2018-2019学年北师大版广东省深圳市南山区育才二中七年级第二学期(下)期中数学试卷 含解析

合集下载

2018-2019学年广东省深圳市福田区七年级(下)期末数学试卷

2018-2019学年广东省深圳市福田区七年级(下)期末数学试卷

2018-2019学年广东省深圳市福田区七年级(下)期末数学试卷一、选择题:(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)下列交通标志图案不是轴对称图形的是( )A .B .C .D .2.(3分)已知60a =︒,则α的余角等于( )A .20︒B .30︒C .100︒D .120︒3.(3分)非洲猪瘟病毒的直径达0.0000002,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学记数法表示为( )A .7210-⨯B .6210-⨯C .80.210-⨯D .7210-⨯4.(3分)如图,P 在线段AB 的垂直平分线l 上,已知5PA =,3AC =,4PC =,则线段PB 的长度是( )A .6B .5C .4D .35.(3分)下列是随机事件的是( )A .口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B .平行于同一条直线的两条直线平行C .掷一枚图钉,落地后图钉针尖朝上D .掷一枚质地均匀的骰子,掷出的点数是76.(3分)如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是( )A .34B .12C .13D .147.(3分)下列计算正确的是( )A .3362a a a +=B .236a a a ⨯=C .325()a a =D .32a a a ÷=8.(3分)下列乘法运算中,能用平方差公式的是( )A .()()b a a b ++B .()()x y x y -++C .(1)(1)x x --D .()()m n m n +--9.(3分)已知三角形三边的长度分别是6cm ,10cm 和xcm ,若x 是偶数,则x 可能等于( )A .8cmB .16cmC .5cmD .2cm10.(3分)如图,以AOB ∠的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D ,再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在AOB ∠内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是( )A .射线OE 是AOB ∠的平分线B .COD ∆是等腰三角形C .O 、E 两点关于CD 所在直线对称D .C 、D 两点关于OE 所在直线对称11.(3分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y (升)与浆洗一遍的时间x (分)之间函数关系的图象大致为( )A .B .C .D .12.(3分)如图,锐角ABC ∆中,D 、E 分别是AB 、AC 边上的点,ADC ADC ∆≅∆',AEB AEB ∆≅∆,且////C D E B B C '',BE 、CD 交于点F ,若BAC α∠=,BFC β∠=,则( )A .2180αβ+=︒B .2145βα-=︒C .135αβ+=︒D .60βα-=︒二、填空题:(本题共4小题,每小题3分,共12分)13.(3分)如图所示,12//l l ,160∠=︒,则2∠= ︒.14.(3分)等腰三角形的一个外角是100︒,则这个等腰三角形的底角为 .15.(3分)若25x =,23y =,则22x y += .16.(3分)已知动点P 以2cm 的速度沿图1所示的边框从B C D E F A →→→→→的路径运动,记ABP ∆的面积为2()y cm ,y 与运动时间()t s 的关系如图2所示,若6AB cm =,则m = .三、解答题:(本题共7题,其中,笫17题10分,第18题7分,第19题6分,第20题6分、第21题7分,第22题7分,第23题9分,共52分)17.(10分)(1)计算:20201921(3)( 3.14)(1)()3π--+-⨯--. (2)计算:2223(2)(2)ab a b a ab ÷-+-.18.(7分)先化简,再求值:2[(2)(2)(2)]x y x y x y y --+-÷,其中1x =,2y =.19.(6分)如图所示,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.(1)作△111A B C ,使得△111A B C 与ABC ∆关于直线l 对称;(2)求△111A B C 得面积(直接写出结果).20.(6分)甲口袋中放有3个红球和5个白球,乙口袋中放有7个红球和9个白球,所有球除颜色外都相同.充分搅匀两个口袋,分别从两个口袋中任意摸出一个球,设从甲中摸出红球的概率是P 甲(红),从乙中摸出红球的概率是P 乙(红)(1)(3分)求P 甲(红)与P 乙(红)的值,并比较它们的大小.(2)(3分)将甲、乙两个口袋的球都倒入丙口袋,充分搅匀后,设从丙中任意摸出一球是红球的概率为P 丙(红).小明认为:P 丙(红)P =甲(红)P +乙(红).他的想法正确吗?请说明理由..21.(7分)把下面的说理过程补充完整:已知:如图,//=线段AB和线段DE平行吗?请说明理由.BC EF,BC EF=,AF DC解://AB DE理由:=(已知)AF DC∴+=+AF FC DC即AC DF=//BC EF∴∠=∠BCA EFD又BC EF=ABC DEF∴∆≅∆∴∠=∠.A D∴.//AB DE22.(7分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值.(1)上表所反映的变化过程中的两个变量,是自变量,是因变量;(2)直接写y与x的关系式;(3)当弹簧长度为130cm(在弹簧承受范围内)时,求所挂重物的质量.23.(9分)已知:ABC∆为等边三角形,点E为射线AC上一点,点D为射线CB上一点,=.AD DE(1)如图1,当E在AC的延长线上且CE CD∆的中线吗?请说明理由;=时,AD是ABC(2)如图2,当E在AC的延长线上时,AB BD+等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE 的数量关系.2018-2019学年广东省深圳市福田区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(3分)下列交通标志图案不是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选:C .2.(3分)已知60a =︒,则α的余角等于( )A .20︒B .30︒C .100︒D .120︒【解答】解:α的余角等于:906030︒-︒=︒.故选:B .3.(3分)非洲猪瘟病毒的直径达0.0000002,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学记数法表示为( )A .7210-⨯B .6210-⨯C .80.210-⨯D .7210-⨯【解答】解:70.0000002210-=⨯.故选:A .4.(3分)如图,P 在线段AB 的垂直平分线l 上,已知5PA =,3AC =,4PC =,则线段PB 的长度是( )A.6B.5C.4D.3【解答】解:P在线段AB的垂直平分线l上,5PA=,5PB PA∴==,故选:B.5.(3分)下列是随机事件的是()A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B.平行于同一条直线的两条直线平行C.掷一枚图钉,落地后图钉针尖朝上D.掷一枚质地均匀的骰子,掷出的点数是7【解答】解:A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,属于不可能事件;B.平行于同一条直线的两条直线平行,属于必然事件;C.掷一枚图钉,落地后图钉针尖朝上,属于随机事件;D.掷一枚质地均匀的骰子,掷出的点数是7,属于不可能事件;故选:C.6.(3分)如图,转动质量均匀的转盘,当转盘停止时,指针落在白色区域的概率是()A.34B.12C.13D.14【解答】解:当转盘停止时,指针落在白色区域的概率是2703 3604=,故选:A.7.(3分)下列计算正确的是( )A .3362a a a +=B .236a a a ⨯=C .325()a a =D .32a a a ÷=【解答】解:A 、3332a a a +=,故此选项错误;B 、235a a a ⨯=,故此选项错误;C 、326()a a =,故此选项错误;D 、32a a a ÷=,正确.故选:D .8.(3分)下列乘法运算中,能用平方差公式的是( )A .()()b a a b ++B .()()x y x y -++C .(1)(1)x x --D .()()m n m n +--【解答】解:A 、不能用平方差公式,故本选项错误;B 、能用平方差公式,22()()()()x y x y y x y x y x -++=+-=-,故本选项正确;C 、不能用平方差公式,故本选项错误;D 、不能用平方差公式,故本选项错误;故选:B .9.(3分)已知三角形三边的长度分别是6cm ,10cm 和xcm ,若x 是偶数,则x 可能等于( )A .8cmB .16cmC .5cmD .2cm【解答】解:根据三角形的三边关系定理得:106106x -<<+,解得:416x <<, x 是偶数,x ∴可以为6、8、10、12、14,所以只有选项A 符合,选项B 、C 、D 都不符合,故选:A .10.(3分)如图,以AOB ∠的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D ,再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在AOB ∠内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是( )A .射线OE 是AOB ∠的平分线B .COD ∆是等腰三角形C .O 、E 两点关于CD 所在直线对称D .C 、D 两点关于OE 所在直线对称【解答】解:A 、连接CE 、DE ,根据作图得到OC OD =、CE DE =.在EOC ∆与EOD ∆中,OC OD CE DE OE OE =⎧⎪=⎨⎪=⎩,()EOC EOD SSS ∴∆≅∆,AOE BOE ∴∠=∠,即射线OE 是AOB ∠的平分线,正确,不符合题意;B 、根据作图得到OC OD =,COD ∴∆是等腰三角形,正确,不符合题意;C 、根据作图不能得出CD 平分OE ,CD ∴不是OE 的平分线,O ∴、E 两点关于CD 所在直线不对称,错误,符合题意;D 、根据作图得到OC OD =, 又射线OE 平分AOB ∠,OE ∴是CD 的垂直平分线,C ∴、D 两点关于OE 所在直线对称,正确,不符合题意;故选:C .11.(3分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y (升)与浆洗一遍的时间x (分)之间函数关系的图象大致为( )A .B .C .D .【解答】解:每浆洗一遍,注水阶段,洗衣机内的水量从0开始逐渐增多, 清洗阶段,洗衣机内的水量不变且保持一段时间,排水阶段,洗衣机内的水量开始减少,直至排空为0,纵观各选项,只有D 选项图象符合.故选:D .12.(3分)如图,锐角ABC ∆中,D 、E 分别是AB 、AC 边上的点,ADC ADC ∆≅∆',AEB AEB ∆≅∆,且////C D E B B C '',BE 、CD 交于点F ,若BAC α∠=,BFC β∠=,则( )A .2180αβ+=︒B .2145βα-=︒C .135αβ+=︒D .60βα-=︒【解答】解:延长C D '交AC 于M ,如图,ADC ADC ∆≅∆',AEB AEB ∆≅∆',C ACD ∴∠'=∠,C AD CAD B AE α∠'=∠=∠'=,2C MC C C AM C α∴∠'=∠'+∠'=∠'+,//C D B E '',AEB C MC ∴∠=∠',180180AEB B B AE B α∠'=︒-∠'-∠'=︒-∠'-,2180C B αα∴∠'+=︒-∠'-,1803C B α∴∠'+∠'=︒-,18031802BFC BDF DBF DAC B ACD B C B βααααα=∠=∠+∠=∠+∠'=+∠+∠'=+∠'+∠'=+︒-=︒-,即:2180αβ+=︒.故选:A .二、填空题:(本题共4小题,每小题3分,共12分)13.(3分)如图所示,12//l l ,160∠=︒,则2∠= 120 ︒.【解答】解:12//l l ,3160∴∠=∠=︒,21803120∴∠=︒-∠=︒.故答案为:120︒.14.(3分)等腰三角形的一个外角是100︒,则这个等腰三角形的底角为 50︒或80︒ .【解答】解:①若100︒的外角是此等腰三角形的顶角的邻角,则此顶角为:18010080︒-︒=︒, 则其底角为:18080502︒-︒=︒; ②若100︒的外角是此等腰三角形的底角的邻角,则此底角为:18010080︒-︒=︒;故这个等腰三角形的底角为:50︒或80︒.故答案为:50︒或80︒.15.(3分)若25x =,23y =,则22x y += 75 .【解答】解:25x =,23y =,2222(2)25375x y x y +∴=⨯=⨯=.故答案为:75.16.(3分)已知动点P 以2cm 的速度沿图1所示的边框从B C D E F A →→→→→的路径运动,记ABP ∆的面积为2()y cm ,y 与运动时间()t s 的关系如图2所示,若6AB cm =,则m = 14 .【解答】解:由图得,点P 在BC 上移动了3s ,故236()BC cm =⨯=点P 在CD 上移动了2s ,故224()CD cm =⨯=点P 在DE 上移动了2s ,故224()DE cm =⨯=由642EF AB CD cm =-=-=可得,点P 在EF 上移动了1()s由6612AF BC DE cm =+=+=,可得点P 在FA 上移动了6()sm 为点P 走完全程的时间:71614()s ++=.故14m =.故答案为:14三、解答题:(本题共7题,其中,笫17题10分,第18题7分,第19题6分,第20题6分、第21题7分,第22题7分,第23题9分,共52分)17.(10分)(1)计算:20201921(3)( 3.14)(1)()3π--+-⨯--. (2)计算:2223(2)(2)ab a b a ab ÷-+-.【解答】解:(1)原式91(1)91=+⨯--=-;(2)原式22222234a b a b a b =-+=.18.(7分)先化简,再求值:2[(2)(2)(2)]x y x y x y y --+-÷,其中1x =,2y =.【解答】解:2[(2)(2)(2)]x y x y x y y --+-÷2222[444]x xy y x y y =-+-+÷2[42]xy y y =-+÷42x y =-+,当1x =,2y =时,原式440=-+=.19.(6分)如图所示,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.(1)作△111A B C ,使得△111A B C 与ABC ∆关于直线l 对称;(2)求△111A B C 得面积(直接写出结果).【解答】解:(1)如图所示:(2)△111A B C 得面积:11134231224123144222⨯-⨯⨯-⨯⨯-⨯⨯=---=.20.(6分)甲口袋中放有3个红球和5个白球,乙口袋中放有7个红球和9个白球,所有球除颜色外都相同.充分搅匀两个口袋,分别从两个口袋中任意摸出一个球,设从甲中摸出红球的概率是P甲(红),从乙中摸出红球的概率是P乙(红)(1)(3分)求P甲(红)与P乙(红)的值,并比较它们的大小.(2)(3分)将甲、乙两个口袋的球都倒入丙口袋,充分搅匀后,设从丙中任意摸出一球是红球的概率为P丙(红).小明认为:P丙(红)P=甲(红)P+乙(红).他的想法正确吗?请说明理由..【解答】解:(1)P甲(红3)8=,P乙(红7)16=,所以P甲(红)P<乙(红);(2)他的想法不正确.理由如下:P 丙(红375)81612+==+,而P甲(红)P+乙(红3713)81616=+=,所以P丙(红)P<甲(红)P+乙(红).21.(7分)把下面的说理过程补充完整:已知:如图,//BC EF,BC EF=,AF DC=线段AB和线段DE平行吗?请说明理由.解://AB DE理由:AF DC=(已知)AF FC DC∴+=+FC即AC DF=BC EF//∴∠=∠BCA EFD又BC EF=∴∆≅∆ABC DEF∴∠=∠.A DAB DE∴.//【解答】解://AB DE理由:=(已知)AF DC∴+=+.AF FC DC FC∴=.AC DFBC EF已知,//∴∠=∠(两直线平行,内错角相等).BCA EFD=(已知).BC EFSAS∴∆≅∆()ABC DEF∴∠=∠(两三角形全等则它们的对应角相等).A DAB DE∴(内错角相等,两直线平行).//故答案为FC;已知,两直线平行,内错角相等;已知;SAS;两三角形全等则它们的对应角相等;内错角相等,两直线平行.22.(7分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值.(1)上表所反映的变化过程中的两个变量,所挂物体质量是自变量,是因变量;(2)直接写y与x的关系式;(3)当弹簧长度为130cm(在弹簧承受范围内)时,求所挂重物的质量.【解答】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;故答案为:所挂物体质量,弹簧长度;(2)由表格可得:当所挂物体重量为1千克时,弹簧长32厘米;当不挂重物时,弹簧长30厘米,则y与x的关系式为:230=+;y x(3)当弹簧长度为130cm(在弹簧承受范围内)时,=+,130230x解得50x=,答:所挂重物的质量为50kg.23.(9分)已知:ABC∆为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD DE=.(1)如图1,当E在AC的延长线上且CE CD=时,AD是ABC∆的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB BD+等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE 的数量关系.【解答】(1)解:如图1,结论:AD是ABC∆的中线.理由如下:∆是等边三角形,ABC∠=∠=∠=︒,BAC B ACBAB AC∴=,60=,CD CE∴∠=∠,CDE E∠=∠+∠=︒,ACD CDE E60E∴∠=︒,30=,DA DE∴∠=∠=︒,30DAC E∠=︒,BAC60=,∴∠=∠,AB ACDAB CAD∴=,BD DC∴是ABCAD∆的中线.(2)结论:AB BD AE+=,理由如下:如图2,在AB上取BH BD=,连接DH,BH BD=,60∠=︒,BBDH∴∆为等边三角形,AB BH BC BD=,-=-即AH DC=,∴∠=︒,BD DHBHD60=,AD DE∴∠=∠,E CADBAC CAD ACB E ∴∠-∠=∠-∠即BAD CDE ∠=∠, 60BHD ∠=︒,60ACB ∠=︒,180180BHD ACB ∴︒-∠=︒-∠即AHD DCE ∠=∠, BAD CDE ∠=∠,AD DE =,AHD DCE ∠=∠, 在AHD ∆和DCE ∆,BAD CDE AHD DCE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AHD DCE AAS ∴∆≅∆,DH CE ∴=,BD CE ∴=,AE AC CE AB BD ∴=+=+.(3)AB BD AE =+,如图3,在AB 上取AF AE =,连接DF ,ABC ∆为等边三角形,60BAC ABC ∴∠=∠=︒,AFE ∴∆是等边三角形,60FAE FEA AFE ∴∠=∠=∠=︒,//EF BC ∴,EDB DEF ∴∠=∠,AD DE =,DEA DAE ∴∠=∠,DEF DAF ∴∠=∠,DF DF =,AF EF =,在AFD ∆和EFD ∆中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩,()AFD EFD SSS ∴∆≅∆ADF EDF ∴∠=∠,DAF DEF ∠=∠,FDB EDF EDB ∴∠=∠+∠,DFB DAF ADF ∠=∠+∠, EDB DEF ∠=∠,FDB DFB ∴∠=∠,DB BF ∴=,AB AF FB =+,AB BD AE ∴=+.。

2018-2019学年北师大版广东省深圳市南山外国语学校七年级第二学期期中数学试卷 含解析

2018-2019学年北师大版广东省深圳市南山外国语学校七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题(本题共12小题)1.下列图形中1∠与2∠互为对顶角的是( )A .B .C .D .2.计算:2a a g 的结果是( ) A .aB .2aC .3aD .22a3.用科学记数法表示:0.0000108是( ) A .51.0810-⨯B .61.0810-⨯C .71.0810-⨯D .610.810-⨯4.弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 之间有下面的关系: /x kg 0 1 2 3 4 5 /y cm1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm5.如图, 把一块含有45︒的直角三角形的两个顶点放在直尺的对边上 . 如果120∠=︒,那么2∠的度数是( )A .15︒B .20︒C .25︒D .30︒6.若221x mx -+是完全平方式,则m 的值为( )A.2B.1C.1±D.1 2±7.下列说法:①同位角相等;②同一平面内,不相交的两条直线叫做平行线;③与同一条直线垂直的两条直线也互相垂直;④若两个角的两边互相平行,则这两个角一定相等;⑤一个角的补角一定大于这个角,其中正确的有()A.1个B.2个C.3个D.4个8.四个学生一起做乘法(3)()x x a++,其中0a>,最后得出下列四个结果,其中正确的结果是()A.2215x x--B.2815x x++C.2215x x+-D.2815x x-+9.为了应用平方差公式计算()()a b c a b c-++-,必须先适当变形,下列各变形中,正确的是()A.[()][()]a cb ac b+--+B.[()][()]a b c a b c-++-C.[()][()]b c a b c a+--+D.[()][()]a b c a b c--+-10.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得1250∠=∠=︒;小丽对纸带②沿GH折叠,发现GD与GC 重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C.纸带①、②的边线都平行D.纸带①、②的边线都不平行11.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A .B .C .D .12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .12n y n +=+C .2n y n =+D .21n y n =++二、填空题(每题3分,共12分,请把答案填在答题卡上的相应位置上,否则不得分) 13.1(2)--= .14.一个正方体的棱长为2410m ⨯,它的体积是 3m .15.如图,是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得5.52PA =米, 5.37PB =米, 5.60MA =米,那么他的跳远成绩应该为 米.16.如图,//AB CD ,OE 平分BOC ∠,OF OE ⊥,OP CD ⊥,ABO a ∠=︒.则下列结论:①1(180)2BOE a ∠=-︒;②OF 平分BOD ∠;③POE BOF ∠=∠;④2POB DOF ∠=∠.其中正确结论 (填编号).三、解答题(共7小题,满分0分) 17.计算: (1)212()4x y x ÷-(2)642[(5)(5)]mn mn -÷-(3)2201820172019-⨯18.(1)已知2()24a b +=,2()20a b -=,则ab = ,2222a b += ;(2)先化简,再求值:22()()()2a b a b a b a +-++-,其中2(3)a -与|31|b +互为相反数. 19.按下面的方法折纸,然后回答问题:(1)1∠与AEC ∠有何关系? (2)1∠,3∠有何关系?(3)2∠是多少度的角?请说明理由.20.填空,完成下列证明过程,并在括号中注明理由.如图,已知CGD CAB ∠=∠,12∠=∠,求证:180ADF CFE ∠+∠=︒ 证明:CGD CAB ∠=∠Q //DG ∴ ( )1∴∠= ( ) 12∠=∠Q 23(∴∠=∠ ) //EF ∴ ( )180(ADF CFE ∴∠+∠=︒ )21.规定两正数a ,b 之同的一种运算,记作:(,)E a b ,如果c a b =,那么(,)E a b c =.例如328=,所以(2,8)3E =(1)填空:(3,27)E = ,11(,)216E =(2)小明在研究这和运算时发现一个现象:(3n E ,4)(3n E =,4)小明给出了如下的证明:设(3n E ,4)n x =,即(3)4n x n =,即(3n ,4)4n n = 所以34x =,(3,4)E x =,所以(3n E ,4)(3n E =,4)请你尝试运用这种方法说明下面这个等式成立:(3E ,4)(3E +,5)(3E =,20) 22.已知//AB CD ,线段EF 分别与AB 、CD 相交于点E 、F . (1)如图①,当20A ∠=︒,70APC ∠=︒时,求C ∠的度数;(2)如图②,当点P 在线段EF 上运动时(不包括E 、F 两点),A ∠、APC ∠与C ∠之间有怎样的数量关系?试证明你的结论;(3)如图③,当点P 在线段EF 的延长线上运动时,(2)中的结论还成立吗?如果成立,请说明理由;如果不成立,试探究它们之间新的数量关系并证明.23.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米>与注水时间x (分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 槽中水的深度与注水时间之间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系(以上两空选增“甲”或“乙” ),点B 的纵坐标表示的实际意义是 ;(2)观察图2写出DE 段的函数表达式:y = ;AB 段的函数表达式:y = ;并求出注水多长时间时甲、乙两个水槽中水的深度相同;(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.参考答案一、选择题(本题共12小题)1.下列图形中1∠与2∠互为对顶角的是( )A .B .C .D .【解答】解:A 、B 、D 中1∠与2∠不是对顶角,C 中1∠与2∠互为对顶角. 故选:C .2.计算:2a a g 的结果是( ) A .aB .2aC .3aD .22a【解答】解:23a a a =g . 故选:C .3.用科学记数法表示:0.0000108是( ) A .51.0810-⨯B .61.0810-⨯C .71.0810-⨯D .610.810-⨯【解答】解:50.0000108 1.0810-=⨯, 故选:A .4.弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 之间有下面的关系: /x kg 0 1 2 3 4 5 /y cm1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,100.5y x=+,则当7x=时,13.5y=,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.5.如图,把一块含有45︒的直角三角形的两个顶点放在直尺的对边上.如果120∠=︒,那么2∠的度数是()A .15︒B .20︒C .25︒D .30︒【解答】解:Q直尺的两边平行,120∠=︒,3120∴∠=∠=︒,2452025∴∠=︒-︒=︒.故选:C.6.若221x mx-+是完全平方式,则m的值为()A.2B.1C.1±D.1 2±【解答】解:2222121x mx x mx-+=-+Q,221mx x∴-=±g g,解得1m=±.故选:C.7.下列说法:①同位角相等;②同一平面内,不相交的两条直线叫做平行线;③与同一条直线垂直的两条直线也互相垂直;④若两个角的两边互相平行,则这两个角一定相等;⑤一个角的补角一定大于这个角,其中正确的有()A.1个B.2个C.3个D.4个【解答】解:①同位角不一定相等,故说法①错误;②同一平面内,不相交的两条直线叫做平行线,故说法②正确; ③同一平面内,与同一条直线垂直的两条直线互相平行,故说法③错误; ④若两个角的两边互相平行,则这两个角一定相等或互补,故说法④错误; ⑤一个角的补角不一定大于这个角,故说法⑤错误; 故选:A .8.四个学生一起做乘法(3)()x x a ++,其中0a >,最后得出下列四个结果,其中正确的结果是( ) A .2215x x --B .2815x x ++C .2215x x +-D .2815x x -+【解答】解:2(3)()(3)3x x a x a x a ++=+++, 0a >Q ,22(3)()(3)3815x x a x a x a x x ∴++=+++=++,故选:B .9.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( )A .[()][()]a c b a c b +--+B .[()][()]a b c a b c -++-C .[()][()]b c a b c a +--+D .[()][()]a b c a b c --+-【解答】解:()()[()][()]a b c a b c a b c a b c -++-=--+-. 故选:D .10.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB 折叠,量得1250∠=∠=︒;小丽对纸带②沿GH 折叠,发现GD 与GC 重合,HF 与HE 重合.则下列判断正确的是( )A .纸带①的边线平行,纸带②的边线不平行B .纸带①的边线不平行,纸带②的边线平行C .纸带①、②的边线都平行D .纸带①、②的边线都不平行【解答】解:如图①所示:1250Q,∠=∠=︒∴∠=∠=︒,3250∴∠=∠=︒-︒-︒=︒,45180505080∴∠≠∠,24∴纸带①的边线不平行;如图②所示:GDQ与GC重合,HF与HE重合,EHG FHG∴∠=∠=︒,90∠=∠=︒,CGH DGH90CGH EHG∴∠+∠=︒,180∴纸带②的边线平行.故选:B.11.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.【解答】解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA 这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A .21y n =+B .12n y n +=+C .2n y n =+D .21n y n =++【解答】解:根据题意得: 第1个图:12y =+, 第2个图:22422y =+=+, 第3个图:33832y =+=+, ⋯以此类推第n 个图:2n y n =+, 故选:C .二、填空题(每题3分,共12分,请把答案填在答题卡上的相应位置上,否则不得分) 13.1(2)--= 12- .【解答】解:原式12=-;故答案为:12-.14.一个正方体的棱长为2410m ⨯,它的体积是 76.410⨯ 3m . 【解答】解:Q 一个正方体的棱长为2410m ⨯, ∴它的体积是:22273410410410 6.410()m ⨯⨯⨯⨯⨯=⨯.故答案为:76.410⨯.15.如图,是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得5.52PA =米, 5.37PB =米, 5.60MA =米,那么他的跳远成绩应该为 5.37 米.【解答】解:根据跳远规则,李晓松的跳远成绩为点P 到踏板的距离,Q 直线外一点到直线的垂线段的长度,叫做点到直线的距离, ∴他的跳远成绩应该为线段PB 的长度,5.37PB =Q 米,∴他的跳远成绩应该为5.37米.故答案为:5.37.16.如图,//AB CD ,OE 平分BOC ∠,OF OE ⊥,OP CD ⊥,ABO a ∠=︒.则下列结论:①1(180)2BOE a ∠=-︒;②OF 平分BOD ∠;③POE BOF ∠=∠;④2POB DOF ∠=∠.其中正确结论 ①②③ (填编号).【解答】解:①//AB CD Q , BOD ABO a ∴∠=∠=︒,180(180)COB a a ∴∠=︒-︒=-︒,又OE Q 平分BOC ∠, 11(180)22BOE COB a ∴∠=∠=-︒.故①正确; ②OF OE ⊥Q , 90EOF ∴∠=︒,1190(180)22BOF a a ∴∠=︒--︒=︒,12BOF BOD ∴∠=∠, OF ∴平分BOD ∠所以②正确;③OP CD ⊥Q , 90COP ∴∠=︒,1902POE EOC a ∴∠=︒-∠=︒, POE BOF ∴∠=∠; 所以③正确; 90POB a ∴∠=︒-︒,而12DOF a ∠=︒,所以④错误.三、解答题(共7小题,满分0分) 17.计算: (1)212()4x y x ÷-(2)642[(5)(5)]mn mn -÷- (3)2201820172019-⨯【解答】解:(1)原式242()8x y xy x=-=-g ;(2)原式2244[(5)]625mn m n =-=; (3)原式22018(20181)(20181)=--⨯+ 1=18.(1)已知2()24a b +=,2()20a b -=,则ab = 1 ,2222a b += ;(2)先化简,再求值:22()()()2a b a b a b a +-++-,其中2(3)a -与|31|b +互为相反数. 【解答】解:(1)2()24a b +=Q ,2()20a b -=, 22224a ab b ∴++=①, 22220a ab b -+=②,①-②得:44ab =, 1ab =,①+②得:222244a b +=, 故答案为:1,44;(2)原式2222222a b a ab b a =-+++-, 2ab =,2(3)a -Q 与|31|b +互为相反数,30a ∴-=,310b +=,3a =,13b =-,∴原式123()23=⨯⨯-=-.19.按下面的方法折纸,然后回答问题:(1)1∠与AEC ∠有何关系? (2)1∠,3∠有何关系?(3)2∠是多少度的角?请说明理由.【解答】解:(1)由图可知,1180AEC ∠+∠=︒, 1∴∠与AEC ∠互补;(2)由翻折的性质可得113180902∠+∠=⨯︒=︒, 1∴∠与3∠互余;(3)2180(13)1809090∠=︒-∠+∠=︒-︒=︒. 20.填空,完成下列证明过程,并在括号中注明理由.如图,已知CGD CAB ∠=∠,12∠=∠,求证:180ADF CFE ∠+∠=︒ 证明:CGD CAB ∠=∠Q //DG ∴ AB ( )1∴∠= ( ) 12∠=∠Q 23(∴∠=∠ ) //EF ∴ ( )180(ADF CFE ∴∠+∠=︒ )【解答】证明:CGD CAB ∠=∠Q (已知), //DG AB ∴(同位角相等,两直线平行), 13∴∠=∠(两直线平行,内错角相等), 又12∠=∠Q (已知), 23∴∠=∠(等量代换), //EF AD ∴(内同位角相等,两直线平行), 180ADF CFE ∴∠+∠=︒(两直线平行,同旁内角互补), 故答案为:AB ;同位角相等,两直线平行;3∠;两直线平行,内错角相等;等量代换;AD ;内同位角相等,两直线平行;两直线平行,同旁内角互补.21.规定两正数a ,b 之同的一种运算,记作:(,)E a b ,如果c a b =,那么(,)E a b c =.例如328=,所以(2,8)3E =(1)填空:(3,27)E = 3 ,11(,)216E =(2)小明在研究这和运算时发现一个现象:(3n E ,4)(3n E =,4)小明给出了如下的证明: 设(3n E ,4)n x =,即(3)4n x n =,即(3n ,4)4n n = 所以34x =,(3,4)E x =,所以(3n E ,4)(3n E =,4)请你尝试运用这种方法说明下面这个等式成立:(3E ,4)(3E +,5)(3E =,20) 【解答】解:(1)3327=Q , (3,27)3E ∴=; 411()216E =Q ,11(,)4216E ∴=;故答案为:3;4;(2)设(3,4)E x =,(3,5)E y =, 则34x =,35y =, 33320x y x y +∴==g , (3,20)E x y ∴=+,(3E ∴,4)(3E +,5)(3E =,20).22.已知//AB CD ,线段EF 分别与AB 、CD 相交于点E 、F . (1)如图①,当20A ∠=︒,70APC ∠=︒时,求C ∠的度数;(2)如图②,当点P 在线段EF 上运动时(不包括E 、F 两点),A ∠、APC ∠与C ∠之间有怎样的数量关系?试证明你的结论;(3)如图③,当点P 在线段EF 的延长线上运动时,(2)中的结论还成立吗?如果成立,请说明理由;如果不成立,试探究它们之间新的数量关系并证明.【解答】(1)解:过P 作//PO AB , //AB CD Q , ////AB PO CD ∴, 20A ∠=︒Q ,20APO A ∴∠=∠=︒,C CPO ∠=∠, 70APC ∠=︒Q702050C CPO APC APO ∴∠=∠=∠-∠=︒-︒=︒;(2)A C APC ∠+∠=∠, 证明:过P 作//PO AB ,//Q,AB CD∴,AB PO CD////∠=∠,∴∠=∠,C CPOAPO A∴∠=∠+∠=∠+∠;APC APO CPO A C(3)解:不成立,关系式是:A C APC∠-∠=∠,理由是:过P作//PO AB,Q,AB CD//∴,AB PO CD////∠=∠,∴∠=∠,C CPOAPO A∴∠-∠=∠-∠=∠,A C APO CPO APC即A C APC∠-∠=∠.23.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米>与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示乙槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选增“甲”或“乙”),点B的纵坐标表示的实际意义是;(2)观察图2写出DE段的函数表达式:y=;AB段的函数表达式:y=;并求出注水多长时间时甲、乙两个水槽中水的深度相同;(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.【解答】解:(1)图2中折线ABC表示乙槽中水的深度与注水时间之间的关系,线段DE表示甲槽中水的深度与注水时间之间的关系(以上两空选增“甲”或“乙” ),点B 的纵坐标表示的实际意义是乙槽中铁块的高度为14cm . 故答案为:乙;甲;乙槽中铁块的高度为14cm ;(2)设线段AB 、DE 的解析式分别为:111y k x b =+,222y k x b =+, AB Q 经过点(0,2)和(4,14),DE 经过(0,12)和(6,0) ∴1112414b k b =⎧⎨+=⎩,解得1132k b =⎧⎨=⎩, 2221260b k b =⎧⎨+=⎩,解得22212k b =-⎧⎨=⎩, DE ∴解析式为32y x =+,AB 解析式为212y x =-+,令32212x x +=-+, 解得2x =,∴当2分钟时两个水槽水面一样高.故答案为:212x -+;32x +;(3)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm ,即1分钟上升3cm , 当水面没过铁块时,2分钟上升了5cm ,即1分钟上升2.5cm , 设铁块的底面积为2acm ,则乙水槽中不放铁块的体积分别为:32.536cm ⨯, 放了铁块的体积为33(36)a cm ⨯-, 13(36)1 2.536a ∴⨯⨯-=⨯⨯,解得6a =,∴铁块的体积为:361484()cm ⨯=.。

2018-2019学年北师大版广东省深圳实验学校中学部七年级第二学期期中数学试卷 含解析

2018-2019学年北师大版广东省深圳实验学校中学部七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题1.下列计算正确的是( ) A .326a a a = B .236(3)27a a -=- C .222()a b a b -=-D .2235a a a +=2.如图,小明书上的三角形被墨迹追挡了一部分,测得两个角的度数为32︒、74︒,于是他很快判断这个三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .钝角三角形3.如图,50C ∠=︒,30B ∠=︒,则CAD ∠的度数是( )A .80︒B .90︒C .100︒D .110︒4.若1a b -=,2213a b +=,则ab 的值为( ) A .6B .7C .8D .95.如图,下列条件:①12∠=∠;②45∠=∠;③25180∠+∠=︒;④13∠=∠;⑤612∠=∠+∠;其中能判断直线12//l l 的有( )A .5个B .4个C .3个D .2个6.如图,将一副三角板按如图方式叠放,则角α等于( )A .165︒B .135︒C .105︒D .75︒7.如图,//AB CD ,AD 与BC 相交于点O ,若50A ∠=︒,100COD ∠=︒,则C ∠等于( )A .50︒B .100︒C .30︒D .150︒8.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中射线1l 和2l 分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系. 下列说法:①乙晚出发1小时; ②乙出发3小时后追上甲;③甲的速度是4千米/小时,乙的速度是6千米/小时; ④乙先到达B 地.其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图,120A ∠=︒,且123∠=∠=∠和456∠=∠=∠,则(BDC ∠= )A .120︒B .60︒C .140︒D .无法确定10.如图,三角形纸片ABC 中,65A ∠=︒,75B ∠=︒,将C ∠沿DE 对折,使点C 落在ABC∆外的点C '处,若120∠=︒,则2∠的度数为( )A .80︒B .90︒C .100︒D .110︒二、填空题;(每题2分,10小题,共20分)11.如图是某地一天中气温随时间变化的图象,这一天的温差为 .12.某病毒的直径为0.00000016m ,用科学记数法表示为 . 13.22()A x y x y +=-g ,则A = .14.已知整数a ,b ,c 是ABC ∆的三条边长,若1a =,5b =,则奇数c = . 15.如图所示,D 是BC 的中点,E 是AC 的中点,若1ADE S ∆=,则ABC S ∆= .16.如图,已知AE 是ABC ∆的边BC 上的中线,若8AB cm =,ACE ∆的周长比AEB ∆的周长多2cm ,则AC = cm .17.如图,已知//AE BD ,1130∠=︒,228∠=︒,则C ∠的度数为 .18.如图所示,//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,35BFD ∠=︒,那么BED ∠的度数为 .19.如图,已知//AB CD ,BE 平分ABC ∠,DE 平分ADC ∠,70BAD ∠=︒,40BCD ∠=︒,则BED ∠的度数为 .20.如图,在ABC ∆中,40BAC ∠=︒,60ACB ∠=︒,D 为ABC ∆形外一点,DA 平分BAC ∠,且50CBD ∠=︒,求DCB ∠= .三、计算题 21.(16分)计算:(1)20182011()(3.14)2π-----(2)322(2)()2ab a b ab a b a -÷++g (3)2(23)(2)(2)x y x y x y +-+- (4)22(2)(2)(2)3x y x y x y y +++--++22.先化简,再求值:2(3)()()a a b a b a a b -++--,其中0(3)a π=-,12b =-. 四、解答题23.先化简,再求值已知代数式2(3)(24)ax x x b -+--化简后,不含有2x 项和常数项. (1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.24.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题: (1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分? (3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?25.补全解答过程:已知:如图,直线//AB CD ,直线EF 与直线AB ,CD 分别交于点G ,H ;GM 平分FGB ∠,360∠=︒.求1∠的度数.解:EF Q 与CD 交于点H ,(已知)34∴∠=∠.( )360∠=︒Q ,(已知) 460∴∠=︒.( )//AB CD Q ,EF 与AB ,CD 交于点G ,H ,(已知) 4180FGB ∴∠+∠=︒.( )FGB ∴∠= .GM Q 平分FGB ∠,(已知) 1∴∠= ︒.(角平分线的定义)26.如图,在Rt ABC ∆中,90ACB ∠=︒,40A ∠=︒,ABC ∆的外角CBD ∠的平分线BE 交AC 的延长线于点E ,点F 为AC 延长线上的一点,连接DF . (1)求CBE ∠的度数;(2)若25F ∠=︒,求证://BE DF .27.如图,在ABC ∆中,AD BC ⊥,AE 平分BAC ∠. (1)若72B ∠=︒,30C ∠=︒, 求①BAE ∠的度数; ②DAE ∠的度数;(2)探究:如果只知道42B C ∠=∠+︒,也能求出DAE ∠的度数吗?若能,请你写出求解过程;若不能,请说明理由.28.(1)如图1,AC 平分DAB ∠,12∠=∠,试说明AB 与CD 的位置关系,并予以证明; (2)如图2,//AB CD ,AB 的下方两点E ,F 满足:BF 平分ABE ∠,DF 平分CDE ∠,若20DFB ∠=︒,70CDE ∠=︒,求ABE ∠的度数(3)在前面的条件下,若P是BE上一点;G是CD上任一点,PQ平分BPGPQ GN,∠,//∠的度数不变.可∠-∠的值不变;②MGN∠,下列结论:①DGP MGNGM平分DGP以证明,只有一个是正确的,请你作出正确的选择并求值.参考答案一、选择题1.下列计算正确的是( ) A .326a a a = B .236(3)27a a -=- C .222()a b a b -=-D .2235a a a +=【分析】根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式以及合并同类项的法则判断即可.解:A 、325a a a =,错误; B 、236(3)27a a -=-,正确; C 、222()2a b a ab b -=-+,错误;D 、235a a a +=,错误;故选:B .2.如图,小明书上的三角形被墨迹追挡了一部分,测得两个角的度数为32︒、74︒,于是他很快判断这个三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .钝角三角形【分析】根据三角形的两个角的度数为32︒、74︒,即可得到第三个内角为74︒,进而得出该三角形为等腰三角形.解:Q 三角形的两个角的度数为32︒、74︒, ∴第三个内角为74︒, ∴该三角形两个角相等, ∴该三角形为等腰三角形,故选:B .3.如图,50C ∠=︒,30B ∠=︒,则CAD ∠的度数是( )A .80︒B .90︒C .100︒D .110︒【分析】根据三角形的外角的性质即可解决问题. 解:CAD B C ∠=∠+∠Q ,50C ∠=︒,30B ∠=︒, 80CAD ∴∠=︒,故选:A .4.若1a b -=,2213a b +=,则ab 的值为( ) A .6B .7C .8D .9【分析】将1a b -=两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab 的值.解:将1a b -=两边平方得:222()21a b a b ab -=+-=, 把2213a b +=代入得:1321ab -=, 解得:6ab =. 故选:A .5.如图,下列条件:①12∠=∠;②45∠=∠;③25180∠+∠=︒;④13∠=∠;⑤612∠=∠+∠;其中能判断直线12//l l 的有( )A .5个B .4个C .3个D .2个【分析】根据平行线的判定定理,对各小题进行逐一判断即可. 解:①12∠=∠Q 不能得到12//l l ,故本条件不合题意; ②45∠=∠Q ,12//l l ∴,故本条件符合题意;③25180∠+∠=︒Q 不能得到12//l l ,故本条件不合题意;④13∠=∠Q ,12//l l ∴,故本条件符合题意;⑤62312∠=∠+∠=∠+∠Q ,13∴∠=∠,12//l l ∴,故本条件符合题意. 故选:C .6.如图,将一副三角板按如图方式叠放,则角α等于( )A .165︒B .135︒C .105︒D .75︒【分析】根据三角形内角和定理求出1∠,根据三角形外角的性质求出2∠,根据邻补角的概念计算即可.解:1903060∠=︒-︒=︒, 214515∴∠=∠-︒=︒, 18015165α∴∠=︒-︒=︒,故选:A .7.如图,//AB CD ,AD 与BC 相交于点O ,若50A ∠=︒,100COD ∠=︒,则C ∠等于( )A .50︒B .100︒C .30︒D .150︒【分析】利用平行线的性质以及三角形内角和定理,即可解决问题. 解://AB CD Q , 50A D ∴∠=∠=︒,1801801005030C COD D ∴∠=︒-∠-∠=︒-︒-︒=︒,故选:C .8.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中射线1l 和2l 分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系.下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时,乙的速度是6千米/小时;④乙先到达B 地.其中正确的个数是( )A .1个B .2个C .3个D .4个【分析】观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发312-=小时后追上甲,故②错误;甲的速度为:1234÷=(千米/小时),故③正确;乙的速度为:12(31)6÷-=(千米/小时),则甲到达B 地用的时间为:2045÷=(小时),乙到达B 地用的时间为:120633÷=(小时), 11134533+=<, ∴乙先到达B 地,故④正确;正确的有3个.故选:C .9.如图,120A ∠=︒,且123∠=∠=∠和456∠=∠=∠,则(BDC ∠= )A .120︒B .60︒C .140︒D .无法确定【分析】以及三角形内角和定理,即可得到18012060ABC ACB ∠+∠=︒-︒=︒,再根据123∠=∠=∠,456∠=∠=∠,即可得到DBC DCB ∠+∠的度数,最后利用三角形内角和定理可得BDC ∠的度数.解:在ABC ∆中,120A ∠=︒Q ,18012060ABC ACB ∴∠+∠=︒-︒=︒,又123∠=∠=∠Q ,456∠=∠=∠, 260403DBC DCB ∴∠+∠=⨯︒=︒, 18040140BDC ∴∠=︒-︒=︒,故选:C .10.如图,三角形纸片ABC 中,65A ∠=︒,75B ∠=︒,将C ∠沿DE 对折,使点C 落在ABC ∆外的点C '处,若120∠=︒,则2∠的度数为( )A .80︒B .90︒C .100︒D .110︒【分析】根据三角形内角和定理求出C ∠,根据折叠的性质求出C ∠',根据三角形的外角的性质计算,得到答案.解:65A ∠=︒Q ,75B ∠=︒,180657540C ∴∠=︒-︒-︒=︒,由折叠的性质可知,40C C ∠'=∠=︒,3160C ∴∠=∠+∠'=︒,23100C ∴∠=∠+∠=︒,故选:C .二、填空题;(每题2分,10小题,共20分)11.如图是某地一天中气温随时间变化的图象,这一天的温差为 20C ︒ .【分析】找到点的纵坐标的最大值、最小值即可得出答案;解:这一天的温差为15(5)20C ︒--=,故答案为:20C ︒12.某病毒的直径为0.00000016m ,用科学记数法表示为 71.610-⨯ .【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:70.00000016 1.610-=⨯.故答案为:71.610-⨯.13.22()A x y x y +=-g ,则A = x y - .【分析】先根据乘除互为逆运算列出算式,再利用整式的运算法则计算可得. 解:22()()A x y x y =-÷+[()()]()x y x y x y =+-÷+x y =-,故答案为:x y -.14.已知整数a ,b ,c 是ABC ∆的三条边长,若1a =,5b =,则奇数c = 5 .【分析】利用三角形的三边关系确定c 的范围即可解决问题.解:a Q ,b ,c 是ABC ∆的三条边长,46c ∴<<,c Q 是奇数,5c ∴=,故答案为5.15.如图所示,D 是BC 的中点,E 是AC 的中点,若1ADE S ∆=,则ABC S ∆= 4 .【分析】先根据D 是BC 的中点,E 是AC 的中点,得出ADE ∆的面积等于ABC ∆的面积的四分之一,再根据1ADE S ∆=,得到4ABC S ∆=.解:D Q 是BC 的中点,E 是AC 的中点,ADC ∴∆的面积等于ABC ∆的面积的一半,ADE ∆的面积等于ACD ∆的面积的一半, ADE ∴∆的面积等于ABC ∆的面积的四分之一,又1ADE S ∆=Q ,4ABC S ∆∴=.故答案为:4.16.如图,已知AE 是ABC ∆的边BC 上的中线,若8AB cm =,ACE ∆的周长比AEB ∆的周长多2cm ,则AC = 10 cm .【分析】依据AE 是ABC ∆的边BC 上的中线,可得CE BE =,再根据AE AE =,ACE ∆的周长比AEB ∆的周长多2cm ,即可得到AC 的长.解:AE Q 是ABC ∆的边BC 上的中线,CE BE ∴=,又AE AE =Q ,ACE ∆的周长比AEB ∆的周长多2cm ,即82AC cm -=,10AC cm ∴=,故答案为:10;17.如图,已知//AE BD ,1130∠=︒,228∠=︒,则C ∠的度数为 22︒ .【分析】由//AE BD ,可求得CBD ∠的度数,又由2CBD ∠=∠(对顶角相等),求得CDB ∠的度数,再利用三角形的内角和等于180︒,即可求得答案.解://AE BD Q ,1130∠=︒,228∠=︒,1130CBD ∴∠=∠=︒,228CDB ∠=∠=︒,1801801302822C CBD CDB ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:22︒18.如图所示,//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,35BFD ∠=︒,那么BED ∠的度数为 70︒ .【分析】此题要构造辅助线:过点E ,F 分别作//EG AB ,//FH AB .然后运用平行线的性质进行推导.解:如图所示,过点E ,F 分别作//EG AB ,//FH AB .//EG AB Q ,//FH AB ,5ABE ∴∠=∠,31∠=∠,又//AB CD Q ,//EG CD ∴,//FH CD ,6CDE ∴∠=∠,42∠=∠,123435BFD ∴∠+∠=∠+∠=∠=︒.BF Q 平分ABE ∠,DF 平分CDE ∠,21ABE ∴∠=∠,22CDE ∠=∠,5621222(12)23570BED ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒.故答案为:70︒.19.如图,已知//AB CD ,BE 平分ABC ∠,DE 平分ADC ∠,70BAD ∠=︒,40BCD ∠=︒,则BED ∠的度数为 55︒ .【分析】先根据角平分线的定义,得出12ABE CBE ABC ∠=∠=∠,12ADE CDE ADC ∠=∠=∠,再根据三角形内角和定理,推理得出2BAD BCD E ∠+∠=∠,进而求得E ∠的度数.解:BE Q 平分ABC ∠,DE 平分ADC ∠,12ABE CBE ABC ∴∠=∠=∠,12ADE CDE ADC ∠=∠=∠, ABE BAD E ADE ∠+∠=∠+∠Q ,BCD CDE E CBE ∠+∠=∠+∠,ABE BAD BCD CDE E ADE E CBE ∴∠+∠+∠+∠=∠+∠+∠+∠,2BAD BCD E ∴∠+∠=∠,70BAD ∠=︒Q ,40BCD ∠=︒,11()(7040)5522E BAD BCD ∴∠=∠+∠=︒+︒=︒. 故答案为:55︒.20.如图,在ABC ∆中,40BAC ∠=︒,60ACB ∠=︒,D 为ABC ∆形外一点,DA 平分BAC ∠,且50CBD ∠=︒,求DCB ∠= 60︒ .【分析】如图,延长AB 到P ,延长AC 到Q ,作DH AP ⊥于H ,DE AQ ⊥于E ,DF BC ⊥于F .想办法证明DE DF =,推出DC 平分QCB ∠即可解决问题.解:如图,延长AB 到P ,延长AC 到Q ,作DH AP ⊥于H ,DE AQ ⊥于E ,DF BC ⊥于F .4060100PBC BAC ACB ∠=∠+∠=︒+︒=︒Q ,50CBD ∠=︒,DBC DBH ∴∠=∠,DF BC ⊥Q ,DH BP ⊥,DF DH ∴=,又DA Q 平分PAQ ∠,DH PA ⊥,DE AQ ⊥,DE DH ∴=,DE DF ∴=,CD ∴平分QCB ∠,18060120QCB ∠=︒-︒=︒Q ,60DCB ∴∠=︒,故答案为60︒.三、计算题 21.(16分)计算:(1)20182011()(3.14)2π-----(2)322(2)()2ab a b ab a b a -÷++g(3)2(23)(2)(2)x y x y x y +-+-(4)22(2)(2)(2)3x y x y x y y +++--++【分析】(1)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(2)根据多项式除以单项式和多项式乘以单项式可以解答本题;(3)根据完全平方公式和平方差公式可以解答本题;(4)根据完全平方式和平方差公式可以解答本题.解:(1)20182011()(3.14)2π----- 141=---6=-;(2)322(2)()2ab a b ab a b a -÷++g22222b ab a ab =-++222b a =+;(3)2(23)(2)(2)x y x y x y +-+-222241294x xy y x y =++-+21210xy y =+;(4)22(2)(2)(2)3x y x y x y y +++--++222[()2][()2](44)3x y x y x xy y y =+++--+++2222()4443x y x xy y y =+----+2222224443x xy y x xy y y =++----+24xy =--.22.先化简,再求值:2(3)()()a a b a b a a b -++--,其中0(3)a π=-,12b =-. 【分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.解:原式22222232a ab a ab b a ab a b =-+++-+=+,当1a =,12b =-时,原式114=. 四、解答题 23.先化简,再求值已知代数式2(3)(24)ax x x b -+--化简后,不含有2x 项和常数项.(1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.【分析】(1)先算乘法,合并同类项,即可得出关于a 、b 的方程,求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.解:(1)2(3)(24)ax x x b -+--2224612ax ax x x b =+----2(21)(46)(12)a x a x b =-+-+--,Q 代数式2(3)(24)ax x x b -+--化简后,不含有2x 项和常数项., 210a ∴-=,120b --=,12a ∴=,12b =-;(2)12a =Q ,12b =-, 2()()()(2)b a a b a b a a b ∴---+---+2222222a b a ab b a ab =-+++--ab =1(12)2=⨯- 6=-.24.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 1500 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间. 解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,1214x 剟时,直线最陡, 故小红在1214-分钟最快,速度为15006004501412-=-米/分. (3)读图可得:小红共行驶了12006009002700++=米,共用了14分钟.25.补全解答过程:已知:如图,直线//AB CD ,直线EF 与直线AB ,CD 分别交于点G ,H ;GM 平分FGB ∠,360∠=︒.求1∠的度数.解:EF Q 与CD 交于点H ,(已知)34∴∠=∠.( 对顶角相等 )360∠=︒Q ,(已知)460∴∠=︒.( )//AB CD Q ,EF 与AB ,CD 交于点G ,H ,(已知)4180FGB ∴∠+∠=︒.( )FGB ∴∠= .GM Q 平分FGB ∠,(已知) 1∴∠= ︒.(角平分线的定义)【分析】依据对顶角相等以及平行线的性质,即可得到460∠=︒,120FGB ∠=︒,再根据角平分线的定义,即可得出160∠=︒.解:EF Q 与CD 交于点H ,(已知)34∴∠=∠.(对顶角相等)360∠=︒Q ,(已知)460∴∠=︒.(等量代换)//AB CD Q ,EF 与AB ,CD 交于点G ,H ,(已知)4180FGB ∴∠+∠=︒.(两直线平行,同旁内角互补)120FGB ∴∠=︒.GM Q 平分FGB ∠,(已知)160∴∠=︒.(角平分线的定义)故答案为:对顶角相等,等量代换,两直线平行,同旁内角互补,120︒,60.26.如图,在Rt ABC ∆中,90ACB ∠=︒,40A ∠=︒,ABC ∆的外角CBD ∠的平分线BE 交AC 的延长线于点E ,点F 为AC 延长线上的一点,连接DF .(1)求CBE ∠的度数;(2)若25F ∠=︒,求证://BE DF .【分析】(1)先根据直角三角形两锐角互余求出9050ABC A ∠=︒-∠=︒,由邻补角定义得出130CBD ∠=︒.再根据角平分线定义即可求出65CBE ∠=︒;(2)先根据三角形外角的性质得出906525CEB ∠=︒-︒=︒,再根据25F ∠=︒,即可得出//BE DF .解:(1)Q 在Rt ABC ∆中,90ACB ∠=︒,40A ∠=︒,9050ABC A ∴∠=︒-∠=︒,130CBD ∴∠=︒.BE Q 是CBD ∠的平分线, 1652CBE CBD ∴∠=∠=︒;(2)90ACB ∠=︒Q ,65CBE ∠=︒,906525CEB ∴∠=︒-︒=︒.又25F ∠=︒Q ,25F CEB ∴∠=∠=︒,//DF BE ∴.27.如图,在ABC ∆中,AD BC ⊥,AE 平分BAC ∠.(1)若72B ∠=︒,30C ∠=︒,求①BAE ∠的度数;②DAE ∠的度数;(2)探究:如果只知道42B C ∠=∠+︒,也能求出DAE ∠的度数吗?若能,请你写出求解过程;若不能,请说明理由.【分析】(1)①先根据三角形内角和定理计算出78BAC ∠=︒,然后根据角平分线定义得到1392BAE BAC ∠=∠=︒; ②根据垂直定义得到90ADB ∠=︒,则利用互余可计算出9018BAD B ∠=︒-∠=︒,然后利用DAE BAE BAD ∠=∠-∠进行计算即可;(2)由180B C BAC ∠+∠+∠=︒,42B C ∠=∠+︒可消去C ∠得到2222BAC B ∠=︒-∠,则根据角平分线定义得到111BAE B ∠=︒-∠,接着在ABD ∆中利用互余得90BAD B ∠=︒-∠,然后利用DAE BAE BAD ∠=∠-∠进行计算即可得到21DAE ∠=︒. 解:(1)①180B C BAC ∠+∠+∠=︒Q ,180723078BAC ∴∠=︒-︒-︒=︒,AE Q 平分BAC ∠,1392BAE BAC ∴∠=∠=︒; ②AD BC ⊥Q ,90ADB ∴∠=︒,9018BAD B ∴∠=︒-∠=︒,391821DAE BAE BAD ∴∠=∠-∠=︒-︒=︒;(2)能.180B C BAC ∠+∠+∠=︒Q ,42B C ∠=∠+︒,42C B ∴∠=∠-︒,2222B BAC ∴∠+∠=︒,2222BAC B ∴∠=︒-∠,AE Q 平分BAC ∠,111BAE B ∴∠=︒-∠,在ABD ∆中,90BAD B ∠=︒-∠,(111)(90)21DAE BAE BAD B B ∴∠=∠-∠=︒-∠-︒-∠=︒.28.(1)如图1,AC 平分DAB ∠,12∠=∠,试说明AB 与CD 的位置关系,并予以证明;(2)如图2,//AB CD ,AB 的下方两点E ,F 满足:BF 平分ABE ∠,DF 平分CDE ∠,若20DFB ∠=︒,70CDE ∠=︒,求ABE ∠的度数(3)在前面的条件下,若P 是BE 上一点;G 是CD 上任一点,PQ 平分BPG ∠,//PQ GN ,GM 平分DGP ∠,下列结论:①DGP MGN ∠-∠的值不变;②MGN ∠的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.【分析】(1)根据内错角相等,两直线平行证明即可;(2)先由角平分线的定义可得:1352CDF CDE ∠=∠=︒,2ABE ABF ∠=∠,然后根据两直线平行内错角相等,可得:235CDF ∠=∠=︒,然后利用三角形外角的性质求出ABF ∠的度数,进而可求ABE ∠的度数;(3)根据三角形的一个外角等于与它不相邻的两个内角的和可得1BPG B ∠=∠+∠,再根据平行线的性质以及角平分线的定义表示出MGP ∠、DPQ ∠,根据两直线平行,内错角相等可得NGP GPQ ∠=∠,然后列式表示出12MGN B ∠=∠,从而判定②正确. 【解答】(1)答://AB CD .证明:AC Q 平分DAB ∠,1CAB ∴∠=∠,12∠=∠Q ,2CAB ∴∠=∠,//AB CD ∴;(2)解:如图2,BF Q 平分ABE ∠,DF 平分CDE ∠, ∴1352CDF CDE ∠=∠=︒,2ABE ABF ∠=∠, //CD AB Q ,235CDF ∴∠=∠=︒,2DFB ABF ∠=∠+∠Q ,20DFB ∠=︒, 15ABF ∴∠=︒,230ABE ABF ∴∠=∠=︒;(3)解:如图3,根据三角形的外角性质,1BPG B ∠=∠+∠, PQ Q 平分BPG ∠,GM 平分DGP ∠, 12GPQ BPG ∴∠=∠,12MGP DGP ∠=∠, //AB CD Q ,1DGP ∴∠=∠,1()2MGP BPG B ∴∠=∠+∠, //PQ GN Q ,12NGP GPQ BPG ∴∠=∠=∠, 111()222MGN MGP NGP BPG B BPG B ∴∠=∠-∠=∠+∠-∠=∠, 根据前面的条件,30B ∠=︒,130152MGN ∴∠=⨯︒=︒, ∴①DGP MGN ∠-∠的值随DGP ∠的变化而变化;②MGN ∠的度数为15︒不变.。

2018-2019学年北师大新版广东省深圳高中七年级第二学期期中数学试卷 含解析

2018-2019学年北师大新版广东省深圳高中七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题1.﹣的绝对值是()A.B.﹣C.﹣D.2.港珠澳大桥的桥隧全长55000米,是世界最长的跨海大桥,数字55000用科学记数法表示为()A.5.5×104B.0.55×104C.5.5×103D.55×1033.图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是()A.B.C.D.4.某商品的进价为200元,标价为300元,打x折销售时后仍获利5%,则x为()A.7B.6C.5D.45.如图,将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=()A.45°B.50°C.60°D.70°6.下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3xC.()2=x6D.﹣3(2x﹣4)=﹣6x﹣127.下列说法正确的是()A.单项式nx2y的系数是B.同一平面内,过一点有且只有一条直线与已知直线平行C.内错角相等,两直线平行D.若AB=BC,则点B是线段AC的中点8.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°9.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS10.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是()A.y=t﹣0.5B.y=t﹣0.6C.y=3.4t﹣7.8D.y=3.4t﹣8 11.观察下列关于a的单项式,探究其规律:a,3a2,5a3,7a4,9a5,….按照上述规律,第2019个单项式是()A.2019a2019B.4039a2019C.4038a2019 D.4037a201912.如图,两个正方形边长分别为a、b,如果a+b=9,ab=12,则阴影部分的面积为()A.25B.22.5C.13D.6.5二、填空题(共有2小题)13.若﹣5x a+5y3+8x3y b=3x3y3,则ab的值是.14.在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC 的平分线,则∠MON的度数是.三、解答题15.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.一、填空题16.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.17.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高,点E 从点B出发,在直线BC上以2cm的速度移动,过点E作BC的垂线交直线CD于点F,当点E运动s时,CF=AB.二、解答题18.(1)计算:﹣(3.14﹣π)0+|﹣3|﹣0.253×43(2)解方程;﹣=519.化简求值:[(2x+y)2﹣(2x+y)(x﹣y)﹣2x2]÷(﹣2y),其中x=﹣2,y=.20.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=∠,∠ECB=∠∵∠ABC=∠ACB(已知)∴∠=∠.∠=∠(已知)∴∠F=∠∴EF∥AD.21.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)22.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.23.(1)如图1中,∠ABC=90°,AB=BC,点B在直线上L上,过A、C两点作直线L的连线段垂足分别为点D、点E,求证:△ADB≌△BEC;(2)如图2,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点,点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点,点P与Q分别以1和3的迳动速度同时开始运动,两点都要到相应的终点才能停止运动,在某时刻,分别过P和Q作PF⊥l于B,QF垂直l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.参考答案一、选择题(共有12小題)1.﹣的绝对值是()A.B.﹣C.﹣D.【分析】根据负数的绝对值是它的相反数即可求解.解:﹣的绝对值是.故选:A.2.港珠澳大桥的桥隧全长55000米,是世界最长的跨海大桥,数字55000用科学记数法表示为()A.5.5×104B.0.55×104C.5.5×103D.55×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将55000用科学记数法表示应为:5.5×104.故选:A.3.图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:从左面看易得第一层左上角有1个正方形,第二层最有2个正方形.故选:A.4.某商品的进价为200元,标价为300元,打x折销售时后仍获利5%,则x为()A.7B.6C.5D.4【分析】根据题目中的等量关系是利润率=利润÷成本,根据这个等量关系列方程求解.解:设商品是按标价的x折销售的,根据题意列方程得:(300×﹣200)÷200=5%,解得:x=7.则此商品是按标价的7折销售的.故选:A.5.如图,将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=()A.45°B.50°C.60°D.70°【分析】先根据两直线平行,同位角相等求出∠3,再根据对顶角相等求出∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求解即可.解:如图,∵直尺的两边互相平行,∴∠3=∠1=40°,∴∠4=∠3=40°,∴∠2=∠4+30°=40°+30°=70°.故选:D.6.下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3xC.()2=x6D.﹣3(2x﹣4)=﹣6x﹣12【分析】根据合并同类项的法则、整式的除法法则、幂的乘方法则及去括号的法则分别进行各选项的判断.解:A、3x3﹣5x3=﹣2x3,原式计算错误,故本选项错误;B、6x3÷2x﹣2=3x5,原式计算错误,故本选项错误;C、()2=x6,原式计算正确,故本选项正确;D、﹣3(2x﹣4)=﹣6x+12,原式计算错误,故本选项错误;故选:C.7.下列说法正确的是()A.单项式nx2y的系数是B.同一平面内,过一点有且只有一条直线与已知直线平行C.内错角相等,两直线平行D.若AB=BC,则点B是线段AC的中点【分析】根据单项式的定义,平行公理,平行线的性质,中点的定义可得答案.解:A、单项式nx2y的系数是,故A错误;B、同一平面内,过直线外一点有且只有一条直线与已知直线平行,故B错误;C、内错角相等,两直线平行,故C正确;D、A、B、C在同一条直线上,若AB=BC,则点B是线段AC的中点,故D错误;故选:C.8.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°【分析】根据SAS可证得△ABC≌△EDC,可得出∠BAC=∠DEC,继而可得出答案.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.9.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS【分析】利用作法得到OD=OC=OC′=OD′,CD=C′D′,于是可根据“SSS”判定△OCD≌△OC′D′,然后根据全等三角形的性质得到∠A′O′B′=∠AOB.解:由作法得OD=OC=OC′=OD′,CD=C′D′,则可根据“SSS”可判定△OCD≌△OC′D′,所以∠A′O′B′=∠AOB.故选:D.10.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是()A.y=t﹣0.5B.y=t﹣0.6C.y=3.4t﹣7.8D.y=3.4t﹣8【分析】根据需付电话费=2.4+1×超出3分钟的通话时长,即可得出y关于t的函数关系式,此题得解.解:根据题意得:y=2.4+(t﹣3)=t﹣0.6(t≥3).故选:B.11.观察下列关于a的单项式,探究其规律:a,3a2,5a3,7a4,9a5,….按照上述规律,第2019个单项式是()A.2019a2019B.4039a2019C.4038a2019 D.4037a2019【分析】系数的规律:第n个对应的系数是2n﹣1.指数的规律:第n个对应的指数是n.解:根据分析的规律,得第2019个单项式是4037x2019.故选:D.12.如图,两个正方形边长分别为a、b,如果a+b=9,ab=12,则阴影部分的面积为()A.25B.22.5C.13D.6.5【分析】大三角形面积减去小三角形面积等于阴影部分的面积,将a+b与ab的值代入计算即可得答案.解:当a+b=7,ab=12时,由题意得:S阴影=a2﹣b(a﹣b)=a2﹣ab+b2=[(a+b)2﹣2ab]﹣ab=(81﹣24)﹣6=22.5故选:B.二、填空题.(本题共有2小题,每小题3分,共6分)13.若﹣5x a+5y3+8x3y b=3x3y3,则ab的值是﹣6.【分析】直接利用合并同类项法则得出a,b的值进而得出答案.解:∵﹣5x a+5y3+8x3y b=3x3y3,∴a+5=3,b=3,解得:a=﹣2,故ab=﹣6.故答案为:﹣6.14.在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC 的平分线,则∠MON的度数是30°或50°.【分析】根据题意,画出图形,分两种情况讨论:∠BOC在∠AOB内部和外部,求出∠MOB和∠BON,即可求出答案.解:∠BOC在∠AOB内部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB﹣∠BON=40°﹣10°=30°;∠BOC在∠AOB外部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB+∠BON=40°+10°=50°,故答案为:30°或50°.三、解答题(本题6分)15.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).一、填空题[每题3分,共2题,共6分)16.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10.【分析】直接利用完全平方公式将原式变形,进而求出答案.解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.17.如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高,点E 从点B出发,在直线BC上以2cm的速度移动,过点E作BC的垂线交直线CD于点F,当点E运动2或5s时,CF=AB.【分析】①当点E在射线BC上移动时,若E移动5s,则BE=2×5=10(cm),根据全等三角形的判定和性质即可得到结论.②当点E在射线CB上移动时,若E移动2s,则BE′=2×2=4(cm),根据全等三角形的判定和性质即可得到结论.解:①如图,当点E在射线BC上移动时,若E移动5s,则BE=2×5=10(cm),∴CE=BE﹣BC=10﹣3=7cm.∴CE=AC,在△CFE与△ABC中,,∴△CEF≌△ABC(ASA),∴CF=AB,②当点E在射线CB上移动时,若E移动2s,则BE′=2×2=4(cm),∴CE′=BE′+BC=4+3=7(cm),∴CE′=AC,在△CF′E′与△ABC中,,∴△CF′E′≌△ABC(ASA),∴CF′=AB,综上所述,当点E在射线CB上移动5s或2s时,CF′=AB;故答案为:2或5.二、解答题18.(1)计算:﹣(3.14﹣π)0+|﹣3|﹣0.253×43(2)解方程;﹣=5【分析】(1)直接利用负指数幂的性质以及零指数幂的性质、积的乘方运算法则分别化简得出答案;(2)直接去分母,进而合并同类项解方程得出答案.解:(1)原式=2﹣1+3﹣(0.25×4)3=4﹣1=3;(2)去分母得:2x﹣3(30﹣x)=60,则2x﹣90+3x=60,整理得:5x=150,解得:x=30.19.化简求值:[(2x+y)2﹣(2x+y)(x﹣y)﹣2x2]÷(﹣2y),其中x=﹣2,y=.【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解:原式=(4x2+4xy+y2﹣2x2+2xy﹣xy+y2﹣2x2)÷(﹣2y)=(5xy+2y2)÷(﹣2y)=﹣x﹣y,当x=﹣2,y=时,原式=5﹣=4.20.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=∠ABC,∠ECB=∠ACB∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∠F=∠DBF(已知)∴∠F=∠ECB∴EF∥AD(同位角相等,两直线平行).【分析】利用角平分线的性质得出∠DBC=∠ABC,∠ECB=∠ACB,进而求出∠F =∠ECB,得出答案即可.解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB(已知)∴∠DBC=∠ECB.∵∠DBF=∠F,(已知)∴∠F=∠ECB,∴EF∥AD(同位角相等,两直线平行).21.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,l1描述小凡的运动过程;(2)小凡谁先出发,先出发了10分钟;(3)小光先到达图书馆,先到了10分钟;(4)当t=34分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)【分析】(1)根据函数图象和题意可以解答本题;(2)根据函数图象中的数据可以解答本题;(3)根据函数图象中的数据可以解答本题;(4)根据函数图象中的数据可以解答本题;(5)根据函数图象中的数据可以分别求得小凡与小光从学校到图书馆的平均速度.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.22.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.【分析】(1)先利用ASA判定△BED≌△CGD,从而得出BE=CG;(2)先连接FG,再利用全等的性质可得DE=DG,再根据DF⊥GE,从而得出FG=EF,依据三角形两边之和大于第三边得出BE+CF>EF.解:(1)∵D是BC的中点,∴BD=CD,∵AB∥CG,∴∠B=∠DCG,又∵∠BDE=∠CDG,∴△BDE≌△CDG,∴BE=CG;(2)BE+CF>EF.理由:如图,连接FG,∵△BDE≌△CDG,∴DE=DG,又∵FD⊥EG,∴FD垂直平分EG,∴EF=GF,又∵△CFG中,CG+CF>GF,∴BE+CF>EF.23.(1)如图1中,∠ABC=90°,AB=BC,点B在直线上L上,过A、C两点作直线L的连线段垂足分别为点D、点E,求证:△ADB≌△BEC;(2)如图2,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点,点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点,点P与Q分别以1和3的迳动速度同时开始运动,两点都要到相应的终点才能停止运动,在某时刻,分别过P和Q作PF⊥l于B,QF垂直l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.【分析】(1)先由等腰直角三角形得出AB=AC,再由垂直和等腰直角三角形的性质判断出∠DAB=∠CBE,从而得出结论;(2)推出CP=CQ,①P在AC上,Q在BC上,推出方程6﹣t=8﹣3t,②P、Q都在AC上,此时P、Q重合,得到方程6﹣t=3t﹣8,Q在AC上,③P在BC上,Q在AC 时,此时不存在,④当Q到A点,与A重合,P在BC上时,求出即可得出答案.【解答】(1)证明:∵△ABC是等腰直角三角形,∴AB=AC.∠ABC=90°,∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=∠ABC=90°,∴∠DAB+∠DBA=90°,∠DBA+∠CBE=90°,∴∠DAB=∠CBE,∴△ADB≌△BEC,(2)解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,如图2所示:CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,如图3所示:∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;如图4所示:理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,如图5所示:∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意即点P运动1或3.5或12秒时,△PEC与△QFC全等.。

2018-2019学年北师大版七年级下册数学期末试卷(有答案).doc

2018-2019学年北师大版七年级下册数学期末试卷(有答案).doc

2018-2019学年下学期期末水平质量检测初一数学试卷(全卷满分:120分钟 考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题3分,共计24分)1. 计算:2)3(2x y + = ;)2b -b -2a a -)((= .2.如果12++kx x 是一个完全平方式,那么k 的值是 .3. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题 时说,2006年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为 万元.4. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .5. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .6.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)= (22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .7.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米. 8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)9.下列图形中不是..正方体的展开图的是( )A B C D 10. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .144=-a a11. 下列结论中,正确..的是( ) A.若22b a ,b a ≠≠则 B.若22b a , b a >>则C.若b a ,b a 22±==则 D.若b1a 1, b a >>则12. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A.15° B.20° C.25° D.30° 13. 观察一串数:0,2,4,6,….第n 个数应为( )A.2(n -1)B.2n -1C.2(n +1)D.2n +1 14.下列关系式中,正确..的是( ) A.()222b a b a -=- B.()()22b a b a b a -=-+C.()222b a b a +=+ D.()222b 2ab a b a +-=+15. 如图表示某加工厂今年前5;说,该厂( )A.1月至3月每月产量逐月增加,4、5两月产量逐月 减小B.1月至3月每月产量逐月增加,4、5两月产量与3 持平C.1月至3月每月产量逐月增加,4、5生产D. 1月至3月每月产量不变,4、5两月均停止生产 16.下列图形中,不一定...是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角 D.直角三角形17. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3D.4三、精心算一算(18题5分,19题6分,共计11分)18.()()3426y y 2-19.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替,并求原代数式的值.四、认真画一画(20题5分,21题5分,共计10分)20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是:21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)五、请你做裁判(第22题小5分,第23小题5分,共计10分)22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(8分),24.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且在△ABO 和△DCO 中 ⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.(请将答案写在右侧答题区)七.探究拓展与应用 满分30分,25.几何探究题(30分)请将题答在右侧区域。

2018-2019学度北师大版初一下综合练习试卷(二)含解析.doc.doc

2018-2019学度北师大版初一下综合练习试卷(二)含解析.doc.doc

2018-2019学度北师大版初一下综合练习试卷(二)含解析注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

七年级下册综合复习试卷〔二〕【一】选择题〔本大题共6小题,每题3分,共18分〕1.下面有4个汽车标志图案,其中不是轴对称图形的是()2.以下运算:①x 2+x 4=x 6②2x +3y =5xy ③x 6÷x 3=x 3④〔x 3〕2=x 6其中正确的有〔〕A.1个B.2个C.3个D.4个BC D A 、〔2a +b 〕〔2b -a 〕B.〔12x +1〕〔-12x -1〕 C 、〔3x -y 〕〔-3x +y 〕D.〔-x -y 〕〔-x +y 〕5.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是〔〕A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短6.如图,小亮在操场上玩,一段时间内沿M A B M →→→的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与时间x 之间关系的图象是〔〕【二】填空题〔本大题共8小题,每题3分,共24分〕7.生物具有遗传多样性,遗传信息大多储存在DNA 分子上、一个DNA 分子的直径约为cm 0000002.0、这个数用科学记数法可表示为cm 、8.x +y =4,那么x 2﹣y 2+8y =、9.一个三角形的两边长分别是2和7,最长边a 为偶数,那么这个三角形的周长为、10.如图,把一块含有30°角〔∠A =30°〕的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 与三角板斜边相交于点F ,如果∠1=40°,那么∠AFE =11.从2、3、4这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是、第10题图第12题图12.如图,ABCDE 是封闭折线,那么∠A 十∠B +∠C +∠D +∠E 为度、13.一种圆环〔如图〕,它的外圆直径是8厘米,环宽1厘米、①如果把这样的2个圆环扣在一起并拉紧〔如图2〕,长度为厘米;②如果用x 个这样的圆环相扣并拉紧,长度为y 厘米,那么y 与x 之间的关系式是、14.如图1是长方形纸袋,将纸袋沿EF 折叠成图2,再沿BF 折叠成图3,假设∠DEF =α,用α表示图3中∠CFE 的大小为、【三】〔本大题共4小题,每题6分,共24分〕15.化简求值:)ab 2(]b a 6)b a ()b a [(3222-÷+--+,其中a =11()2--,b=01.16.b a 、是等腰△ABC 的边且满足0204822=+--+b a b a , 求等腰△ABC 的周长。

答案 深圳 北师大 七年级(下)期末数学试卷

答案 深圳 北师大 七年级(下)期末数学试卷
2018-2019 学年广东省深圳市罗湖区七年级(下)期末数学试卷
参考答案与试题解析
一、选择题
1.(3 分)计算 32 的结果是( )
A.6
B.9
C.8
【考点】1E:有理数的乘方. 菁优网版权所有
【答案】B
2.(3 分)下列图形中,是轴对称图形的是( )
D.5
A.
B.
C.
D.
【考点】P3:轴对称图形. 菁优网版权所有
【考点】FH:一次函数的应用. 菁优网版权所有
【答案】见试题解答内容
22.如图,完成下列推理过程
如图所示,点 E 在△ABC 外部,点 D 在 BC 边上,DE 交 AC 于 F,若∠1=∠2=∠3,AD=AB,
求证:AC=AE.
证明:∵∠2=∠3(已知),
∠AFE=∠DFC( 对顶角相等 ),
第5页
④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形
A.①②③④
B.①②③
C.①②④
D.②③④
【考点】KF:角平分线的性质;KG:线段垂直平分线的性质;KJ:等腰三角形的判定与性质. 菁优网版权所有
【答案】C
9.(3 分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影
(1)(﹣1)2018+( )﹣2﹣(3.14﹣π)0 (2)20192﹣2018×2020 【考点】4F:平方差公式;6E:零指数幂;6F:负整数指数幂.
菁优网版权所有
【答案】见试题解答内容 18.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中 x= ,y=2.
【考点】4J:整式的混合运算—化简求值. 菁优网版权所有

2018-2019学年广东省深圳市南山外国语学校七年级下学期期中考试数学试卷及答案解析

2018-2019学年广东省深圳市南山外国语学校七年级下学期期中考试数学试卷及答案解析

2018-2019学年广东省深圳市南山外国语学校七年级下学期期中考试数学试卷及答案解析一、选择题(本题共12小题,每小题3分,共36分,每小题有四个只有一个是正确的,请把答案填在答题卡的相应位置上,否则不得分)1.下列图形中∠1与∠2互为对顶角的是()A.B.C.D.解:A、B、D中∠1与∠2不是对顶角,C中∠1与∠2互为对顶角.故选:C.2.计算:a2•a的结果是()A.a B.a2C.a3D.2a2解:a2•a=a3.故选:C.3.用科学记数法表示:0.0000108是()A.1.08×10﹣5B.1.08×10﹣6C.1.08×10﹣7D.10.8×10﹣6解:0.0000108=1.08×10﹣5,故选:A.4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.5.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.6.若x2﹣2mx+1是完全平方式,则m的值为()A.2B.1C.±1D.±1 2解:∵x2﹣2mx+1=x2﹣2mx+12,∴﹣2mx=±2•x•1,解得m=±1.故选:C.7.下列说法:①同位角相等;②同一平面内,不相交的两条直线叫做平行线;③与同一条直线垂直的两条直线也互相垂直;④若两个角的两边互相平行,则这两个角一定相等;⑤一个角的补角一定大于这个角,其中正确的有()A.1个B.2个C.3个D.4个解:①同位角不一定相等,故说法①错误;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年七年级第二学期期中数学试卷一、选择题1.计算2443()3x y x y -g 的结果是( )A .624x y -B .64x y -C .62x yD .8x y2.等式0(4)1x +=成立的条件是( ) A .x 为有理数B .0x ≠C .4x ≠D .4x ≠-3.若22(2)(2)x y x y m -=++,则m 等于( ) A .4xyB .4xy -C .8xyD .8xy -4.下列计算式中,可以用平方差公式计算的是( ) A .()()m n n m --B .()()a b b a +--C .()()a b a b ---D .()()a b b a ++5.当(m = )时,22(3)25x m x +-+是完全平方式. A .5±B .8C .2-D .8或2-6.如图,已知a b ⊥.垂足为O ,直线c 经过点O ,则1∠与2∠的关系一定成立的是( )A .相等B .互余C .互补D .对顶角7.如图,将一块三角尺的直角顶点放在直线a 上,//a b ,150∠=︒,则2(∠= )A .80︒B .70︒C .60︒D .50︒8.下列命题是假命题的是( ) A .对顶角相等 B .等角的余角相等 C .同旁内角相等D .垂线段最短9.一支蜡烛长20cm .若点燃后每小时燃烧5cm .则燃烧剩余的长度()y cm 与燃烧时间x (小时)之间的函数关系的图象大致为()A.B.C.D.10.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.二、填空题(3'X8=24')11.有理数0.00000035用科学记数法表示为.12.如图,A B C D E F∠+∠+∠+∠+∠+∠=.13.一个等腰三角形的两边长分别为3和7,这个三角形的周长是 . 14.观察如表,则y 与x 的关系式为 .x1 2 3 4 5 ⋯y357911⋯15.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,ABO ADO ∆≅∆,下列结论: ①AC BD ⊥;②CB CD =;③ABC ADC ∆≅∆;④DA DC =.其中正确结论的序号是 .16.若221x y -=-.则20192019()()x y x y -+= . 17.已知2248200a b a b ++-+=.则a b = .18.如图1,长方形ABCD 中,动点P 从B 出发,沿B C D A →→→路径匀速运动至点A 处停止,设点P 运动的路程为x ,PAB ∆的面积为y ,如果y 关于x 的函数图象如图2所示,则长方形ABCD 的面积等于 .三、计算题(6'X3=18') 19.0121(2019)()32π--+-20.324325()()()a a a +g21.22(1)(1)ab ab +--. 四、填空题(5')22.如图,填写证明过程和理由 12180∠+∠=︒Q (已知) ∴ // ( )34∠=∠Q (已知) ∴ // ( )//a c ∴( )五、解答、证明题(6'+7'+10'=23')23.先化简再求值:2(23)(2)(2)x y x y x y --+-,其中1x =,2y =-.24.如图,在ABC ∆中,60ACB ∠=︒,75BAC ∠=︒,AD BC ⊥于D ,BE AC ⊥于E ,AD 与BE 交于H ,求CHD ∠的度数.25.如图,已知点C 是线段BD 上一点,以BC 、DC 为一边在BD 的同一侧作等边ABC ∆和等边ECD ∆,连接AD ,BE 相交于点F ,AC 和BE 交于点M ,AD ,CE 交于点N ,(注:等边三角形的每一个内角都等于60)︒ (1)求证:AD BE =(2)线段CM 与CN 相等吗?请证明你的结论. (3)求BFD ∠的度数.参考答案一、选择题1.计算2443()3x y x y -g 的结果是( )A .624x y -B .64x y -C .62x yD .8x y解:原式624x y =-, 故选:A .2.等式0(4)1x +=成立的条件是( ) A .x 为有理数B .0x ≠C .4x ≠D .4x ≠-解:0(4)1x +=Q 成立,40x ∴+≠, 4x ∴≠-.故选:D .3.若22(2)(2)x y x y m -=++,则m 等于( ) A .4xy B .4xy -C .8xyD .8xy -解:2(2)x y -,2244x xy y =-+, 22844x xy xy y =-++, 2(2)8x y xy =+-,8m xy ∴=-.故选:D .4.下列计算式中,可以用平方差公式计算的是( ) A .()()m n n m --B .()()a b b a +--C .()()a b a b ---D .()()a b b a ++解:根据平方差公式特点,左边是两个二项式相乘,且这两个二项式中有一项完全相同,另一项互为相反数,因此可以用平方差公式计算的是C .()()a b a b ---. 故选:C .5.当(m = )时,22(3)25x m x +-+是完全平方式. A .5±B .8C .2-D .8或2-解:这里首末两项是x 和5这两个数的平方; 那么中间一项为加上或减去x 和5的积的2倍, 故2(3)10m -=±, 8m =或2-.故选:D .6.如图,已知a b ⊥.垂足为O ,直线c 经过点O ,则1∠与2∠的关系一定成立的是( )A .相等B .互余C .互补D .对顶角解:图中,23∠=∠(对顶角相等), 又a b ⊥Q , 1390∴∠+∠=︒, 1290∴∠+∠=︒,1∴∠与2∠互余.故选:B .7.如图,将一块三角尺的直角顶点放在直线a 上,//a b ,150∠=︒,则2(∠= )A .80︒B .70︒C .60︒D .50︒解:由已知知:360∠=︒150=︒Q ,360∠=︒,418013*********∴∠=︒-∠-∠=︒-︒-︒=︒, 5470∴∠=∠=︒, //a b Q , 2570∴∠=∠=︒故选:B .8.下列命题是假命题的是( ) A .对顶角相等 B .等角的余角相等 C .同旁内角相等D .垂线段最短解:A 、对顶角相等,正确,是真命题; B 、等角的余角相等,正确,是真命题;C 、两直线平行,同旁内角相等,错误,是假命题;D 、垂线段最短,正确,是真命题;故选:C .9.一支蜡烛长20cm .若点燃后每小时燃烧5cm .则燃烧剩余的长度()y cm 与燃烧时间x (小时)之间的函数关系的图象大致为( )A .B .C .D .解:Q 一支蜡烛长20cm .点燃后每小时燃烧5cm , ∴这支蜡烛可以燃烧:2054()h ÷=,4(04)y x x ∴=-剟,y 随x 的增大而减小,故选:C .10.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .解:因为该做水池就是一个连通器.开始时注入甲池,乙池无水,当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A 、B 不正确,此时甲池水位不变,所有水注入乙池,所以水位上升快.当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快. 故选:D .二、填空题(3&#39;X8=24&#39;)11.有理数0.00000035用科学记数法表示为 73.510-⨯ . 解:70.00000035 3.510-=⨯. 故答案为:73.510-⨯12.如图,A B C D E F ∠+∠+∠+∠+∠+∠= 360︒ .解:如图所示,1A B ∠=∠+∠Q ,2C D ∠=∠+∠,3E F ∠=∠+∠, 123A B C D E F ∴∠+∠+∠=∠+∠+∠+∠+∠+∠,又1∠Q 、2∠、3∠是三角形的三个不同的外角, 123360∴∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故答案为:360︒.13.一个等腰三角形的两边长分别为3和7,这个三角形的周长是 17 . 解:(1)若3为腰长,7为底边长, 由于337+<,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边. 所以这个三角形的周长为77317++=. 故答案为:17.14.观察如表,则y 与x 的关系式为 21y x =+ .x1 2 3 4 5 ⋯ y357911⋯解:观察图表可知,x 每增加1,y 的对应值增加2,故y 是x 的一次函数, 设y kx b =+,把1x =,3y =和2x =,5y =代入得: 325k b k b +=⎧⎨+=⎩,解得:21k b =⎧⎨=⎩, 故变量y 与x 之间的函数关系式:21y x =+.故答案为:21y x =+.15.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,ABO ADO ∆≅∆,下列结论: ①AC BD ⊥;②CB CD =;③ABC ADC ∆≅∆;④DA DC =.其中正确结论的序号是①②③ .解:ABO ADO ∆≅∆Q ,AB AD ∴=,BAO DAO ∠=∠,90AOB AOD ∠=∠=︒,OB OD =,AC BD ∴⊥,故①正确;Q 四边形ABCD 的对角线AC 、BD 相交于点O ,90COB COD ∴∠=∠=︒,在ABC ∆和ADC ∆中,Q AB AD BAO DAO AC AC =⎧⎪∠=∠⎨⎪=⎩,()ABC ADC SAS ∴∆≅∆,故③正确;BC DC ∴=,故②正确.故答案为:①②③.16.若221x y -=-.则20192019()()x y x y -+= 1- .解:原式2019201920192220192019()()[()()]()(1)1x y x y x y x y x y =-+=+-=-=-=-,故答案为1-.17.已知2248200a b a b ++-+=.则a b16. 解:2248200a b a b ++-+=,22448160a a b b +++-+=,22(2)(4)0a b ++-=,则20a +=,40b -=,解得,2a =-,4b =, 则21416a b -==, 故答案为:116. 18.如图1,长方形ABCD 中,动点P 从B 出发,沿B C D A →→→路径匀速运动至点A 处停止,设点P 运动的路程为x ,PAB ∆的面积为y ,如果y 关于x 的函数图象如图2所示,则长方形ABCD 的面积等于 15 .【解答】当点P 在BC 段时,对应图2,3x „的部分,故3BC =;当点P 在CD 段时,对应图2,38x <„的部分,故5DC =;故长方形ABCD 的面积等于3515CB CD ⨯=⨯=,故答案为15.三、计算题(6&#39;X3=18&#39;)19.0121(2019)()32π--+- 解:原式129=+-6=-.20.324325()()()a a a +g解:原式612101810a a a a a =+=+g .21.22(1)(1)ab ab +--.解:22(1)(1)ab ab +--,(11)(11)ab ab ab ab =++-+-+g ,22ab =g ,四、填空题(5&#39;)22.如图,填写证明过程和理由12180∠+∠=︒Q (已知) ∴ a // ( )34∠=∠Q (已知)∴ // ( )//a c ∴( )解:12180∠+∠=︒Q (已知),//a b ∴(同旁内角互补,两直线平行), 34∠=∠Q (已知), //b c ∴(内错角相等,两直线平行), //a c ∴(平行于同一直线的两直线平行), 故答案为:a ,b ,同旁内角互补,两直线平行,b ,c ,内错角相等,两直线平行,平行于同一直线的两直线平行.五、解答、证明题(6&#39;+7&#39;+10&#39;=23&#39;)23.先化简再求值:2(23)(2)(2)x y x y x y --+-,其中1x =,2y =-.解:原式22224129(4)x xy y x y =-+--222241294x xy y x y =-+-+21210xy y =-+,当1x =,2y =时,原式21212102=-⨯⨯+⨯2440=-+24.如图,在ABC⊥于D,BE AC⊥于E,ADBAC∠=︒,AD BC∆中,60ACB∠=︒,75与BE交于H,求CHD∠的度数.解:延长CH交AB于F,在ABC⊥,∆中,三边的高交于一点,所以CF AB⊥,15ACF∴∠=︒,∠=︒Q,且CF AB75BACQ,45∴∠=︒BCF∠=︒60ACB在CDH∆中,三内角之和为180︒,∴∠=︒,CHD4525.如图,已知点C是线段BD上一点,以BC、DC为一边在BD的同一侧作等边ABC∆和等边ECD∆,连接AD,BE相交于点F,AC和BE交于点M,AD,CE交于点N,(注:等边三角形的每一个内角都等于60)︒(1)求证:AD BE=(2)线段CM与CN相等吗?请证明你的结论.(3)求BFD∠的度数.【解答】(1)证明:ABC∆Q是等边三角形,∠=∠=∠=︒,BAC ABC ACBBC AC∴=,60同理:CE CD∠=︒,=,60ECD60ACB ECD ∴∠=∠=︒,ACB ACE ECD ACE ∴∠+∠=∠+∠,即BCE ACD ∠=∠,在ACD ∆和BCE ∆中,AC BC ACD BCECD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=;(2)解;CM CN =,理由如下:ACD BCE ∆≅∆Q ,CBE CAD ∴∠=∠,60ACB ECD ∠=∠=︒Q ,60ACE ∴∠=︒ACB ACE ∴∠=∠,在BCM ∆和ACN ∆中,CBM CAN BC ACBCM ACN ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BCM ACN ASA ∴∆≅∆,CM CN ∴=;(3)解:ACD BCE ∆≅∆Q ,CBE CAD ∴∠=∠,6060120BFD BAF ABE BAC CAD ABE BAC CBE ABE BAC ABC ∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒+︒=︒.。

相关文档
最新文档