=⨯+⨯+=G eq =0.85G E =0.85×(G 1+G 2+G 3+G 4+G 5)=0.85×(1127.96+1113.61×3+1143.78)=4770.68KN8.2 水平地震作用计算和位移计算8.2.1结构基本自振周期的计算8.2.1.1 框架梁柱的抗侧刚度计算见表6-1、表6-2、表6-3. 表6-1 横梁、框架柱线刚度计算考虑梁柱线刚度比,用D 值法计算各楼层框架柱的侧向刚度。
表6-2 各层柱侧向刚度计算8.2.1.2 结构在重力荷载代表值作用下的假想顶点位移计算详见表6-3.表6-3采用假想顶点位移法近似计算结构基本自振周期,考虑填充墙对框架结构的影响,取周期折减系数T=0.7,则结构的基本自振周期为:T1= 1.7= 1.7=0.7877s8.3 横向水平地震作用计算该建筑的质量刚度沿高度分布比较均匀,高度不超过40m,并以剪切变形为主(房屋高宽比小于4),故采用底部剪力法计算横向水平地震作用。
场地影响系数:本工程所在场地为7度设防,设计地震分组为第一组,场地土为Ⅱ类,结构的基本自振周期采用经验公式计算,T1=0.7877s,根据《建筑抗震设计规范》(GB50011-2010)查表5.1.4-1得αmax=0.08,查表5.1.4-2得,T g=0.35s。
因T g =0.35s <T 1=0.7877s <5T g =1.75s ,查图5.1.5,则地震影响系数为:0386.008.00.17877.035.09.0max 2g 1=⨯⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=αηαγT T (其中0.9γ=,2η=1.0)各个层水平地震作用标准值、楼层地震剪力及楼层层间位移计算 对于多质点体系,根据式1αeq EK G F =EK F ----结构总水平地震作用标准值;eqG ----结构等效总重力荷载;eq G =E G χ=∑=nj j G 1χχ----等效重力荷载系数,《建筑抗震设计规范》规定χ=0.85;jG ----集中于质点j 的重力荷载代表值;EK F =4770.68×0.0386=184.15KN根据表5.2.1可知,T 1=0.7877s>1.4T g =0.49s ,故考虑顶部附加水平地震作用的影响,即n δ=0.08×0.7877+0.07=0.13由式KN F F EK n 94.2315.18413.0n =⨯==∆δ 由式EK n nj jjii i F HG H G F )1(1δ-=∑=计算各层水平地震作用标准值,进而求出各楼层地震剪力及楼层层间位移,各层水平地震作用标准值、楼层地震剪力及楼层层间位移计算,计算过程详见表8.1。
表8.1楼层最大位移与楼层层高之比:550185212.50061.0h u <==∆ 故满足位移要求。
8.4 内力计算横向框架在水平作用下的内力计算采用D值法。
8.4.1 反弯点高度计算反弯点高度比的计算结果如下表8.2表8.28.4.2 弯矩、剪力计算水平地震作用下的柱端剪力按下式计算,即:jijijij V DD V ∑=式中 ij V ----第j 层第i 柱的层间剪力; jV ----第j 层的总剪力标准值;∑ijD-----第j 层所有柱的抗侧刚度之和;ijD ----第j 层第i 柱的抗侧刚度。
水平地震作用下的柱端弯矩按下式计算,即h y M ij c )1(V -=上yhM ij c V =下框架在水平地震作用下的柱端剪力和柱端弯矩计算方法与风荷载作用下的柱端弯矩、柱端剪力计算方法相同。
水平地震作用下柱端弯矩及剪力计算,具体计算过程如下表8.3。
表8.3水平地震作用下的梁端弯矩计算列于表8.4和表8.5。
梁端弯矩AB M 、DC M 计算:表8.4梁端弯矩M BA =M CD 、M BC =M CB 计算:表8.5依据表8.4—表8.5,画出框架在地震作用下的弯矩图,如图8.6所示。
kN )图8.6 框架在地震作用下的弯矩图(单位:m地震作用下的梁端剪力计算见详表8.7:表8.7依据表8.7,画出框架在地震荷载作用下的剪力图,如图8.8所示:图8.8 框架在地震荷载作用下的剪力图(单位:kN)8.4.3 柱轴力计算由梁柱节点的平衡条件计算地震作用下的柱轴力,计算中要注意剪力的实际方向,计算过程详见表8.9地震作用下轴力计算(单位:KN):表8.9依据表8.9,画出框架在地震荷载作用下的轴力图,如图8.10所示:图8.10 框架在地震荷载作用下的轴力图(单位:KN)。