医学论文常见统计学错误与纠正

合集下载

医学期刊论文中常见统计学错误

医学期刊论文中常见统计学错误
者, 8例均死 于产 后 2 ~ 2 2 d , 1 例 产前 死亡 。
t h e d i a g n o s i s a n d t r e a t me n t o f p u l mo n a r y h y p e te r n s i o n o f t h e Eu —
me n t o f p o s t o p e r a t i v e p u l mo n a r y h y p e t r e n s i v e c is r i s .C i r c u l a t i o n,
1 9 7 9,6 0:1 6 40 — 1 6 4 4.
5 4 8
心肺血管病杂志 2 0 1 3年 9月第 3 2卷第 5期
J o u na r l o f C a r d i o v a s c u l a r&P u l mo n a r y D i s e a s e s
e r
. Biblioteka . 病情评估 , 以及选择适当时机终止妊娠等, 在改善治 疗结局方面具有重要 作用 ; 此外 , 术 中及术后进 行有 创血 流动力 学 监测 , 可 以较 好 地 了解 患 者循 环 状况 , 指导 药物应 用 及 容 量治 疗 J 。产 后 1个 月是 P A H患者死亡的高危时期 , 本研究 中9 例死亡患
l u n g t r a n s p l a n t a t i o n( I S HL T) .E u r He a r t J , 2 0 0 9 , 3 0 :2 4 9 3 —
2 5 3 7.
Wh e l l e r J, Ge o r g e BL, Mu l d e r DG, e t a 1 .Di a g n o s i s a n d ma n a g e —

医学论文中常用统计分析方法错误大全

医学论文中常用统计分析方法错误大全

医学论文中常用统计分析方法错误大全在医学研究领域,统计分析方法的正确应用对于得出科学、可靠的结论至关重要。

然而,在实际的医学论文中,我们常常能发现各种各样的统计分析方法错误,这些错误不仅影响了研究结果的准确性和可信度,还可能导致错误的临床决策。

下面,我们就来详细梳理一下医学论文中常见的统计分析方法错误。

一、样本量不足样本量的大小直接关系到研究结果的可靠性和普遍性。

如果样本量过小,可能无法准确反映总体的特征,导致统计效能不足,从而得出错误的结论。

例如,在比较两种治疗方法的疗效时,如果每组的样本量只有十几例,那么很可能因为偶然因素而得出错误的差异结论。

二、数据类型错误医学研究中数据类型多种多样,包括计量数据(如身高、体重、血压等)、计数数据(如治愈人数、死亡人数等)和等级数据(如病情的轻、中、重)。

如果对数据类型的判断错误,就会选择错误的统计分析方法。

例如,将本来应该是计数数据的治愈率当作计量数据进行 t 检验,这是不正确的。

三、忽视数据分布许多统计方法都有其适用的数据分布条件。

例如,t 检验和方差分析要求数据服从正态分布。

如果数据不服从正态分布而强行使用这些方法,就会得出错误的结果。

在这种情况下,应该先对数据进行正态性检验,如果不满足正态分布,可以考虑使用非参数检验方法,如秩和检验。

四、多重比较问题在医学研究中,常常需要进行多个组之间的比较。

如果不注意控制多重比较带来的误差,就会增加得出错误阳性结果的概率。

例如,在比较多个药物剂量组的疗效时,如果不进行适当的校正(如 Bonferroni 校正),就可能因为多次比较而错误地认为存在显著差异。

五、相关与回归分析的错误相关分析用于研究两个变量之间的线性关系,但不能得出因果关系。

在医学论文中,有时会错误地将相关关系解释为因果关系。

回归分析中,自变量的选择、模型的拟合度评估等方面也容易出现错误。

例如,没有考虑自变量之间的共线性问题,导致回归结果不准确。

六、生存分析的错误生存分析常用于研究疾病的发生、发展和预后。

医学论文中常见统计学概念误用分析

医学论文中常见统计学概念误用分析

(精品收藏)医学论文中常见统计学概念误用分析医学统计学作为一种认识医学现象数量特征的重要工具,在医学研究的过程中起着非常重大的作用。

但国内外研究者通过调查发现,在现代医学期刊中,统计方法的运用及表述却存在着较多的问题[1,2]。

笔者在医学论文的编辑过程中,也发现有些作者对统计学中最常见、最基本的概念常混淆不清,因此其论文很难符合刊用的要求。

我们知道,概念是逻辑思维的基本要素,只有概念明确,才能准确地表达思想,才能对事物的本质进行客观的描述,才能作出正确的判断和推理,从而得出科学的结论。

为与作者共同提高论文质量,现对编辑工作中经常碰到的一些概念方面的误用问题,试图进行一些粗略的分析。

1概念混淆1.1以比代率比与率是临床医学研究中最常用的相对数指标。

比是表示某一事物或现象各组成部分之间或各个部分在全体中所占的比重或分布。

较常用的有构成比、相对比等。

而率是指某种现象或事件在一定条件下,其实际发生数与可能发生此现象或事件总数的比例。

临床医学论文中很多作者常把构成比当作率进行比较,造成对疾病的发生作出错误估计。

如在研究性别与其疾病发病率的关系文章中,作者把男女的构成比当作发病率,从而得出某种性别的发病率高的错误结论。

还有作者由于对构成比与率的概念不明确,造成计算错误。

如某农村卫生单位对7250名少儿进行粪检,检出蛔虫卵者4300人,需要进行治疗。

因各种原因,有900人未行治疗。

结果:已治率为79.07%,未治率为20.93%。

很明显,这是典型的以构成比代率的例子。

我们根据定义,可计算如下:出现这种错误的原因,是因为不能正确理解比与率的区别所致。

一般来说,率的分子源于分母,但分子、分母具有不同的事件属性,构成比虽然分子也源于分母,但分子、分母具有相同的事件属性。

1.2不同率混用在临床医学研究中,一些具有特殊性质的率很容易用错。

最常见的有发病率与患病率,死亡率与病死率。

发病率与患病率相混淆的原因主要是没有把握住观察、统计的时间。

医学论文常见统计学错误与纠正

医学论文常见统计学错误与纠正

医学论文常见统计学错误与纠正一、设计与实施1.对象合格标准不明确●只报告来源和时间段,总体不清晰:大杂烩,得不到科学结论;●事前未规定合格标准和排除标准,事后排除;●不报告按照合格标准和排除标准筛选对象的过程。

2.结局指标多而杂--是事先规定的最重要的结局指标,通常以此为准来计算样本量。

常见错误:终点指标过多, 大海捞针临床试验时,不知道哪个指标在组与组间有差异;“确定某个指标后,万一组间没有差异,岂不被动?!”生理、生化、组织学、基因,都做;“内容丰富,显得水平高?!”许多仪器一下子可以做许多项目;“许多项目一一分析,哪个有意义,就报告哪个指标?!”哪些指标可能有组间差异,必须心中有数。

假说:预计将要得到的结论——假说是科研的灵魂心中无数,不要“先上马再说”●指标多,实验工作量大。

大海捞针——碰运气,不是科研!●指标多,翻来覆去分析,制造假阳性!Nature杂志统计学指南:➢常见错误之一。

仅分析1个指标时,P(假阳性)=0.05,P(1次分析不犯错误)=0.95 λ,同时分析2个指标时,P(2次分析均不犯错误) = [P(1 次分析不犯错误)] 2 P(假阳性)=1 - 0.952 ≈ 0.10, 同时分析3 个指标时,P(假阳性)=1 - 0.953 ≈ 0.14 λ同时分析10个指标时,P(假阳性)=1 - 0.9510 ≈ 0. 40➢常见错误之一(Nature) ----多重比较不校正多重比较: 对一组数据作多项比较时,必须说明如何校正α水平,以避免增大第一类错误的机会---- Bonfferoni校正(α/k来校正,k为两两比较次数)3 不重视对照为何必需对照?●消除非研究因素的混杂实验组和对照组受非研究因素的影响尽可能相同,使两组的差异主要反映研究因素的效应。

●鉴别研究因素的效应和自然发展结果。

例如,研究某药物对口腔溃疡模型兔的疗效,口腔溃疡有自愈的倾向,必须有对照扣除自愈效应。

常见错误➢没有对照!千方百计省去对照组,以减少一半工作量!? ω自身前后对照/历史对照/文献对照/ “标准”对照➢对照不当ω对照太弱:安慰剂对照/对照过强:西药+加中药~西药/对照剂量有争议:试验药,大剂量~对照药,中小剂量/对照基线不可比:试验组年轻、病轻~ 对照组年老、病重应当如何?ω事先明确研究假说,例如,新药比常规药好:以常规药为对照ω设计:研究组新药~ 对照组常规药可比性:基线可比、过程可比、终点可比ω保证可比性措施:干预性研究: 随机化观察性研究:匹配4样本量无根据ω干预性研究:“ 500 例患者随机分成两组……” 为什麽500 例?不多不少?500 例从天而降?现成送上门来?ω观察性研究:“ 10年期间A组3000例,B组258例……” ---- 有多少用多少!?应当如何?---- 报告最小样本量估算及其依据1. 比较两组测定值的均数依据:(1)预计欲比较的两总体参数的差值δ(2)预计总体标准差σ(3)允许出现假阳性结果的机会α(4)允许出现假阴性结果的机会β :例:格列美脲、格列苯脲对比研究以HbA1c 为主要终点报告依据✓欲检出HbA1c临床差异≥0.65%✓假定标准差为1.3%✓双侧检验水平0.05✓功效80% ω✓退出率20% 计算:157例2. 比较两组达标率依据:(1)预计一组发生某结局的百分比为π1(2)预计另一组发生某结局的百分比为α(3)允许犯假阳性错误的机会β(4)允许犯假阴性错误的机会π2例:格列美脲、格列苯脲对比研究以HbA1c达标为主要终点(1)预计一组发生某结局的百分比为45%(2)预计另一组发生某结局的百分比为25%(3)允许犯假阳性错误的机会α= 5%(4)允许犯假阴性错误的机会β= 20% 计算: 176 例5. 随机化,说而不做,做而不严处理分配的随机化为什么这么重要?(1) 消除分配处理有意或无意的偏倚。

医学论文中常用统计分析方法错误大全

医学论文中常用统计分析方法错误大全

医学论文中常用统计分析方法错误大全在医学研究领域,准确合理地运用统计分析方法对于得出可靠的研究结论至关重要。

然而,在实际的医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差,甚至得出错误的结论。

下面,我们就来详细探讨一下医学论文中常见的统计分析方法错误。

一、数据类型判断错误数据类型的正确判断是选择合适统计分析方法的基础。

医学研究中常见的数据类型包括计量资料、计数资料和等级资料。

然而,很多研究者在数据类型判断上出现失误。

例如,将原本应该是计数资料的数据(如疾病的治愈、好转、无效等)当成计量资料进行分析,错误地使用了均值和标准差等统计指标,而应该使用频率和百分比等指标,并采用卡方检验等方法。

二、样本量计算不合理样本量的大小直接影响到研究结果的可靠性和准确性。

一些医学论文在研究设计阶段没有充分考虑样本量的计算,导致样本量过小或过大。

样本量过小,可能会使研究结果缺乏统计学意义,无法检测出真实存在的差异;样本量过大,则会造成资源的浪费,同时增加研究的难度和成本。

正确的样本量计算应该综合考虑研究的设计类型、预期效应大小、检验水准和检验效能等因素。

三、选择错误的统计方法这是医学论文中常见的错误之一。

例如,对于两组独立样本的均数比较,应该使用 t 检验,但如果两组数据的方差不齐,就需要使用校正的 t 检验或者非参数检验方法(如 Wilcoxon 秩和检验)。

然而,很多研究者在这种情况下仍然使用了普通的 t 检验,导致结果不准确。

再比如,对于多组均数的比较,如果方差分析结果有统计学意义,还需要进一步进行多重比较。

但有些研究在这一步没有进行恰当的多重比较方法选择,导致结论不够准确。

四、忽视数据的正态性检验在进行某些统计分析(如 t 检验、方差分析等)时,要求数据服从正态分布。

然而,很多研究者在使用这些方法之前,没有对数据进行正态性检验。

如果数据不服从正态分布,却仍然使用基于正态分布假设的统计方法,就会得出错误的结论。

[精华版]医学论文中统计学处理常见问题及应对措施

[精华版]医学论文中统计学处理常见问题及应对措施

医学论文中统计学处理常见问题及应对措施1存在问题1)统计软件名称和版本不全。

最常见的问题是作者只写统计软件名称而漏掉了统计软件版本。

2)统计数据描述含糊不清。

如笼统说“用-x±s 表示”,而不分定量资料或定性资料。

3)误用统计学方法并且统计方法描述不详细。

例如:对定量资料盲目套用t检验,多组均数比较没有采用方差分析和q检验;对定性资料,盲目套用χ2检验;非参数检验资料没有采用秩和检验或Ridit检验; 对回归分析没有结合专业知识和散点图选用合适的回归类型,而盲目套用简单直线回归分析;在逻辑上无明显相关的2个或2个以上指标检测结果勉强进行相关性分析等;对随访资料没有使用生存分析等。

另一个问题是统计学方法的描述不详细。

例如: 使用t检验,没有说明是完全随机设计资料的t检验, 还是配对设计资料的t检验;使用方差分析时,没有说明是完全随机设计资料的方差分析,还是随机区组设计资料的方差分析,或是巢式设计资料的方差分析;对于四格表资料,没有交代是一般四格表资料χ2检验, 还是四格表资料的校正的χ2检验。

4)假设检验结果的表达和解释中存在的问题。

假设检验的结果表达没有根据不同的统计分析方法, 给出相应的检验统计量的实际值及相应的值,如t检验的t值、方差分析的F值、卡方检验的χ2值、相关分析的相关系数及相应的r值等。

此外,统计结果的解释存在如下问题:假设检验是在“无效假设”正确(比如2种药物的疗效没有差异) 的前提下,用P值大小说明实际观察结果是否符合“无效假设”。

P值小(如P<0·05或P<0. 01)则怀疑“无效假设”的正确性,应得2种药物疗效的差异有统计学意义或差异有高度统计学意义的结论,而不应得差异显著或差异非常显著的结论;P值大(如P> 0·05),则不能拒绝“无效假设”,应得2种药物疗效的差异无统计学意义的结论,而不应得无差异的结论。

这是典型地把统计结论作为专业结论而犯的错误。

医学论文中常用统计分析方法错误大全

医学论文中常用统计分析方法错误大全

医学论文中常用统计分析方法错误大全在医学研究领域,准确和恰当的统计分析是得出可靠结论的关键。

然而,在众多医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差甚至错误解读,从而影响医学研究的质量和临床实践的指导价值。

接下来,我们就来详细探讨一下医学论文中常见的统计分析方法错误。

一、样本量计算错误样本量的合理计算对于研究的可靠性和有效性至关重要。

许多研究在设计阶段未能充分考虑研究的主要目的、预期效应大小、检验效能以及显著性水平等因素,导致样本量过小或过大。

样本量过小可能使研究无法检测到真实存在的差异,从而得出假阴性结论;样本量过大则会造成资源浪费,同时可能增加研究的复杂性和误差。

例如,在一项比较新药物与传统药物疗效的临床试验中,如果预期的疗效差异较小,而研究者没有充分考虑这一点,计算出的样本量不足,那么即使新药物实际上更有效,也可能由于样本量的限制而无法得出有统计学意义的结果。

二、数据类型错误医学研究中数据类型多样,包括计量资料(如身高、体重、血压等)、计数资料(如疾病的发生例数、治愈例数等)和等级资料(如疾病的严重程度分为轻、中、重)。

错误地判断数据类型会导致选择错误的统计分析方法。

例如,将原本属于计数资料的数据(如疾病的治愈与未治愈),错误地当作计量资料进行 t 检验,这样得出的结果是不准确的。

反之,将计量资料当作计数资料处理,也会造成同样的问题。

三、选择错误的统计检验方法不同的研究问题和数据类型需要相应的统计检验方法。

常见的错误包括:在多个组间比较时,错误地使用 t 检验而不是方差分析;在非正态分布的数据中使用参数检验方法;在不符合独立性假设的情况下使用独立样本检验等。

比如,在比较三种不同治疗方法对患者生存率的影响时,应该使用方差分析或非参数的KruskalWallis 检验,而不是多次进行两两t 检验,因为这样会增加一类错误(即假阳性)的概率。

四、忽视方差齐性检验在进行 t 检验和方差分析时,通常需要先进行方差齐性检验。

医学统计论文15篇(医学科技论文统计学误用分析)

医学统计论文15篇(医学科技论文统计学误用分析)

医学统计论文15篇医学科技论文统计学误用分析医学统计论文摘要:医学统计学是医学与统计学的交叉学科,是一门运用统计学的原理和方法,研究医学中有关数据的收集、整理和分析的应用科学[1]。

随着现代医疗信息化,大量的医疗数据及生命现象,均需要借助统计学和计算机去探寻规律。

因此,医学统计学在医疗大数据和循证医学中发挥着越来越重要的作用。

为了应对大数据时代的挑战,医学各专业学生都应培养统计学思维,掌握一些统计学方法及应用技能。

关键词医学统计统计论文统计医学统计论文:医学科技论文统计学误用分析1统计学应用中存在的常见问题1.1单因素方差分析(ANOVA)两两比较误用独立样本t检验单因素方差分析设计3组以上的均数比较,如果总体比较有差异,需进行两两比较,一般用SNK法或LSD法。

但部分研究者却将资料进行拆分,应用独立样本t检验进行两两比较,导致第Ⅰ类统计学错误发生率(假阳性率)增加,从而掉进了一个常见的“统计陷阱”,使所得结论可信度大大降低甚至得出错误结论。

SNK法与LSD法虽然并非等价,实质是一致的。

SNK法一般用于经方差分析结果具有统计学意义时才决定进行的两两事后比较,而LSD法可用于方差分析不足以具有统计学意义时也能进行两两比较[1]。

比较两种方法在SPSS的输出结果形式,SNK是“分堆”比较,一目了然,对于组别数较多的研究更为好用,但没有具体P值,而LSD是在进行“两两”比较时,能给出具体的P值。

1.2两两比较时检验水准的重新调定χ2检验或秩和检验3组以上整体比较有差异时,需应用分割法进行两两比较,这时检验水准应由原0.05调定为0.0167,否则会增加第Ⅰ类统计学错误的发生率。

特别当P值处于0.0167~0.05时,按照P<0.0167的标准,差异无统计学意义,而按照P<0.05的标准,却有意义,与事实相悖,出现假阳性,很容易得出错误结论。

这种分割法有时很保守,当行列表资料分组多且为有序时可用Mantel-Haenszel卡方检验,也称线性趋势检验(testforlineartrend)或定序检验(Linear-by-Lineartest)[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学论文常见统计学错误与纠正一、设计与实施1.对象合格标准不明确●只报告来源和时间段,总体不清晰:大杂烩,得不到科学结论;●事前未规定合格标准和排除标准,事后排除;●不报告按照合格标准和排除标准筛选对象的过程。

2.结局指标多而杂--是事先规定的最重要的结局指标,通常以此为准来计算样本量。

常见错误:终点指标过多, 大海捞针临床试验时,不知道哪个指标在组与组间有差异;“确定某个指标后,万一组间没有差异,岂不被动?!”生理、生化、组织学、基因,都做;“内容丰富,显得水平高?!”许多仪器一下子可以做许多项目;“许多项目一一分析,哪个有意义,就报告哪个指标?!”哪些指标可能有组间差异,必须心中有数。

假说:预计将要得到的结论——假说是科研的灵魂心中无数,不要“先上马再说”●指标多,实验工作量大。

大海捞针——碰运气,不是科研!●指标多,翻来覆去分析,制造假阳性!Nature杂志统计学指南:➢常见错误之一。

仅分析1个指标时,P(假阳性)=0.05,P(1次分析不犯错误)=0.95 ,同时分析2个指标时,P(2次分析均不犯错误) = [P(1 次分析不犯错误)] 2 P(假阳性)=1 - 0.952 ≈ 0.10, 同时分析 3 个指标时, P(假阳性)=1 - 0.953 ≈ 0.14 同时分析 10个指标时,P(假阳性)=1 - 0.9510 ≈ 0. 40➢常见错误之一(Nature) ----多重比较不校正多重比较: 对一组数据作多项比较时,必须说明如何校正α水平,以避免增大第一类错误的机会---- Bonfferoni校正(α/k来校正,k为两两比较次数)3 不重视对照为何必需对照?●消除非研究因素的混杂实验组和对照组受非研究因素的影响尽可能相同,使两组的差异主要反映研究因素的效应。

●鉴别研究因素的效应和自然发展结果。

例如,研究某药物对口腔溃疡模型兔的疗效,口腔溃疡有自愈的倾向,必须有对照扣除自愈效应。

常见错误➢没有对照!千方百计省去对照组,以减少一半工作量!? 自身前后对照/历史对照/文献对照/ “标准”对照➢对照不当对照太弱:安慰剂对照/对照过强:西药+加中药~西药/对照剂量有争议:试验药,大剂量~对照药,中小剂量 /对照基线不可比:试验组年轻、病轻 ~ 对照组年老、病重应当如何?事先明确研究假说,例如,新药比常规药好:以常规药为对照设计:研究组新药 ~ 对照组常规药可比性:基线可比、过程可比、终点可比保证可比性措施:干预性研究: 随机化观察性研究:匹配4样本量无根据干预性研究:“ 500 例患者随机分成两组……” 为什麽 500 例?不多不少?500 例从天而降?现成送上门来?观察性研究:“ 10年期间A组3000例,B组258例……” ---- 有多少用多少 !?应当如何? ---- 报告最小样本量估算及其依据1. 比较两组测定值的均数依据:(1)预计欲比较的两总体参数的差值(2)预计总体标准差(3)允许出现假阳性结果的机会(4)允许出现假阴性结果的机会 :例:格列美脲、格列苯脲对比研究以HbA1c 为主要终点报告依据✓欲检出HbA1c临床差异≥0.65%✓假定标准差为1.3%✓双侧检验水平0.05✓功效80%✓退出率20% 计算:157例2. 比较两组达标率依据:(1)预计一组发生某结局的百分比为1(2)预计另一组发生某结局的百分比为(3)允许犯假阳性错误的机会(4)允许犯假阴性错误的机会2例:格列美脲、格列苯脲对比研究以HbA1c达标为主要终点(1)预计一组发生某结局的百分比为 45%(2)预计另一组发生某结局的百分比为 25%(3)允许犯假阳性错误的机会 5%(4)允许犯假阴性错误的机会 20% 计算: 176 例5. 随机化,说而不做,做而不严处理分配的随机化为什么这么重要?(1) 消除分配处理有意或无意的偏倚。

(2) 为实施盲法创造条件。

(3) 使得有可能利用概率论来说明:各干预组之间的差异不大可能是偶然性造成的。

说错和做错将随机化当作“廉价名词”,实际没做,却写: “随机分成两组” ——科研道德?将“随意分组”当作随机化将“机械分组”当作随机化略去筛选过程,简单地报告将多少人随机分组略去实施过程中丢失对象,将最后两组人数说成是随机分组人数应当如何?成功的随机化取决于:(1) 产生一个不可预见的分配序列;(2) “隐蔽” (allocation concealment )这个序列,直到分配完毕 (必须建立一个分配处理的系统) 。

报告如何随机分组,如何“隐蔽” :谁做随机序列,谁收病人,谁分药和发药;分组方案如何保管……随机化类型 Simple randomisation (简单随机化) Blocked randomisation (区组随机化) Stratified randomisation (分层随机化) Minimisation(不均衡最小化)6. 避而不谈盲法常见错误如何“盲”?轻描淡写为何没有“盲”?不加说明普遍忽视盲法判定终点没有独立的终点判定委员会:专人、专职;盲法措施盲法实施效果如何?缺乏评价7. 量表的滥用医学研究中,量表的应用日益广泛:生存质量 (quality of life, QOL)患者报告结局(patient report outcome, PRO) 美国FDA规定药品说明书必须有PRO内容。

国外已经研制了许多量表,可以借鉴;有些课题国外还没有适宜的量表,有待研制国内许多医学研究也开始采用量表测量临床疗效。

常见错误1.“引进国外量表”未经作者同意,声称是“xx量表的中文版”妄称文化调试,随意修改未曾考察中文版量表的信度、效度和反应度2.“自制量表”未经查阅文献和专家咨询,匆忙起草没有概念框架和基于概念框架的条目池没有试用和现场调查,没有心理测量学评价应当如何引进国外量表?联系原作者,征得同意;翻译-逆翻译,文化调试,与原作者共同修改、定稿;收集现场数据,评价信度、效度和反应度应当如何研制新量表?查阅文献、专家咨询……确定概念框架,领域、方面……根据概念框架建立条目池量表初稿小规模试用、修改收集现场调查数据评价量表,信度、效度、反应度……修改、定稿二、分析与结果8. 不考虑基线均衡与否不首先考察基线是否均衡不论基线均衡与否,一概使用单变量分析方法:比较百分比或均数:检验;比较均数:t 检验、非参数检验比较发生某事件的时间:Kaplan-Meier 方法 2应当如何?不论干预性研究还是观察性研究,数据分析的第一步总是考察基线是否均衡,列表报告若干预性研究许多变量基线不均衡----随机化失败!若观察性研究多个变量基线不均衡,很自然 ---- 从设计入手,认真解决!对付基线不均衡的统计学方法: (1) 分层 (2) 匹配 (3) 回归9. 缺失值处理不当三类缺失机制:完全随机缺失(missing completely at random, MCAR), 缺失完全由随机因素造成随机缺失(missing at random, MAR), 缺失与已有的观察结果有关非随机缺失(missing not at random,NAR), 缺失与当前观察到和尚未观察到的结果有关常见错误: 丢弃具有缺失值的个体?仅完全随机缺失才可丢弃有缺失值的个体临床试验中,若仅采用完整病例进行分析,违背 Intention-To-Treat原则(ITT原则) 仅在以下情况下考虑使用完整病例进行分析① 在探索性研究中,药物研发的初期阶段;② 在确证性试验中,作为次要结果的处理方法常见错误: 数据填补(data imputation)?仅在以下情况下方可填补① 相对小的缺失率(例如10%~15%)② 含有缺失值的变量对于所要研究的问题具有非常重要的意义;③ 有合理的假设和结转技术, 一般宜遵循保守原则不同填补方式产生的结论需进行敏感性分析10. 统计检验结论不当差异性检验零假设:两组(或多组)总体均数间没有差别对立假设:两组(或多组)总体均数间有差别检验水准:若p “两组样本均数间的差异具有统计学意义(statistically significant)”--- “可以认为总体均数间有差别”若p “两组样本均数间的差异不具有统计学意义”---- “尚不能认为总体均数间有差别”常见错误若,“两组样本均数间的差异显著” ---- “总体均数不等” (忘记有假阳性可能!?),“两组样本均数间的差异不显著” ---- “总体均数相等”小结医学论文常见统计学错误往往源于研究设计任何一项研究首先要明确定义目标总体;从目标总体选择对象要有细致的合格标准和排除标准; 总体和标准不清晰,切勿匆忙上阵;基于“杂乱” 对象的研究,一定不会有科学结论。

结局指标不是越多越好,主要指标只能一个; 次要指标可以多于一个,但不能过多; 结局指标过多,费力不讨好; 即便出现阳性结果,往往是假阳性,经不起重复。

科学研究必须有对照;对照的选取与研究的假说有关;对照不恰当,研究没有好下场。

样本量并非越大越好。

不论干预性研究还是观察性研究,都要事先估算最小样本量; 医学论文的“方法”部分必须有一段报告样本量及其确定的依据; 依据不可靠,估算的样本量自欺欺人。

随机化是保证研究真实性的重要措施,将随机化当作“廉价名词”,只说不做,或做而不严,不仅败坏科研道德,而且,往往导致研究失败。

临床试验涉及人,无论研究对象还是研究者有意无意受心理因素的影响,“盲法” 是削弱此类影响的重要措施; 研究终点的认定要尽量实施盲法。

医学研究中,量表的应用日益广泛。

引进国外量表或自制量表均属严肃的学术研究;按一定程序引进或研制的量表才能作科研的测量工具;非正规量表收集的数据缺乏科学性.数据分析的第一步必定是考察基线均衡与否;基线不均衡,没有可比性; 设计要保证基线均衡;一旦不均衡,常用分层、匹配和回归等统计方法。

统计检验的结论并非绝对肯定,也非绝对否定。

若在检验水准 0.05 拒绝零假设,可说“差异具有统计学意义”, 但仍有可能出错。

若不能拒绝零假设,只能认为目前证据尚不足以支持“差异具有统计学意义”这一结论,不可因此而声称“无差异”。

有时想说明新药不亚于常规药,可进行“非劣效检验”有时想说明新药等效于常规药,必须进行“等效检验”;“等效检验”包含一个非劣效检验和一个非优效检验, 仅当既“非劣”又“非优” 时, 方能声称“等效”。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档