专题 圆锥曲线的离心率(学生版)
高考二轮微专题之圆锥曲线离心率课件(共18张PPT)

学习目标
总纲:建立关于一个, , 的方程(或不等式),然后再解方程或不等
Байду номын сангаас
式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种
1 利用圆锥曲线的定义解决;○
2 利用题中的几何关系来解决问题。
办法:○
方法1:利用焦半径取值范围建立不等式
方法1:利用定义法求离心率
方法2:利用几何关系求离心率
1
中点 A 在第一象限,且cosθ= .若|AB|=|AF1|,则双曲线 C 的离心率为
4
设1 = = ,又1 − 2 = 2,
所以2 = − 2,2 = 2,
又1 − 2 = 2,1 = 4;
1
1 2 = 2, 1 2 = ,
方法3:定义法+几何关系结合
方法2:利用角度的余弦值建立不等式
方法3:利用已知的角度关系建立不等式
方法4:利用点与圆锥曲线的位置关系建立不等式
方法5:利用方程有根建立不等式
策略一:定义法求离心率
情景导入
例 1(2021 年南京二模 7)已知双曲线
的左、右焦点
分别为 F1,F2,过点 F2 作倾斜角为 θ 的直线 l 交双曲线 C 的右支于 A,B 两点,其
情景导入
x2 y 2
练 2(2020 年湖南永州市高三三模 11 题)已知双曲线 C : 2 2 1 a 0, b 0 的左、右顶点分别为 A ,
a
b
B ,左焦点为 F , P 为 C 上一点,且 PF x 轴,过点 A 的直线 l 与线段 PF 交于点 M (异于 P , F ),与
a
b
左右两个焦点,且 PF1 PF2 0 ,线段 PF2 的垂直平分线恰好是该双曲线的一条渐近线,则离心率为
高中数学人教A选择性必修一第三章 微专题4 圆锥曲线的离心率

反思 感悟
求离心率范围的常用思路 (1)通过几何方法如点的坐标、三角形中的不等关系等转化为离心 率的取值范围. (2)通过代数方法如基本不等式、函数最值求得离心率的范围.
本课结束
更多精彩内容请登录:
四、求离心率的取值范围
例 4 (1)已知双曲线ax22-by22=1(a>0,b>0)的右顶点到其渐近线的距离不大于
255a,其离心率 e 的取值范围为
A.[ 3,+∞) C.(1, 3]
B.[ 5,+∞)
√D.(1, 5]
解析 依题意,点(a,0)到渐近线 bx+ay=0 的距离不大于255a, ∴ |bba2++0a|2≤255a,解得 e≤ 5. 又∵e>1,∴1<e≤ 5,故选 D.
A. 147
B.
7 7
√C.2 7 7
D.3147
解析 因为△F1MF2是等边三角形,
故 M(0,2b),|MF1|=|F1F2|,即 4b2+c2=2c,
即 4b2+c2=4c2,4a2=7c2,e2=ac22=74,
故
e=2
7
7 .
(2)设 F1,F2 分别为双曲线ax22-by22=1(a>0,b>0)的左、右焦点,双曲线上存在一 点 P 使得|PF1|+|PF2|=3b,|PF1|·|PF2|=49ab,则该双曲线的离心率为__53___.
则 e=ac= 3|2PF2|·3|P2F2|= 33.
(2)设F1,F2是双曲线C:ax22-by22 =1(a>0,b>0)的两个焦点,P是C上一点.若 |PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为___3__.
解析 根据双曲线的对称性,不妨设点P在第一象限, 则||PPFF11||+-||PPFF22||==62aa,, 解得||PPFF21||==24aa,. 又∵|F1F2|=2c,∴|PF2|最小. 在△PF1F2中,由余弦定理, 得4a2×2+44ac×2-2c4a2=cos 30°, ∴2 3ac=3a2+c2. 等式两边同除以 a2,得 e2-2 3e+3=0,解得 e= 3.
高中数学人教A版选修2-1 圆锥曲线复习(离心率)

过 F1 且与椭圆长轴垂直的直线交椭圆于 A,B 两点,若△ABF2 是正
三角形,则这个椭圆的离心率是( B )
A.
B.
C.
D.
A
B
方法二、构建关于 a,c 的齐次等式求解
步骤一:找出题目的关系,条件 步骤二:借助a,b,c之间的关系,构造a,c之间的关系,
进而求出离心率
①借助a,b或a,c的一次关系,进而求出离心率
率、等比等差中项、三角形、距离公式等找关系式)
➢2.定义法:根据条件先求出a,c,利用e=求解 ➢3.构建关于齐次等式 ➢ ①借助a,b或a,c的一次关系。 ➢ ②借助a,b,c之间的一个齐次等式化为e的一元二次
方程。
感谢聆听
单击此处添加文本具体内容
离心率范围 离心率意义
椭圆 焦点在x轴上
c,0
c2 a2 b2
e c a
1
b2 a2
0<e<1
e越大,椭圆越扁 e越小,椭圆越圆
双曲线 焦点在x轴上
c,0
c2 a2 b2
e c a
1
b2 a2
e>1
e越大,双曲线开口越大 e越小,双曲线开口越小
方法一:定义法
第一步:根据条件先求出 a,c 的值 第二步:利用 e=c公式,求出离心率
例 2.(2012•新课标)设 F1、F2 是椭圆 E: + =1(a>b>0)的
左、右焦点,P 为直线 x= 上一点,△F2PF1 是底角为 30°的等腰
三角形,则 E 的离心率为( c )
A.
B.
C.
D.
【解答】解:∵△F2PF1 是底角为 30°的等腰三角形, ∴|PF2|=|F2F1| ∵P 为直线 x= 上一点 ∴ ∴ 故选:C.
2018-2021年高考真题圆锥曲线 解答题全集 (学生版+解析版)

2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3. 2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5. (1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围.4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.6.(2021•甲卷)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切. (1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.10.(2021•乙卷)已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,P A ,PB 为C 的两条切线,A ,B 是切点,求△P AB 面积的最大值. 11.(2021•上海)(1)团队在O 点西侧、东侧20千米处设有A 、B 两站点,测量距离发现一点P 满足|P A |﹣|PB |=20千米,可知P 在A 、B 为焦点的双曲线上,以O 点为原点,东侧为x 轴正半轴,北侧为y 轴正半轴,建立平面直角坐标系,P 在北偏东60°处,求双曲线标准方程和P 点坐标.(2)团队又在南侧、北侧15千米处设有C 、D 两站点,测量距离发现|QA |﹣|QB |=30千米,|QC |﹣|QD |=10千米,求|OQ |(精确到1米)和Q 点位置(精确到1米,1°) 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(Ⅰ)若p =116,求抛物线C 2的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.17.(2020•海南)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.18.(2020•山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且过点A (2,1). (1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.19.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 20.(2020•新课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 21.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 22.(2020•新课标Ⅲ)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为√154,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积. 23.(2020•新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →•GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E的方程;(2)证明:直线CD过定点.24.(2020•上海)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.(1)若点M纵坐标为√2,求M与焦点的距离;(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.25.(2019•全国)已知点A1(﹣2,0),A2(2,0),动点P满足P A1与P A2的斜率之积等于−14,记P的轨迹为C.(1)求C的方程;(2)设过坐标原点的直线l与C交于M,N两点,且四边形MA1NA2的面积为2√2,求l的方程.26.(2019•江苏)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.27.(2019•上海)已知椭圆x28+y24=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y 轴于M ,直线BF 1交y 轴于N ,是否存在直线l ,使得S△F 1AB=S△F 1MN ,若存在,求出直线l 的方程;若不存在,请说明理由.28.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知√3|OA |=2|OB |(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程. 29.(2019•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为√55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 30.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.31.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.32.(2019•浙江)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2. (Ⅰ)求p 的值及抛物线的准线方程; (Ⅱ)求S 1S 2的最小值及此时点G 的坐标.33.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.34.(2019•北京)已知抛物线C :x 2=﹣2py 经过点(2,﹣1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =﹣1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.35.(2019•北京)已知椭圆C :x 2a 2+y 2b 2=1的右焦点为(1,0),且经过点A (0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |•|ON |=2,求证:直线l 经过定点. 36.(2019•江苏)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(﹣1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x ﹣1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.37.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.38.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.39.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.40.(2019•上海)已知抛物线方程y 2=4x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:d(P)=|PF||FQ|. (1)当P(−1,−83)时,求d (P );(2)证明:存在常数a ,使得2d (P )=|PF |+a ;(3)P 1,P 2,P 3为抛物线准线上三点,且|P 1P 2|=|P 2P 3|,判断d (P 1)+d (P 3)与2d (P 2)的关系.41.(2018•全国)双曲线x 212−y 24=1,F 1、F 2为其左右焦点,C 是以F 2为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足F 1M →=2MP →,求M 的轨迹方程.42.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.43.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.44.(2018•江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点(√3,12),焦点F 1(−√3,0),F 2(√3,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为2√67,求直线l 的方程.45.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 46.(2018•上海)设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 47.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为√53,|AB |=√13. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,直线l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值. 48.(2018•天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为√53,点A 的坐标为(b ,0),且|FB |•|AB |=6√2. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ||PQ|=5√24sin ∠AOQ (O 为原点),求k 的值. 49.(2018•北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程; (Ⅱ)若k =1,求|AB |的最大值;(Ⅲ)设P (﹣2,0),直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点Q (−74,14)共线,求k .50.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .51.(2018•北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.52.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.53.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .54.(2018•上海)已知a ∈R ,双曲线Γ:x 2a2−y 2=1(1)若点(2,1)在Γ上,求Γ的焦点坐标(2)若a =1,直线y =kx +1与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值55.(2018•上海)利用“平行于圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射灯的光锥为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影射出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O、A、B在抛物线上,OC是抛物线的对称轴,OC⊥AB于C,AB=3米,OC=4.5米(1)求抛物线的焦点到准线的距离(2)在图3中,已知OC平行于圆锥的母线SD,AB、DE是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°)2018-2021年高考真题圆锥曲线解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (√2,0),且离心率为√63. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=√3.【解答】(Ⅰ)解:由题意可得,椭圆的离心率ca =√63,又c =√2, 所以a =√3,则b 2=a 2﹣c 2=1, 故椭圆的标准方程为x 23+y 2=1;(Ⅱ)证明:先证明必要性,若M ,N ,F 三点共线时,设直线MN 的方程为x =my +√2, 则圆心O (0,0)到直线MN 的距离为d =√2√m +1=1,解得m 2=1,联立方程组{x =my +√2x 23+y 2=1,可得(m 2+3)y 2+2√2my −1=0,即4y 2+2√2my −1=0, 所以|MN|=√1+m 2⋅√8m 2+164=√2×√244=√3;所以必要性成立; 下面证明充分性,当|MN |=√3时,设直线MN 的方程为x =ty +m , 此时圆心O (0,0)到直线MN 的距离d =√t +1=1,则m 2﹣t 2=1,联立方程组{x =ty +mx 23+y 2=1,可得(t 2+3)y 2+2tmy +m 2﹣3=0, 则△=4t 2m 2﹣4(t 2+3)(m 2﹣3)=12(t 2﹣m 2+3)=24, 因为|MN|=√1+t 2⋅√24t 2+3=√3,所以t 2=1,m 2=2,因为直线MN 与曲线x 2+y 2=b 2(x >0)相切, 所以m >0,则m =√2,则直线MN 的方程为x =ty +√2恒过焦点F (√2,0), 故M ,N ,F 三点共线, 所以充分性得证.综上所述,M ,N ,F 三点共线的充要条件是|MN |=√3.2.(2021•上海)已知Г:x 22+y 2=1,F 1,F 2是其左、右交焦点,直线l 过点P (m ,0)(m ≤−√2),交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,|BF 1→|=|PF 1→|,求m 的值; (2)若F 1A →•F 2A →=13,且原点O 到直线l 的距离为4√1515,求直线l 的方程; (3)证明:对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 【解答】解:(1)因为Г的方程:x 22+y 2=1,所以a 2=2,b 2=1, 所以c 2=a 2﹣b 2=1,所以F 1(﹣1,0),F 2(1,0), 若B 为Г的上顶点,则B (0,1), 所以|BF 1|=√1+1=√2,|PF 1|=﹣1﹣m , 又|BF 1|=|PF 1|, 所以m =−1−√2;(2)设点A (√2cos θ,sin θ),则F 1A →⋅F 2A →=(√2cosθ+1)(√2cosθ−1)+sin 2θ=2cos 2θ−1+sin 2θ=13, 因为A 在线段BP 上,横坐标小于0,解得cosθ=−√33,故A(−√63,√63),设直线l 的方程为y =kx +√63k +√63(k >0), 由原点O 到直线l 的距离为4√1515, 则d =|√63k+√63|√1+k =4√1515,化简可得3k 2﹣10k +3=0,解得k =3或k =13, 故直线l 的方程为y =13x +4√69或y =3x +4√63(舍去,无法满足m <−√2), 所以直线l 的方程为y =13x +4√69;(3)联立方程组{y =kx −kmx 22+y 2=1,可得(1+2k 2)x 2﹣4k 2mx +2k 2m 2﹣2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 2m 1+2k2,x 1x 2=2k 2m 2−21+2k2,因为F 1A →∥F 2B →,所以(x 2﹣1)y 1=(x 1+1)y 2,又y =kx ﹣km , 故化简为x 1−x 2=−21+2k2,又|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√16k 2−8k 2m 2+81+2k2=|−21+2k2|,两边同时平方可得,4k 2﹣2k 2m 2+1=0, 整理可得k 2=−14−2m 2,当m <−√2时,k 2=−14−2m 2>0,因为点A ,B 在x 轴上方, 所以k 有且仅有一个解,故对于任意m <−√2,使得F 1A →∥F 2B →的直线有且仅有一条. 3.(2021•北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E 的标准方程;(2)过点P (0,﹣3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB 、AC 交y =﹣3于点M 、N ,若|PM |+|PN |≤15,求k 的取值范围. 【解答】解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,﹣2),则b =2,又因为以四个顶点围成的四边形面积为4√5, 所以12×2a ×2b =4√5,解得a =√5,故椭圆E 的标准方程为x 25+y 24=1;(2)由题意,设直线l 的方程为y ﹣(﹣3)=k (x ﹣0),即y =kx ﹣3, 当k =0时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C , 所以k ≠0,设B (x 1,y 1),C (x 2,y 2),联立方程组{y =kx −3x 25+y 24=1,可得(4+5k 2)x 2﹣30kx +25=0, 则△=(﹣30k )2﹣4×25(4+5k 2)>0,解得|k |>1, 所以x 1+x 2=30k 4+5k2,x 1x 2=254+5k2,则y 1y 2=(kx 1﹣3)(kx 2﹣3)=k 2x 1x 2﹣3k (x 1+x 2)+9=−20k 2+364+5k2,y 1+y 2=(kx 1﹣3)+(kx 2﹣3)=k (x 1+x 2)﹣6=−244+5k2,直线AB 的方程为y ﹣(﹣2)=y 1−(−2)x 1−0(x −0),即y =y 1+2x 1x −2,直线AC 的方程为y ﹣(﹣2)=y 2−(−2)x 2−0(x −0),即y =y 2+2x 2x −2,因为直线AB 交y =﹣3于点M , 所以令y =﹣3,则x M =−x 1y 1+2, 故M(−x 1y 1+2,−3), 同理可得N(−x2y 2+2,−3),注意到x 1x 2=254+5k2>0,所以x 1,x 2同号,因为y 1+2>0,y 2+2>0,所以x M ,x N 同号, 故|PM |+|PN |=|x M |+|x N |=|x M +x N |,则|PM |+|PN |=|x 1y 1+2+x2y 2+2|=|x 1(y 2+2)+x 2(y 1+2)(y 1+2)(y 2+2)| =|x 1(kx 2−3)+x 2(kx 1−3)+2(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2kx 1x 2−(x 1+x 2)y 1y 2+2(y 1+y 2)+4|=|2k⋅254+5k 2−30k 4+5k2−20k 2+364+5k 2−484+5k2+4|=5|k |,故|PM |+|PN |=5|k |,又|PM |+|PN |≤15,即5|k |≤15,即|k |≤3,又|k |>1, 所以1<|k |≤3,故k 的取值范围为[﹣3,﹣1)∪(1,3]. 4.(2021•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为2√55,且|BF |=√5.(1)求椭圆的标准方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程. 【解答】解:(1)因为离心率e =2√55,|BF |=√5所以{c a =2√55a =√5a 2=b 2+c 2,解得a =√5,c =2,b =1,所以椭圆的方程为x 25+y 2=1.(2)设M (x 0,y 0), 则切线MN 的方程为x 0x 5+y 0y =1,令x =0,得y N =1y 0,因为PN ⊥BF , 所以k PN •k BF =﹣1,所以k PN •(−12)=﹣1,解得k NP =2,设P (x 1,0),则k NP =1y 00−x 1=2,即x 1=−12y 0,因为MP ∥BF , 所以k MP =k BF , 所以y 0x 0+12y 0=−12,即﹣2y 0=x 0+12y 0, 所以x 0=﹣2y 0−12y 0, 又因为x 025+y 02=1,所以4y 025+25+120y 02+y 02=1,解得y 0=±√66,因为y N >0, 所以y 0>0,所以y 0=√66,x 0=−√63−3√6=−5√66,所以−5√66x 5+√66y =1,即x ﹣y +√6=0.5.(2021•浙江)如图,已知F 是抛物线y 2=2px (p >0)的焦点,M 是抛物线的准线与x 轴的交点,且|MF |=2. (Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足|RN |2=|PN |•|QN |,求直线l 在x 轴上截距的取值范围.【解答】解:(Ⅰ)依题意,p =2,故抛物线的方程为y 2=4x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线AB :y =k (x ﹣1), 将直线AB 方程代入抛物线方程可得,k 2x 2﹣(2k 2+4)x +k 2=0, 则由韦达定理有,x A +x B =2+4k2,x A x B=1,则y A y B =﹣4,设直线AM :y =k 1(x +1),其中k 1=yA x A+1,设直线BM :y =k 2(x +1),其中k 2=yB x B +1,则k 1+k 2=y A x A+1+yBx B +1=y A x B +y A +y B x A +y B(x A +1)(x B +1)=k(x A −1)x B +k(x A −1)+k(x B −1)x A +k(x B −1)(x A +1)(x B +1)=0(x A +1)(x B +1)=0, k 1k 2=y A y B (x A +1)(x B +1)=−41+2+4k 2+1=−k21+k 2,设直线l :y =2(x ﹣t ),联立{y =2(x −t)y =k(x −1),可得x R =k−2t k−2,则|x R −t|=|k−2t k−2−t|=|k−kt k−2|,联立{y =2(x −t)y =k 1(x +1),可得x P =k 1+2t 2−k 1,则|x P −t|=|k 1+2t 2−k 1−t|=|k 1+k 1t 2−k 1|,同理可得,x Q =k 2+2t 2−k 2,|x Q −t|=|k 2+k 2t2−k 2|,又|RN |2=|PN |•|QN |,∴|k−kt k−2|2=|k 1+k 1t 2−k 1⋅k 2+k 2t 2−k 2|,即(k−kt k−2)2=k 2(1+t)23k 2+4,∴(1+t)2(t−1)2=3k2+4(k−2)2=3(k−2)2+12(k−2)+16(k−2)2=16(k−2)2+12k−2+3=(4k−2+32)2+3 4≥34(t≠1),∴4(t2+2t+1)≥3(t2﹣2t+1),即t2+14t+1≥0,解得t≥4√3−7或t≤−7−4√3(t≠1);当直线AB的斜率不存在时,则直线AB:x=1,A(1,2),B(1,﹣2),M(﹣1,0),∴直线MA的方程为y=x+1,直线MB的方程为y=﹣x﹣1,设直线l:y=2(x﹣t),则P(1+2t,2+2t),Q(2t−13,−2t+23),R(1,2﹣2t),N(t,0),又|RN|2=|PN|•|QN|,故(1−t)2+(2−2t)2=√(1+t)2+(2+2t)2⋅√(2t−13−t)2+(−2t+23)2,解得t满足(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).∴直线l在x轴上截距的取值范围为(−∞,−7−4√3]∪[4√3−7,1)∪(1,+∞).6.(2021•甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切.(1)求C,⊙M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直线A2A3与⊙M的位置关系,并说明理由.【解答】解:(1)因为x=1与抛物线有两个不同的交点,故可设抛物线C的方程为:y2=2px(p>0),令x=1,则y=±√2p,根据抛物线的对称性,不妨设P在x轴上方,Q在X轴下方,故P(1,√2p),Q(1,−√2p),因为OP⊥OQ,故1+√2p×(−√2p)=0⇒p=1 2,抛物线C的方程为:y2=x,因为⊙M与l相切,故其半径为1,故⊙M:(x﹣2)2+y2=1.(2)设A1(x1,y1),A2(x2,y2),A3(x3,y3).当A1,A2,A3其中某一个为坐标原点时(假设A1为坐标原点时),设直线A1A2方程为kx﹣y=0,根据点M(2,0)到直线距离为1可得√1+k2=1,解得k=±√33,联立直线A 1A 2与抛物线方程可得x =3, 此时直线A 2A 3与⊙M 的位置关系为相切,当A 1,A 2,A 3都不是坐标原点时,即x 1≠x 2≠x 3,直线A 1A 2的方程为x −(y 1+y 2)y +y 1y 2=0, 此时有,12√1+(y 1+y 2)2=1,即(y 12−1)y 22+2y 1y 2+3−y 12=0,同理,由对称性可得,(y 12−1)y 32+2y 1y 3+3−y 12=0, 所以y 2,y 3是方程(y 12−1)t 2+2y 1t +3−y 12=0 的两根,依题意有,直线A 2A 3的方程为x −(y 2+y 3)y +y 2y 3=0,令M 到直线A 2A 3的距离为d ,则有d 2=(2+y 2y 3)21+(y 2+y 3)2=(2+3−y 12y 12−1)21+(−2y 1y 12−1)2=1,此时直线A 2A 3与⊙M 的位置关系也为相切, 综上,直线A 2A 3与⊙M 相切.7.(2021•新高考Ⅰ)在平面直角坐标系xOy 中,已知点F 1(−√17,0),F 2(√17,0),点M 满足|MF 1|﹣|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |•|TB |=|TP |•|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.【解答】解:(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为x 2a 2−y 2b 2=1(a >0,b >0),x ≥1,根据题意{c =√172a =2c 2=a 2+b 2,解得{a =1b =4c =√17,∴C 的方程为x 2−y 216=1(x ≥1); (2)(法一)设T(12,m),直线AB 的参数方程为{x =12+tcosθy =m +tsinθ,将其代入C 的方程并整理可得,(16cos 2θ﹣sin 2θ)t 2+(16cos θ﹣2m sin θ)t ﹣(m 2+12)=0,由参数的几何意义可知,|TA |=t 1,|TB |=t 2,则t 1t 2=m 2+12sin 2θ−16cos 2θ=m 2+121−17cos 2θ,设直线PQ 的参数方程为{x =12+λcosβy =m +λsinβ,|TP |=λ1,|TQ |=λ2,同理可得,λ1λ2=m 2+121−17cos 2β,依题意,m 2+121−17cos 2θ=m 2+121−17cos 2β,则cos 2θ=cos 2β,又θ≠β,故cos θ=﹣cos β,则cos θ+cos β=0,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设T(12,t),直线AB 的方程为y =k 1(x −12)+t ,A (x 1,y 1),B (x 2,y 2),设12<x 1<x 2,将直线AB 方程代入C 的方程化简并整理可得,(16−k 12)x 2+(k 12−2tk 1)x −14k 12+k 1t −t 2−16=0,由韦达定理有,x 1+x 2=k 12−2k 1t k 12−16,x 1x 2=−14k 12+k 1t−t 2−1616−k 12, 又由A(x 1,k 1x 1−12k 1+t),T(12,t)可得|AT|=√1+k 12(x 1−12), 同理可得|BT|=√1+k 12(x 2−12),∴|AT||BT|=(1+k 12)(x 1−12)(x 2−12)=(1+k 12)(t 2+12)k 12−16, 设直线PQ 的方程为y =k 2(x −12)+t ,P(x 3,y 3),Q(x 4,y 4),设12<x 3<x 4,同理可得|PT||QT|=(1+k 22)(t 2+12)k 22−16,又|AT ||BT |=|PT ||QT |,则1+k 12k 12−16=1+k 22k 22−16,化简可得k 12=k 22,又k 1≠k 2,则k 1=﹣k 2,即k 1+k 2=0,即直线AB 的斜率与直线PQ 的斜率之和为0. 8.(2021•乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值. 【解答】(1)解:由题意知,p =2, ∴y 2=4x .(2)由(1)知,抛物线C :y 2=4x ,F (1,0), 设点Q 的坐标为(m ,n ),则QF →=(1﹣m ,﹣n ), PQ →=9QF →=(9−9m ,−9n) ∴P 点坐标为(10m ﹣9,10n ), 将点P 代入C 得100n 2=40m ﹣36, 整理得m =100n 2+3640=25n 2+910, ∴K =nm =10n25n 2+9=1025n+9n≤13,当n =35时取最大值. 故答案为:13.9.(2021•甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2√2cos θ. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=√2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.【解答】解:(1)由极坐标方程为ρ=2√2cos θ,得ρ2=2√2ρcos θ, 化为直角坐标方程是x 2+y 2=2√2x ,即(x −√2)2+y 2=2,表示圆心为C (√2,0),半径为√2的圆. (2)设点P 的直角坐标为(x ,y ),M (x 1,y 1),因为A (1,0), 所以AP →=(x ﹣1,y ),AM →=(x 1﹣1,y 1), 由AP →=√2AM →, 即{x −1=√2(x 1−1)y =√2y 1,解得{x 1=√22(x −1)+1y 1=√22x ,所以M (√22(x ﹣1)+1,√22y ),代入C 的方程得[√22(x −1)+1−√2]2+(√22y)2=2,化简得点P 的轨迹方程是(x −3+√2)2+y 2=4,表示圆心为C 1(3−√2,0),半径为2 的圆;化为参数方程是{x =3−√2+2cosθy =2sinθ,θ为参数;计算|CC 1|=|(3−√2)−√2|=3﹣2√2<2−√2,所以圆C与圆C1内含,没有公共点.10.(2021•乙卷)已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,P A,PB为C的两条切线,A,B是切点,求△P AB面积的最大值.【解答】解:(1)点F(0,p2)到圆M上的点的距离的最小值为|FM|−1=p2+4−1=4,解得p=2;(2)由(1)知,抛物线的方程为x2=4y,即y=14x2,则y′=12x,设切点A(x1,y1),B(x2,y2),则易得l PA:y=x12x−x124,l PB:y=x22x−x224,从而得到P(x1+x22,x1x24),设l AB:y=kx+b,联立抛物线方程,消去y并整理可得x2﹣4kx﹣4b=0,∴△=16k2+16b>0,即k2+b>0,且x1+x2=4k,x1x2=﹣4b,∴P(2k,﹣b),∵|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅√16k2+16b,d p→AB=|2k2+2b|√k+1,∴S△PAB=12|AB|d=4(k2+b)32①,又点P(2k,﹣b)在圆M:x2+(y+4)2=1上,故k2=1−(b−4)24,代入①得,S△PAB=4(−b 2+12b−154)32,而y p=﹣b∈[﹣5,﹣3],∴当b=5时,(S△PAB)max=20√5.11.(2021•上海)(1)团队在O点西侧、东侧20千米处设有A、B两站点,测量距离发现一点P满足|P A|﹣|PB|=20千米,可知P在A、B为焦点的双曲线上,以O点为原点,东侧为x轴正半轴,北侧为y轴正半轴,建立平面直角坐标系,P在北偏东60°处,求双曲线标准方程和P点坐标.(2)团队又在南侧、北侧15千米处设有C、D两站点,测量距离发现|QA|﹣|QB|=30千米,|QC|﹣|QD|=10千米,求|OQ|(精确到1米)和Q点位置(精确到1米,1°)【解答】解:(1)由题意可得a=10,c=20,所以b2=300,所以双曲线的标准方程为x 2100−y 2300=1,直线OP :y =√33x ,联立双曲线方程,可得x =15√22,y =5√62, 即点P 的坐标为(15√22,5√62).(2)①|QA |﹣|QB |=30,则a =15,c =20,所以b 2=175, 双曲线方程为x 2225−y 2175=1;②|QC |﹣|QD |=10,则a =5,c =15,所以b 2=200, 所以双曲线方程为y 225−x 2200=1,两双曲线方程联立,得Q (√1440047,√297547),所以|OQ |≈19米,Q 点位置北偏东66°. 12.(2020•天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解答】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3, 由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2﹣12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k 2k 2+1,6k 2−32k 2+1),∵P 为线段AB 的中点,点A 的坐标为(0,﹣3), ∴点P 的坐标为(6k2k 2+1,−32k 2+1),由3OC →=OF →,可得点C 的坐标为(1,0),故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP , ∴k •32k 2−6k+1=−1,整理可得2k 2﹣3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x ﹣3或y =x ﹣3. 13.(2020•北京)已知椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (﹣4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =﹣4于点P ,Q .求|PB||BQ|的值.【解答】解:(Ⅰ)椭圆C :x 2a 2+y 2b 2=1过点A (﹣2,﹣1),且a =2b ,则{4a 2+1b 2=1a =2b,解得b 2=2,a 2=8,∴椭圆方程为x 28+y 22=1,(Ⅱ)由题意可得直线l 的斜率存在,设直线方程为y =k (x +4), 由{y =k(x +4)x 28+y 22=1,消y 整理可得(1+4k 2)x 2+32k 2x +64k 2﹣8=0, ∴△=﹣32(4k 2﹣1)>0, 解得−12<k <12,设M (x 1,y 1),N (x 2,y 2), ∴x 1+x 2=−32k21+4k2,x 1x 2=64k 2−81+4k2,则直线AM 的方程为y +1=y 1+1x 1+2(x +2),直线AN 的方程为y +1=y 2+1x 2+2(x +2),分别令x =﹣4, 可得y P =−2(y 1+1)x 1+2−1=−(2k+1)x 1+(8k+4)x 1+2,y Q =−(2k+1)x 2+(8k+4)x 2+2∴|PB |=|y P |=|(2k+1)x 1+(8k+4)x 1+2|,QB |=|y Q |=|(2k+1)x 2+(8k+4)x 2+2|,∴|PB||BQ|=|[(2k+1)x 1+(8k+4)](x 2+2)[(2k+1)x 2+(8k+4)](x 1+2)|=|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|∵(2k +1)x 1x 2+(4k +2)(x 1+x 2)+8(2k +1)=32k 2(2k+1)1+4k2,∴|(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 2(2k+1)x 1x 2+(4k+2)(x 1+x 2)+8(2k+1)+(4k+2)x 1|=|(2k+1)(32k 24k 2+1+2x 2)(2k+1)(32k 24k 2+1+2x 1)|=|−(x 1+x 2)+2x 2−(x 1+x 2)+2x 1|=1,故|PB||BQ|=1.14.(2020•上海)已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D (0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b表示OM →•ON →,并求OM →•ON →的取值范围.【解答】解:(1)由x A =√6,点A 为曲线Γ1与曲线Γ2的交点,联立{x A 24−y A 2b2=1x A 2+y A 2=4+b 2,解得y A =√2,b =2;(2)由题意可得F 1,F 2为曲线Γ1的两个焦点,由双曲线的定义可得|PF 1|﹣|PF 2|=2a ,又|PF 1|=8,2a =4,所以|PF 2|=8﹣4=4,因为b =√5,则c =√4+5=3, 所以|F 1F 2|=6,在△PF 1F 2中,由余弦定理可得cos ∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|⋅|PF 2|=64+16−362×8×4=1116,由0<∠F 1PF 2<π,可得∠F 1PF 2=arccos1116;(3)设直线l :y =−b2x +4+b22,可得原点O 到直线l 的距离d =|4+b 22|√1+b4=√4+b 2,所以直线l 是圆的切线,设切点为M ,所以k OM =2b ,并设OM :y =2bx 与圆x 2+y 2=4+b 2联立,可得x 2+4b2x 2=4+b 2, 可得x =b ,y =2,即M (b ,2),注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当y A >2时,直线l 才能与曲线Γ有两个交点,由{x A 24−y A 2b2=1x A 2+y A 2=4+b2,可得y A 2=b4a+b2,所以有4<b44+b2,解得b 2>2+2√5或b 2<2﹣2√5(舍去),因为OM →为ON →在OM →上的投影可得,OM →•ON →=4+b 2, 所以OM →•ON →=4+b 2>6+2√5, 则OM →•ON →∈(6+2√5,+∞).15.(2020•江苏)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →•QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【解答】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2﹣b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设P (t ,0),则直线AP 方程为y =321−t (x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q (4,32•4−t 1−t),OP →•QP →=(t ,0)•(t ﹣4,0−32•4−t1−t)=t 2﹣4t =(t ﹣2)2﹣4≥﹣4, 当t =2时,(OP →⋅QP →)min =﹣4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB |×d 2=12×|AB |×d 1,即d 2=3d 1,A (1,32),F 1(﹣1,0),可得直线AB 方程为y =34(x +1),即3x ﹣4y +3=0,所以d 1=35,d 2=95,由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x ﹣4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =﹣6或12,当m =﹣6时,直线l 为3x ﹣4y ﹣6=0,即y =34(x ﹣2),联立{y =34(x −2)x 24+y 23=1,可得(x ﹣2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127,所以M (2,0)或(−27,−127).当m =12时,直线l 为3x ﹣4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36﹣56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127). 16.(2020•浙江)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ). (Ⅰ)若p =116,求抛物线C 2的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解答】解:(Ⅰ)p =116,则p 2=132,则抛物线C 2的焦点坐标(132,0), (Ⅱ)直线l 与x 轴垂直时,此时点M 与点A 或点B 重合,不满足题意, 设直线l 的方程为y =kx +t ,A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由{x 22+y 2=1y =kx +t,消y 可得(2k 2+1)x 2+4ktx +2t 2﹣2=0, ∴△=16k 2t 2﹣4(2k 2+1)(2t 2﹣2)>0,即t 2<1+2k 2, ∴x 1+x 2=−4kt 1+2k2,∴x 0=12(x 1+x 2)=−2kt 1+2k 2,∴y 0=kx 0+t =t 1+2k2,∴M (−2kt 1+2k2,t1+2k 2),∵点M 在抛物线C 2上,∴y 2=2px ,∴p =y 22x =t 2(1+2k 2)22⋅−2kt 1+2k2=t −4k(1+2k 2), 联立{y 2=2px y =kx +t ,解得x 1=t(1+2k 2)−2k 3,y 1=t −2k2, 代入椭圆方程可得t 2(1+2k 2)28k 6+t 24k 4=1,解得t 2=8k6(1+2k 2)2+2k2。
学生版圆锥曲线(1)

圆锥曲线(1)一、基础训练1.若椭圆2215x y m +=的离心率e =,则m 的值是________. 2.若抛物线22y x =上的一点M 到坐标原点O则M 到该抛物线焦点的距离为________.3.双曲线22260x y -+=上一个点P 到一个焦点的距离为4,则它到另一个焦点的距离为________.4.已知双曲线2212x y a -=的一个焦点坐标为(,则其渐近线方程为________. 5.设圆锥曲线C 的两个焦点分别为1F ,2F .若曲线C 上存在点P 满足1122::4:3:2P F F F P F =,则曲线C 的离心率等于________. 6.若椭圆22221x y a b+=的焦点在x 轴上,过点1(1,2作圆221x y +=的切线,切点分别为,A B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.二、典型例题例1 (1)椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A ,B .当FAB ∆的周长最大时,FAB ∆的面积是________.(2) 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为e ,若椭圆上存在点P ,使得12PF e PF =,则该椭圆离心率e 的取值范围是________. (3)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是________.例2已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点为(2,0)A ,离心率为2.直线(1)y k x =-与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当AMN ∆k 的值.例3已知双曲线2213y x -=,椭圆与该双曲线共焦点,且经过点(2,3) . (1)求椭圆方程;(2)设椭圆的左、右顶点分别为A ,B ,右焦点为F ,直线l 为椭圆的右准线,N 为l 上的一动点,且在x 轴上方,直线AN 与椭圆交于点M . ①若AM MN =,求AMB ∠的余弦值;②设过A ,F ,N 三点的圆与y 轴交于P ,Q 两点,当线段PQ 的中点为(0,9)时,求这个圆的方程.例4如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为2,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线20x y -+=相切. (1)求椭圆C 的方程;(2)已知点(1,0)P ,(0,2)Q .设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上.三、作业1.点P 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为椭圆的焦点,如果1275PF F ︒∠=,2115PF F ︒∠=,则椭圆的离心率为________.2.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为m 的值为________.3.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________.4.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为________.5.设P 点在圆22(2)1x y +-=上移动,点Q 在椭圆2219x y +=上移动,则PQ 的最大值是________.6.已知1F ,2F 分别是椭圆14822=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则121||PF PF PF -的取值范围是 .7. 已知椭圆C :)0(12222>>=+b a by a x ,左、右两个焦点分别为1F ,2F ,上顶点),0(b A ,21F AF ∆为正三角形且周长为6.(1)求椭圆C 的标准方程及离心率;(2)O 为坐标原点,直线A F 1上有一动点P ,求||||2PO PF +的最小值.8.如图,点1(,0)F c -,2(,0)F c 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过点1F 作x 轴的垂线交椭圆C 的上半部分于点P ,过点2F 作直线2PF 的垂线交直线2a x c=于点Q .(1)如果点Q 的坐标是(4,4) ,求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.9.设A 、B 分别为椭圆12222=+b y a x ()0>>b a 的左、右顶点,椭圆的长轴长为4,且点⎪⎪⎭⎫⎝⎛23,1在该椭圆上. (Ⅰ)求椭圆的方程;(Ⅱ)设P 为直线4=x 上不同于点()0,4的任意一点,若直线AP 与椭圆相交于异于A 的点M .证明:MBP ∆为钝角三角形.10. 如图,在平面直角坐标系xOy 中,已知点F 是椭圆2222:1(0)x y E a b a b +=>>的左焦点,A ,B ,C 分别为椭圆E 的右、下、上顶点,满足5FC BA = ,椭圆的离心率为12.(1)求椭圆的方程;(2)若P 为线段FC (包括端点)上任意一点,当PA PB取得最小值时,求点P 的坐标; (3)设点M 为线段BC (包括端点)上的一个动点,射线MF 交椭圆于点N ,若NF FM λ= ,求实数λ的取值范围.。
圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)

重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总题型1直接型题型2二级结论之通径型题型3双曲线渐近线相关题型4坐标法题型5二级结论之焦点弦定比分点题型6二级结论之焦点已知底角题型7焦点三角形已知顶角型题型8焦点三角形双余弦定理题型9利用图形求离心率题型10利用椭圆双曲线的对称性求离心率题型11点差法题型12二级结论之中点弦问题题型13角平分线相关题型14圆锥曲线与圆相关题型15内切圆相关题型16与立体几何相关题型17二级结论之切线方程题型18正切公式的运用题型19圆锥曲与内心结合题型1直接型椭圆与双曲线的离心率公式为:e =ca,注意椭圆的离心率范围(0,1),双曲线的离心率范围(1,+♾)1(2021·江西南昌·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 的右支于A ,B 两点,且AB ⋅AF 1 =0,12|AB |=5|AF 1|,则C 的离心率为1(2021·全国·高三开学考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为.2(2021·河北秦皇岛·统考二模)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆C 于A ,B 两点,已知AF 2 +F 1F 2 ⋅AF 1 =0,AF 1 =43F 1B,则椭圆C 的离心率为()A.57B.22C.53D.133(2023·江西九江·二模)青花瓷又称白地青花瓷,常简称青花,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.如图为青花瓷大盘,盘子的边缘有一定的宽度且与桌面水平,可以近似看成由大小两个椭圆围成.经测量发现两椭圆的长轴长之比与短轴长之比相等.现不慎掉落一根质地均匀的长筷子在盘面上,恰巧与小椭圆相切,设切点为P ,盘子的中心为O ,筷子与大椭圆的两交点为A 、B ,点A 关于O 的对称点为C .给出下列四个命题:①两椭圆的焦距长相等;②两椭圆的离心率相等;③PA =PB ;④BC 与小椭圆相切.其中正确的个数是()A.1B.2C.3D.44(22·23下·恩施·模拟预测)已知F 1,F 2分别为双曲线C :x 24-y 2b2=1b >0 的左右焦点,且F 1到渐近线的距离为1,过F 2的直线l 与C 的左、右两支曲线分别交于A ,B 两点,且l ⊥AF 1,则下列说法正确的为()A.△AF 1F 2的面积为2B.双曲线C 的离心率为2C.AF 1 ⋅BF 1=10+46D.1AF 2 +1BF 2=6+2题型2二级结论之通径型椭圆与双曲线的半通径是b 2a , 通径是2b 2a1(2023·重庆·模拟预测)如图,椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ ⊥y 轴,四边形F 1APQ 是等腰梯形,直线F 1P 与y 轴交于点N 0,34b,则椭圆的离心率为( ).A.14B.32C.22D.121(23·24高三上·湖北·阶段练习)已知A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b 2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.2(2023·湖北武汉·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,点A ,B 分别为椭圆C 的左右顶点,点F 为椭圆C 的右焦点,Р为椭圆上一点,且PF 垂直于x 轴.过原点О作直线PA 的垂线,垂足为M ,过原点О作直线PB 的垂线,垂足为N ,记S 1,S 2分别为△MON ,△PAB 的面积.若S 2S 1=409,则椭圆C 的离心率为.3(22·23·赣州·二模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在E 上,满足△F 1PF 2为直角三角形,作OM ⊥PF 1于点M (其中O 为坐标原点),且有PM =2MF1,则E 的离心率为.4(2023·河北保定·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,B 为虚轴上端点,M 是BF 中点,O 为坐标原点,OM 交双曲线右支于N ,若FN 垂直于x 轴,则双曲线C 的离心率为() A.2B.2C.3D.233题型3双曲线渐近线相关双曲线的渐近线求离心率可以直接使用公式:e =1+b 2a2,1(2023·山东潍坊·二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,O 为坐标原点,过F 1作C 的一条浙近线的垂线,垂足为D ,且DF 2 =22OD ,则C 的离心率为()A.2B.2C.5D.31(2022·贵州毕节·统考模拟预测)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是C 的左顶点,过点F 2作C 的一条渐近线的垂线,垂足为P ,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,且PO 平分∠APM ,则C 的离心率为()A.2B.2C.3D.32(多选)(2023·山东潍坊·三模)函数y =ax +bx(ab >0)的图象是双曲线,且直线x =0和y =ax 是它的渐近线.已知函数y =33x +1x,则下列说法正确的是()A.x ≠0,y ≥243B.对称轴方程是y =3x ,y =-33x C.实轴长为23D.离心率为2333(2020上·广西桂林·高三广西师范大学附属中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左顶点为A ,过F 作C 的一条渐近线的垂线,垂足为M ,若tan ∠MAF =12,则C 的离心率为.4(2022·陕西咸阳·统考二模)已知双曲线C :(a >0,b >0)的左焦点为F ,过F 且与双曲线C 的一条渐近线垂直的直线l 与另一条渐近线交于点P ,交y 轴于点A ,若A 为PF 的中点,则双曲线C 的离心率为 .5(多选)(2023·河北唐山·模拟预测)已知双曲线C :x 2a2-y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 2作直线y =2a x 的垂线,垂足为P ,O 为坐标原点,且∠F 1PO =π6,过P 作C 的切线交直线y =-2ax 于点Q ,则()A.C 的离心率为213B.C 的离心率为133C.△OPQ 的面积为23D.△OPQ 的面积为43题型4坐标法相对运算较麻烦的一种方法,可以通过联立方程,求出点的坐标,构造等式求出离心率1(2023·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左顶点为A ,P 为C 的一条渐近线上一点,AP 与C 的另一条渐近线交于点Q ,若直线AP 的斜率为1,且A 为PQ 的三等分点,则C 的离心率为.1(2023·山东潍坊·模拟预测)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 的直线交E 的左支于点P ,交E 的渐近线于点M ,N ,且P ,M 恰为线段FN 的三等分点,则双曲线E 的离心率为()A.2B.52C.5D.32(24·25高三上·浙江·开学考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作倾斜角为π4的直线交椭圆C 于A 、B 两点,弦AB 的垂直平分线交x 轴于点P ,若PF AB=14,则椭圆C 的离心率e =.3(2023·湖北襄阳·模拟预测)如图,已知有公共焦点P 1(-c ,0)、P 2(c ,0)的椭圆C 1和双曲线C 2相交于A 、B 、C 、D 四个点,且满足OA =OB =OC =OD =c ,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若k 1⋅k 2=2,则椭圆C 1的离心率为.4(22·23高三上·河南洛阳·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,过点F 1的直线l 与双曲线C 的左支交于点A ,与双曲线C 的一条渐近线在第一象限交于点B ,且F 1F 2 =2OB (O 为坐标原点).下列四个结论正确的是()①BF 1 =4c 2-BF 2 2;②若AB =2F 1A ,则双曲线C 的离心率1+102;③BF 1 -BF 2 >2a ;④c -a <AF 1 <2c -a .A.①②B.①③C.①②④D.①③④5(22·23高三上·河北石家庄·期中)椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 1的直线交C 于A ,B 两点,若3OF 1 =OA +2OB ,AB =BF 2,其中O 为坐标原点,则椭圆的离心率为题型5二级结论之焦点弦定比分点1.点F 是椭圆的焦点,过F 的弦AB 与椭圆焦点所在轴的夹角为θ,θϵ0,π2,k 为直线AB 的斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1注:λ=AF BF 或者λ=BF AF ,而不是AF AB 或者BFAB点F 是双曲线焦点,2.过F 弦AB 与双曲线焦点所在轴夹角为θ,θϵ0,π2,k 为直线AB 斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1 1(23·24高三上·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2且倾斜角为60°的直线l 与C 交于A ,B 两点.若△AF 1F 2的面积是△BF 1F 2面积的2倍,则C 的离心率为.1(2022上·辽宁鞍山·高三鞍山一中校考期中)已知椭圆C :x 2a 2+y 2b2=1的左焦点为F ,过F 斜率为3的直线l 与椭圆C 相交于A 、B 两点,若AF BF =32,则椭圆C 的离心率e =.2(2022·全国·高三专题练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若AF =4FB,则C 的离心率为()A.58B.65C.75D.953(2023·浙江温州·乐清市知临中学校考二模)已知椭圆x 2a 2+y 2b2=1的右焦点为F 2,过右焦点作倾斜角为π3的直线交椭圆于G ,H 两点,且GF 2 =2F 2H ,则椭圆的离心率为()A.12B.22C.23D.324(2023·贵州·统考模拟预测)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为A ,F 是C 的一个焦点,点B 在C 上,若3AF +5BF =0,则C 的离心率为()A.12B.35C.22D.32题型6二级结论之焦点已知底角1. 已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =c a =sin (α+β)sin α+sin β2. 已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则e =ca =sin α+sin β|sin α-sin β|,1(2008·全国·高考真题)设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点,且过点C 的双曲线的离心率为()A.1+22 B.1+32C.1+2D.1+31(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于()A.3-1B.2-1C.32D.222(2020秋·贵州贵阳·高二统考期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c .若直线y =33x +c 与椭圆的一个交点M 满足∠MF 2F 1=2∠MF 1F 2,则该椭圆的离心率等于()A.3-5B.5-3C.3+1D.3-13(2023·全国·高二专题练习)已知椭圆E 的两个焦点分别为F 1,F 2,点Р为椭圆上一点,且tan ∠PF 1F 2=23,tan ∠PF 2F 1=2,则椭圆E 的离心率为 .4(2023秋·江西吉安·高三吉安一中校考开学考试)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为.5(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为334的直线上,△PF 1F 2为等腰三角形,∠PF 2F 1=120°,则双曲线的离心率为.题型7焦点三角形已知顶角型可以通过焦点三角形的特征进行解决1(20·21高二上·吉林白城·阶段练习)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,椭圆的离心率为e 1,双曲线的离心率e 2,则1e 21+3e 22=.1(2021·重庆·校联考三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左右焦点分别为F 1,F 2,过F 1的直线交双曲线C 的左支于P ,Q 两点,若PF 2 2=PF 2 ⋅QF 2,且△PQF 2的周长为12a ,则双曲线C 的离心率为() A.102B.3C.5D.222(2021·山东烟台·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若F 2A ⋅F 2B =0,且|F 2A |=|F 2B|,则C 的离心率为()A.2B.3C.6D.73(2021·浙江·模拟预测)已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,直线y =kx 与E 交于A ,B 两点,且∠F 1AF 2=60°,四边形F 1AF 2B 的周长C 与面积S 满足163S =C 2,则E 的离心率为()A.62B.52C.32D.34(2023·上海崇明·一模)已知椭圆Γ1与双曲线Γ2的离心率互为倒数,且它们有共同的焦点F 1、F 2,P是Γ1与Γ2在第一象限的交点,当∠F 1PF 2=π6时,双曲线Γ2的离心率等于 .5(2022上·江苏南京·高三南京师大附中校考期中)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点,过点F 2且斜率为1的直线l 与双曲线C 的右支交于P ,Q 两点,若△F 1PQ 是等腰三角形,则双曲线C 的离心率为.题型8焦点三角形双余弦定理1(22·23高二下·河南安阳·开学考试)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,过F 1的直线与椭圆C 交于M ,N 两点,MF 2 -MF 1 =a ,MF 1 +NF 1 =NF 2 ,则椭圆C 的离心率为()A.25B.105C.155D.641(22·23上·河南·模拟预测)双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,过F 2的直线与C 交于A ,B 两点,且AF 2 =2F 2B,∠ABF 1=60°,则双曲线C 的离心率为()A.73B.2C.53D.432(2023·浙江·一模)已知双曲线C :x 2a 2-y 2b2=1的左右焦点分别为F 1,F 2,O 为坐标原点,A ,B 为C 上位于x 轴上方的两点,且AF 1⎳BF 2,∠AF 1F 2=60°.记AF 2,BF 1交点为P ,过点P 作PQ ⎳AF 1,交x 轴于点Q .若OQ =2PQ ,则双曲线C 的离心率是.3(23·24高三上·江苏淮安·开学考试)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,直线AF 1与椭圆C 交于另一点B ,若∠AF 2B =120°,则椭圆C 的离心率为.4(22·23高三下·山东菏泽·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⋅F 1B =0,BF 2 =35BA,则C 的离心率为.5(2023·湖南株洲·一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.题型9利用图形求离心率1(2023·安徽安庆·二模)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 的右支相交于点P ,过点O ,F 2作ON ⊥PF 1,F 2M ⊥PF 1,垂足分别为N ,M ,且M 为线段PN 的中点,ON =a ,则双曲线C 的离心率为()A.2B.5+12C.3+12D.1321(22·23·包头·二模)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1-c ,0 ,F 2c ,0 ,以C 的虚轴为直径的圆记为D ,过F 1作D 的切线与C 的渐近线y =-b a x 交于点H ,若△F 1HO 的面积为24ac ,则C 的离心率为.2(2023秋·江西宜春·高三江西省宜丰中学校考阶段练习)双曲线C :x 2a 2-y 2b2=1a ,b >0 的左焦点为F ,直线FD 与双曲线C 的右支交于点D ,A ,B 为线段FD 的两个三等分点,且OA =OB =22a (O为坐标原点),则双曲线C 的离心率为.3(2023·湖南邵阳·邵阳市第二中学校考模拟预测)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,A 是C 的上顶点,点P 在过A 且斜率为23的直线上,△PF 1F 2为等腰三角形,∠PF 1F 2=120°,则C 的离心率为()A.1010B.714C.39D.144(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,上顶点为B ,点P 是椭圆上位于第一象限内的点,且△ABO ∼△F 1PF 2,O 为坐标原点,则椭圆的离心率为.题型10利用椭圆双曲线的对称性求离心率1(22·23高二下·湖南·期末)如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,P ,Q 为双曲线C 上两点,满足F 1P ∥F 2Q ,且F 2Q =F 2P =3F 1P ,则双曲线C 的离心率为()A.105B.52C.153D.1021(2023·河南商丘·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 是C 的一条渐近线上的两点,且MN =2MO(O 为坐标原点),MN =F 1F 2 .若P 为C 的左顶点,且∠MPN =135°,则双曲线C 的离心率为()A.3B.2C.5D.72(2023·福建宁德·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点是F ,直线y =kx 交椭圆于A ,B 两点﹐直线AF 与椭圆的另一个交点为C ,若OA OF=AF2CF =1,则椭圆的离心率为.3(23·24高三上·山西大同·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点P (3c ,0)作直线l 交椭圆C 于M ,N 两点,若PM =2NM ,F 2M =4F 2N则椭圆C 的离心率为4(2022·全国·校联考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别是F 1,F 2,过F 2的直线l 交双曲线C 于P ,Q 两点且使得PF 2 =λF 2Q 0<λ<1 .A 为左支上一点且满足F 1A +F 2P=0 ,F 1F 2 =23AF 2 +13AQ ,△AF 2P 的面积为b 2,则双曲线C 的离心率为()A.33B.2C.102D.35(2021下·山西·高三校联考阶段练习)如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为()A.174B.173C.214D.213题型11点差法1.根与系数关系法:联立直线方程和椭圆(或双曲线)方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2.点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆(或双曲线)方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点M (x 0,y 0)是线段AB 的中点,x 21a 2+y 21b 2=1,=1\*GB 3\*MERGEFORMAT ①x 22a 2+y 22b 2=1,=2\*GB 3\*MERGEFORMAT ② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,(x 1-x 2≠0,x 1+x 2≠0)1(22·23·吉安·一模)椭圆E :x 2a 2+y 2b2=1a >b >0 的内接四边形ABCD 的对角线AC ,BD 交于点P 1,1 ,满足AP =2PC ,BP =2PD ,若直线AB 的斜率为-14,则椭圆的离心率等于()A.14B.32C.12D.131(2023·湖北·模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =.2(2022下·云南昭通·高二校联考期末)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)斜率为-18的直线与E 的左右两支分别交于A ,B 两点,P 点的坐标为(-1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D ,如图1.若直线CD 的斜率为-18,则E 的离心率为()A.2B.72C.62D.523(22·23·河北·模拟预测)已知斜率为-2的直线l 1与双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右两支分别交于点A ,B ,l 2⎳l 1,直线l 2与E 的左、右两支分别交于点D ,C ,AC 交BD 于点P ,若点P 恒在直线l :y =-3x 上,则E 的离心率为.4(2023·云南·统考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)(b >c )和上顶点B ,若斜率为65的直线l 交椭圆C 于P ,Q 两点,且满足FB +FP +FQ =0 ,则椭圆的离心率为.5(2020上·重庆沙坪坝·高三重庆八中校考阶段练习)如图,过原点O 的直线AB 交椭圆C :x 2a 2+y 2b2=1(a >b >0)于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若AM =34AP,则椭圆C 的离心率是.题型12二级结论之中点弦问题1.椭圆或者双曲线,已知中点时,当椭圆或双曲线的焦点在x 轴,K AB ∙K OM =e 2-12.P 为椭圆上一点,e 为离心率,①A 1,A 2为两个顶点,则k PA 1⋅k PA 2=e 2-1;②A 1,A 2为关于原点对称的两点,则k PA 1⋅k PA 2=e 2-1;以上结论也适用于双曲线.1(22·23上·徐州·期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AP ,BP 的斜率之积为49,且∠BDO =∠BOD ,则椭圆C 的离心率为.1(22·23下·安徽·一模)已知直线l 与椭圆E :x 2a 2+y 2b2=1(a >b >0)交于M ,N 两点,线段MN 中点P 在直线x =-1上,且线段MN 的垂直平分线交x 轴于点Q -34,0 ,则椭圆E 的离心率是 .2(2023·贵州·模拟预测)设О为坐标原点,A 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一个动点,过点A 作椭圆C 内部的圆E :x 2-2mx +y 2=0m >0 的一条切线,切点为D ,与椭圆C 的另一个交点为B ,D 为AB 的中点,若OD 的斜率与DE 的斜率之积为2,则C 的离心率为.3(2021·全国·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,上顶点为B ,O 为坐标原点,点D 为OB 的中点,双曲线E :x 2m 2-y 2n2=1(m >0,n >0)的左、右焦点分别与椭圆C 的左、右顶点A 1,A 2重合,点P 是双曲线E 与椭圆C 在第一象限的交点,且A 1,P ,D 三点共线,直线PA 2的斜率k PA 2=-43,则双曲线E 的离心率为()A.355B.32C.810-105D.5+41094(22·23下·南通·阶段练习)已知两点A ,M 在双曲C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB ⊥AM ,且ON 2+8OA ⋅ON=0,则双曲线C 的离心率为()A.5B.6C.7D.22题型13角平分线相关1.角平分线“拆”面积:S △ABC =S △ACD +S △ABD2.角平分线定理性质:AB BD =ACCD1(22·23下·山西·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 是双曲线E 上一点,PF 2⊥F 1F 2,∠F 1PF 2的平分线与x 轴交于点Q ,S △PF 1Q S △PF 2Q=53,则双曲线E 的离心率为()A.2B.2C.52D.31(22·23下·湖北·模拟预测)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.22(22·23高三·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x =a 交于点M ,∠PFB 的角平分线与直线x =a 交于点N ,若PF ⊥AB ,△MAB 的面积是△NFB 面积的6倍,则椭圆C 的离心率是.3(2023·山东烟台·校考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1-c ,0 ,F 2c ,0 ,点P 是C 与圆x 2+y 2=c 2的交点,∠PF 1F 2的平分线交PF 2于Q ,若PQ =12QF 2 ,则椭圆C 的离心率为()A.33B.2-1C.22D.3-14(2023春·江西赣州·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.椭圆C 在第一象限存在点M ,使得MF 1 =F 1F 2 ,直线F 1M 与y 轴交于点A ,且F 2A 是∠MF 2F 1的角平分线,则椭圆C 的离心率为()A.6-12B.5-12C.12D.3-12题型14圆锥曲线与圆相关1(2023·福建漳州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM 与C 的焦距的比值为313,则C 的离心率为()A.3-12B.12C.3+14D.7-121(23·24高三上·福建福州·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM与C 的焦距的比值为313,则C 的离心率为()A.3+12B.32C.5+12D.7+122(2023·全国·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点分别是A 1,A 2,圆x 2+y 2=a 2与C 的渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P .设△MPA 2的内切圆圆心为I ,A 2I ⊥x 轴,则C 的离心率为()A.2B.2C.3D.53(22·23·马鞍山·三模)已知F 1 , F 2分别是双曲线C :x 2a 2-y 2b2=1 (a >0 , b >0)的左,右焦点,点M 在双曲线上,MF 1⊥MF 2,圆O :x 2+y 2=32(a 2+b 2),直线MF 1与圆O 相交于A ,B 两点,直线MF 2与圆O 相交于P ,Q 两点,若四边形APBQ 的面积为27b 2,则C 的离心率为()A.62B.324C.32D.984(22·23上·全国·阶段练习)已知圆C 1:x 2+y -2332=163过双曲线C 2:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点F 1,F 2,曲线C 1与曲线C 2在第一象限的交点为M ,若MF 1 ⋅MF 2 =12,则双曲线C 2的离心率为()A.2B.3C.2D.3题型15内切圆相关1(22·23高三下·江西·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点P 在C 上且位于第一象限,圆O 1与线段F 1P 的延长线,线段PF 2以及x 轴均相切,△PF 1F 2的内切圆为圆O 2.若圆O 1与圆O 2外切,且圆O 1与圆O 2的面积之比为9,则C 的离心率为()A.12B.35C.22D.321(2023·山东潍坊·模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.742(22·23下·宁波·阶段练习)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上不与顶点重合的任意一点,I 为△PF 1F 2的内心,记直线OP ,OI 的斜率分别为k 1,k 2,若k 1=32k 2,则椭圆E 的离心率为() A.13B.12C.33D.223(23·24高三上·云南昆明·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1-c ,0 ,F 2c ,0(c >0),过F 1作倾斜角为π4的直线交椭圆于A ,B 两点,若△ABF 2的内切圆半径r =26c ,则该椭圆的离心率为.4(2023·山西·二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点M x 0,y 0 x 0>c 是C 上一点,点A 是直线MF 2与y 轴的交点,△AMF 1的内切圆与MF 1相切于点N ,若|MN |=2F 1F 2 ,则椭圆C 的离心率e =.5(22·23·红河·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若E 上存在点P ,满足OP =12F 1F 2 ,(O 为坐标原点),且△PF 1F 2的内切圆的半径等于a ,则E 的离心率为.题型16与立体几何相关1(2023·安徽安庆·一模).如图是数学家Ger min al Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为4和1,球心距O 1O 2 =6,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于()A.339B.63C.22D.161(22·23高三下·河北衡水·阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作直线AB ⊥F 1F 2交C 于A ,B 两点. 现将C 所在平面沿直线F 1F 2折成平面角为锐角α的二面角,如图,翻折后A ,B 两点的对应点分别为A ,B ,且∠A F 1B =β⋅若1-cos α1-cos β=2516,则C 的离心率为()A.3B.22C.3D.322(2023·云南大理·模拟预测)某同学所在的课外兴趣小组计划用纸板制作一个简易潜望镜模型(图甲),该模型由两个相同的部件拼接粘连制成,每个部件由长方形纸板NCEM (图乙)沿虚线裁剪后卷一周形成,其中长方形OCEF 卷后为圆柱O 1O 2的侧面.为准确画出裁剪曲线,建立如图所示的以O 为坐标原点的平面直角坐标系,设P x ,y 为裁剪曲线上的点,作PH ⊥x 轴,垂足为H .图乙中线段OH 卷后形成的圆弧OH (图甲),通过同学们的计算发现y 与x 之间满足关系式y =3-3cos x3(0≤x <6π),现在另外一个纸板上画出曲线y =1-cos x2(0≤x <4π),如图丙所示,把沿虚线裁剪后的长方形纸板卷一周,求该裁剪曲线围成的椭圆的离心率为()A.255B.55C.12D.533(2022·辽宁沈阳·一模)如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为.4(22·23下·辽宁·阶段练习)如图所示圆锥,C 为母线SB 的中点,点O 为底面圆心,AB 为底面圆的直径,且SC ,OB ,SB 的长度成等比数列,一个平面过A ,C ,与圆锥面相交的曲线为椭圆,若该椭圆的短轴与圆锥底面平行,则该椭圆的离心率为.5(多选)(2023·江苏南通·模拟预测)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β题型17二级结论之切线方程圆锥曲线切线方程的常用结论【结论1】(1)经过圆x 2+y 2=r 2上一点M x 0,y 0 的切线方程为x 0x +y 0y =r 2.(2)当M x 0,y 0 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为x 0x +y 0y =r 2.【结论2】(1)若圆心不在原点,圆的方程:x -a 2+y -b 2=r 2,若M x 0,y 0 为圆上一点,则过M x 0,y 0 切线方程:x 0-a x -a +y 0-b y -b =r2(2)若M x 0,y 0 在圆外,过M 点切线有两条:切点弦所在直线方程:x 0-a x -a +y 0-b y -b =r2方便记忆,求切线和切点弦的方法,统一称为“代一留一”.【结论3】(1)过圆x 2a 2+y 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为x 0x a 2+y 0y b2=1;(2)当M x 0,y 0 在椭圆x 2a 2+y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为x 0x a2+y 0yb 2=1.(3)设过椭圆x 2a 2+y 2b2=1a >b >0 外一点M x 0 , y 0 引两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2+y 1yb 2=1,x 2x a 2+y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2+y 1y 0b 2=1,x 2x 0a 2+y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2+y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0xa 2+y 0yb 2=1.同理可得焦点在y 轴上的情形.【结论4】(1)过圆y 2a 2+x 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为y 0y a 2+x 0x b2=1;(2)当M x 0,y 0 在椭圆y 2a 2+x 2b2=1a >b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为y 0y a 2+x 0xb2=1.【结论5】(1)过双曲线x 2a 2-y 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为x 0x a 2-y 0y b2=1;(2)当M x 0,y 0 在双曲线x 2a 2-y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:x 0x a2-y 0yb2=1.(3)设过双曲线x 2a 2-y 2b2=1a >0,b >0 外一点M x 0,y 0 引两条切线,切点分别为A x 1,y 1 、B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2-y 1yb 2=1 , x 2x a 2-y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2-y 1y 0b 2=1 , x 2x 0a 2-y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2-y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0x a 2-y 0y b 2=1.同理可得焦点在y 轴上的情形.【结论6】(1)过双曲线y 2a 2-x 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为y 0y a 2-x 0x b2=1;(2)当M x 0,y 0 在双曲线y 2a 2-x 2b2=1a >0,b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:y 0y a 2-x 0xb2=1.1(2023·重庆·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A x 1,y 1 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B ,若cos ∠F 1AF 2=12,且F 1B =2BF 2 ,则双曲线C 的离心率为()A.22B.5C.2D.31(22·23高三上·全国·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 上的一点M (异于顶点),过点M 作双曲线C 的一条切线l .若双曲线C 的离心率e =233,O 为坐标原点,则直线OM 与l 的斜率之积为()A.13B.23C.32D.32(2022·全国·统考二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 与椭圆x 24+y 23=1.过椭圆上一点P -1,32作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ的中点,则双曲线C 的离心率为()。
圆锥曲线中的离心率的问题(含解析)

圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。
例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五 第二讲 离心率专题
离心率历年来是圆锥曲线客观题的考查重点,对于求圆锥曲线离心率的问题,通常有两类:一是求椭圆和双曲线的离心率;二是求椭圆和双曲线离心率的取值范围,属于中低档次的题型,对大多数学生来说是没什么难度的。
一般来说,求椭圆(或双曲线)的离心
率,只需要由条件得到一个关于基本量a 与b 或a 与c 的其次式,从而根据221c b e a a ==-(这是椭圆)2
21c b e a a
==+(这是双曲线),就可以从中求出离心率.但如果选择方法不恰当,则极可能“小题”大作,误入歧途。
许多学生认为用一些所谓的“高级”结论可以使结果马上水落石出,一针见血,其实不然,对于这类题,用最淳朴的定义来解题是最好的,此时无招胜有招!
一、求椭圆与双曲线离心率的值:
(一)、用定义求离心率问题:
122121(05,,
221A.
B. C. 2 2 D. 21F F F P F PF ∆例、全国Ⅲ)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )
---
【强化训练】1.在ABC △中,AB BC =,7cos 18
B =-
.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e =.
2、已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_________;
3、已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为。
4.已知F 1、F 2是双曲线)0,0(12222>>=-b a b y a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是()
A .324+
B .13-
C .213+
D .13+
5、如图,1F 和2F 分别是双曲线22
221(0,0)x y a b a b
-=>>的两个焦点, A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交
点,且△AB F 2是等边三角形,则双曲线的离心率为( )
(A )3(B )5(C )
2
5(D )31+
(二)、列方程求离心率问题:构造a 、c 的齐次式,解出e
根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e
例2、如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22
221(0)x y a b a b
+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为.
变式:设双曲线22
221x y a b
-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( )(A )3 (B )2 (C )5 (D )6
【点评】本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.
【强化训练】1、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲
线的一条渐近线垂直,那么此双曲线的离心率为( )
(A
(B
(C
(D
2.在平面直角坐标系中,椭圆x 2a 2+y 2
b 2=1(a >b >0)的焦距为2
c ,以O 为圆心,a 为半 径的圆,过点(a 2c
,0)作圆的两切线互相垂直,则离心率e =.
3.已知椭圆C :22
221x y a b
+=(a>b>0
)的离心率为2,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
则k =( )
(A )1 (B
(C
(D )2
4.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =,则C 的离心率为
5. 已知双曲线()22
2210,0x y C a b a b
-=>>:的右焦点为F ,过F
的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为( ) .
A .65 B. 75 C. 58 D. 95
二、求椭圆或双曲线的离心率范围问题:一般来说,求椭圆(或双曲线)的离心率的取值范围,通常可以从两个方面来研究:一是考虑几何的大小,例如线段的长度、角的大小等;二是通过设椭圆(或双曲线)点的坐标,利用椭圆(或双曲线)本身的范围,列出不等式. 模型三:几何性质求离心率: 例3.已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的焦点分别为F 1,F 2,若该椭圆上存在一点P ,使得∠F 1PF 2=60°,则椭圆离心率的取值范围是.
【强化训练】1.已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的焦点分别为F 1,F 2,若该椭圆上存在一点P , 使得∠F 1PF 2=60°,则椭圆离心率的取值范围是.
2.已知双曲线22
221(0,0)x y a b a b
-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F a PF F c
=,则该双曲线的离心率的取值范围是.
例4.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .1(0,]2 C
. D
.
【强化训练】1、椭圆22
221(0)x y a b a b
+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( ) A.102⎛⎤ ⎥⎝⎦,
B.0⎛ ⎝⎦C.112⎡⎫⎪⎢⎣⎭,
D.1⎫⎪⎪⎣⎭
2、已知双曲线22
221,(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )
A .43
B .53
C .2
D .73
3、双曲线22
221x y a b
-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )
A.(1,3)
B.(]1,3
C.(3,+∞)
D.[)3,+∞。