关于抽象代数中两个结论的证明_关于自由Abel群及高斯整数环的注记

合集下载

抽象代数一习题答案

抽象代数一习题答案

抽象代数一习题答案在抽象代数中,习题通常涉及群、环、域等代数结构的定义、性质和例子。

以下是一些抽象代数习题的答案示例。

习题1:证明如果一个群G是阿贝尔群,那么它的每个子群也是阿贝尔群。

答案:设H是群G的一个子群。

由于G是阿贝尔群,对于任意的a, b属于G,我们有ab = ba。

现在考虑任意的h1, h2属于H。

由于H是G的子群,h1和h2也属于G。

因此,我们有h1h2 = h2h1(因为h1h2和h2h1都是G中的元素,并且G是阿贝尔的)。

这表明H中的元素满足交换律,所以H也是阿贝尔群。

习题2:证明如果一个环R有单位元,那么它的每个理想都是主理想。

答案:设I是环R的一个理想,我们需要证明I是一个主理想,即存在一个元素r∈R使得I = (r),其中(r)表示由r生成的理想。

由于R有单位元1,考虑元素1 - r。

由于I是理想,1 - r也属于I。

因此,我们有1 - r = a(r) + b,其中a, b属于R。

将等式两边乘以r,我们得到1 = ar + rb。

这意味着r(1 - ar) = rb。

由于1 - ar属于I(因为I是理想),我们有r属于I。

现在,对于I中的任意元素x,我们可以写x = (1 - ar)x + arx。

由于ar属于I,(1 - ar)x也属于I。

因此,x = r(1 - ar)x,表明x可以由r生成。

所以I = (r),证明完成。

习题3:证明如果一个域F的元素a不是单位元,那么a的阶是有限数。

答案:设a是域F中的一个非单位元。

我们需要证明存在一个正整数n使得a^n = 1。

考虑集合{1, a, a^2, a^3, ...}。

由于F是域,它没有零除数,因此a^n ≠ 1对于所有n。

这意味着集合中的元素都是不同的。

然而,域F是有限的,因此不可能有无限多不同的元素。

因此,必须存在最小的正整数n > 1,使得a^n = a^1。

这意味着a^(n-1) = 1,所以a的阶是有限的。

关于抽象代数中两个结论的证明——关于自由Abel群及高斯整数环的注记

关于抽象代数中两个结论的证明——关于自由Abel群及高斯整数环的注记
如下的定 义和结 论 。 定义 1 假设 F是 范 畴 & 中的一 个对 象 , 为 非 空集合 , F是集 合之 间的映射 , F在集合 上 : 称 是 自由的 ,是指 &的每个 对象 A 和集合之 间 的映射
是 关 于其换位子群 , 用的商 群 研 用, , 由引理 2 ,
g= hri , i (c) f 由于 F是 自由群 , hrg 注意到 是 = i 故 c , - = 同态 满射 , 即对 V , ∈ 必有 a F使 叮 口 , ∈ r ) 从而 ( ^ = (- ) = 7 口 : () ^ ’ ) ( ( ) ( ) ( ) 7( ) 7 ) g 口 刀( r a ) , 7口 。 i ( 口 r 这说 明 。
关 键 词 :自由 Ab l群 ; 氏环 ; 明 e 欧 证
中 图分 类 号 : 5 文献 标 识 码 : 013 A
文 章 编 号 :6 13 9 (0 0 0 — 0 3 0 17— 6 92 1 )6 0 2 — 2
关 于 范 畴 中的 自由 对 象 , 自由 群 , 献 [】 文 】中有
在 , ∈F使 =a a b1 b b - - 而 l ,
gx = (b % _ ()( )(q g b ) ()ga a )g口g 6 g a ) ( = g a g a ) ( )( 。 = (a )(b )0 ( ) (- g b g b )g a- g b = '
子群 , 且 NCK , 存 在唯 一 的 同态 厂 并 e 则 :
摘 要 : 抽 象 代数 中如 下 两 个 结论 : 1存 在 自由 A e 群 ;2 高斯 整 数环 是 欧 氏环 。 文献 【】[ 、 】 对 () bl () 在 1、 】p 中都 给 出了 2

抽象代数第二章

抽象代数第二章

阿贝尔
加罗华
返回
(2)Hamilton四元数的发现 (2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法, 长期以来人们对于虚数的意义存在不同的看法,后来发 现可以把复数看成二元数(a,b)=a+bi,其中i 现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进 a,b) c,d)=(a c,b± a,b)(c,d)=(ad+bc,ac-bd) 行代数运算,二元数具有直观的几何意义; 行代数运算,二元数具有直观的几何意义;与平面上的点一 一对应。这是数学家高斯提出的复数几何理论。 一对应。这是数学家高斯提出的复数几何理论。二元数理论 产生的一个直接问题是:是否存在三元数?经过长时间探索, 产生的一个直接问题是:是否存在三元数?经过长时间探索, 力图寻求三元数的努力失败了。 力图寻求三元数的努力失败了。但是爱尔兰数学家 W.Hamilton(1805-1865)于1843年成功地发现了四元数 W.Hamilton(1805-1865)于1843年成功地发现了四元数。四 年成功地发现了四元数。 元数系与实数系、复数系一样可以作加减乘除四则运算, 元数系与实数系、复数系一样可以作加减乘除四则运算,但 与以前的数系相比,四元数是一个乘法不交换的数系。 与以前的数系相比,四元数是一个乘法不交换的数系。从这 点来说四元数的发现使人们对于数系的代数性质的认识提高 了一大步。四元数代数也成为抽象代数研究的一个新的起点, 了一大步。四元数代数也成为抽象代数研究的一个新的起点, 它是近世代数的另一个重要理论来源。 它是近世代数的另一个重要理论来源。

关于有限Abel群的特征的一点注记

关于有限Abel群的特征的一点注记

关于有限Abel群的特征的一点注记
陈松良
【期刊名称】《青岛大学学报(自然科学版)》
【年(卷),期】2003(016)004
【摘要】讨论了n阶Abel群的特征的基本性质,并利用所得结果计算了n阶循环矩阵的行列式.
【总页数】3页(P19-21)
【作者】陈松良
【作者单位】娄底师范高等专科学校学报编辑部,湖南,娄底,417000
【正文语种】中文
【中图分类】O152
【相关文献】
1.Monte-Carlo有限差分法和Monte-Carlo有限元法的一点注记 [J], 唐立;朱起定;杨文胜
2.关于抽象代数中两个结论的证明——关于自由Abel群及高斯整数环的注记 [J], 于敏;焦亚民
3.有限Abel群的一个特征 [J], 王俊新
4.关于Abel群定义的几点注记 [J], 王水汀
5.实对称矩阵、特征值、特征向量之间的关系及其几何意义的一点注记 [J], 林华铁
因版权原因,仅展示原文概要,查看原文内容请购买。

gauss整数环商环的若干性质及几种素元的表达形式

gauss整数环商环的若干性质及几种素元的表达形式

gauss整数环商环的若干性质及几种素元的表达形式高斯整数环(GaussIntegerRing)是一种带有复杂性质的代数环,通常用于数学研究和应用,并且在多重整数原理中扮演着重要的角色。

它以整数形式表示为 Z[i],其中 i^2 = -1。

高斯整数环定义为 Z[i] = {a + bi | a, b Z,其中 i^2 = -1,由Z和i组成},其中a和b 分别为实数和虚数,元素表示为a + bi。

高斯整数环具有强大的结构性质,具体来说,它可以表示为一个拓扑环,是一个结构紧张的结构,在研究中它具有重要的数学意义,如有理数据的分析,秩的计算,素数的测试等。

此外,高斯整数环的素元(prime elements)也有着重要的意义。

根据数论中的定义,一个数是素元,当且仅当它不能被任何其他整数除尽。

为求解高斯整数环中素数的表达形式,可以使用素性理论,它是探索素数表达形式和定理性质的有用工具,引入概念“二者之和”。

据经验,大部分的素元在高斯整数环的表达形式中,都可以表示为两个平方数之和。

具体来说,任何一个素元都可以表示为k^2 + l^2的形式,其中k和l分别为高斯整数的实数部分和虚数部分。

外,表达式4n+1可以用来表示一类特殊的素数,它们可以表示为一类特殊素元,也就是k^2 + 2nk + n^2 + n = 0。

在这里,4n+1表示一个特殊的素数,也是高斯整数环中最重要的一类素元。

高斯整数环是一种充满乐趣的数学结构,它不仅有着独特而宝贵的结构性质,而且素元也有着重要意义。

将4n+1表示为一类特殊的素元,以及素数可以表示为k^2 + l^2的形式,实践证明对高斯整数环的理解和分析都是有用的。

综上所述,高斯整数环是一种具有强大结构性质的数学结构,它定义为Z[i] = {a + bi | a, b Z,其中i^2 = -1,由Z和i组成},而素元是环中最重要的一类元素,它可以表示为4n+1和k^2 + l^2的形式,为高斯整数环的理解和分析提供了有用的工具。

证明abel定理

证明abel定理

证明abel定理
Abel定理在数学、物理等领域有广泛的应用,下面以abel群循环分解定理为例进行证明:
定理:对于任意Abel群(A,·),其一定可以被分解为若干循环群的积 Zi1Zi2…Zik。

证明思路:(忽略了一些边界和细节,如 A 已经是循环群的情况)如果你看到了,说明它所指的小结论的证明是比较简单的,觉得显然可以略过。

取一元素 x∈A。

根据它,我们试图将 A 划分成若干集合。

我们首先划分出的集合是 S0=⟨x⟨。

Abel定理在不同的领域中可能有不同的表现形式和证明方法,如果你还需要其他证明,请提供更具体的信息,以便我更好地为你解答。

【word】带有限性条件Abel群的自同态环和自同构群

【word】带有限性条件Abel群的自同态环和自同构群

带有限性条件Abel群的自同态环和自同构群数学年刊2011,32A(6):665—678带有限性条件Abel群的自同态环和自同构群冰廖军杨艳刘合国.提要给出了带极大或极小条件的Abel群A的自同构群以及自同态环的相伴Lie环是可解或幂零的充要条件.同时也给出了群A=Q0Q0…0Q的自同构群是可解或幂零的充要条件,以及群A的自同态环的相伴Lie环是可解或幂零的充要条件.关键词自同构群,自同态环,可解,幂零MR(2000)主题分类20K30,20F16,20F18中图法分类O152.2文献标志码A文章编号1000—8314(2011)06—0665—141引言本文采用文f121的术语和符号,一般情况下计算群的自同构群和研究群的自同构群的性质是很困难的,即使对Abel群也是如此.从结合环R出发,自然地可以构造一个Lie环L,方法如下:定义L的加群为_R的加法群(R,+)以及Lie积为[X,Y]=xy—yx,通常记为_R(~,称为的相伴Lie环.Abel群的自同态环EndA是结合环,则可以构造Lie环End(一.因此我们可以研究Abel群的自同态环的相伴Lie 环的可解,幂零性质对群结构的影响.同样地,也可以通过研究Abel群的白同构群AutA的可解,幂零性质来分析群A的结构.本文将对几类带有有限性条件的Abel 群进行讨论,并给出了它们的自同态环的相伴Lie环是可解,幂零以及自同构群是可解,幂零的充要条件.在多数情况下它们具有相似性.其实这也并不偶然,正是由于这些Abel群是由它的自同态环或者自同构群所确定.第2节首先给出了有限AbelP一群的自同构群AutA可解的充要条件,接着利用自同构群的稳定自同构的一个结论(见引理2.3),分别给出了带极大和极小条件的Abel群的自同构群是可解,幂零的充要条件.在定理2.6一定理2.10中,分别给出了有限AbelP一群,带极大条件的Abel群和带极小条件的Abelp-群的自同态环的相伴Lie环是可解,幂零的充要条件.当P≠3时,有限Abelp-群的自同构群AutA可解当且仅当群A的自同态环的相伴Lie环End(一)可解.对于带极大,极小条件的Abel群的自同构群AutA的可解性和群的自同态环的相伴Lie环End(一)的可解性,定理2.2一定理2.3和定理2.8一定理2.9分别相对应,在它们的幂零性的论述中,定理2.4和定理2.10相对应.设A=Q0Q.0…④Q,其中Q={丌pmI?Tti,m∈Z},这里7rk为某pi∈k 些素数的集合.第3节对群A讨论了类似的问题:定理3.1和定理3.2分别给出了A的本文2011年2月25日收到,2011年6月18日收到修改稿.北京大学数学科学学院,北京100871.E—mail:*************.ca0湖北大学数学系,武汉430062.E—mail:******************0通讯作者.湖北大学数学系,武汉430062.E—mail:**************.cn国家自然科学基金(No.10971054)资助的项目.数学年刊32卷A辑自同构群AutA是可解,幂零的充要条件,定理3.4给出了群A的自同态环的相伴Lie环EndA(一)是可解,幂零的充要条件.此时AutA是可解(幂零)的当且仅当EndA㈠是可解(幂零)的.定理3.3表明,A的自同构群AutA可解和B1是一致的.除去P=2的情况,比较定理2.4,定理2.10,定理3.2和定理3.4可以知道,对于我们所讨论的Abel群A,的自同构群AutA和自同态环的相伴Lie环EndA(一)是幂零的当且仅当它们是交换的.而且此时它们都具有相对简单的结构:AutA和EndA【一)是幂零(交换)的,如果A是满足极大条件的Abel群,当且仅当A是循环的;如果是满足极小条件的Abel群,当且仅当A是循环的或者是拟循环群的直和;如果A=Q0Q0…0Q当且仅当每一个Q是全不变的.2带极大或极小条件的Abel群设有限Abelp-群有分解A=(zpn)h0(n.)0…0(nr),其中r,ft是正整数,0<nl<n2<…<n.记群A的自同态环EndA=,群A的自同构群为AutA.下列的事实,见文【3-6】.(a)群A的自同态环=EndA可以表示成r×r矩阵环(岛),其中岛=Hom((nt)”,(n));(b)环有Jaeobson根=(),其中=pCi~;当i≠J时,J=(C)AutA的极大正规子群是△=1+.引理2.1【】除了n=2,IFI=2,3外,GL(F)是不可解的.以下总约定P为素数,z为整数环,Zp为进整数环,n=Z/(pZ)为模P剩余类环或P阶循环群.引理2.2(i)群GL2(Z)以及GL2(Zp)不可解;(ii)当素数P>2时,上的上三角可逆矩阵群()不是幂零的;(iii)当素数P>3时,Aut(m0n)不是幂零的.证记[,Y]=[z,Y,Y,…,],其中Y出现n次.环的满同态:Z一诱导群的满同态GL2(Z)一GL2(),同态像GL2()在P>3时是不可解的,因而GL~(Z)不可解.类似地,GL2(Zp)不可解.GL2(Z2)&,是可解的,而中一5-是平凡的,因此不是幂零的.考虑上的上三角可逆矩阵群(zp),由于[(G0o)]=(.1),当P>2时,取a:2,则[(((.1)组因此()不是幂零的.不妨设m≠佗(否则GL2(n)不可解),Aut(m0n)在Q1(m0n)上的限制同构于(),因此Aut(m0n)不是幂零的.6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群667定理2.1设是有限Abelp-群,且A=(n)”0(n).0…0(n),其中r是正整数,n1<n2<…<礼,ft都是正整数.则(1)当P>3时,AutA可解当且仅当f1:f2=…=0=1;(2)当P=2或3时,Aut可解当且仅当li≤2(1≤i≤r)证(1)当P>3,ll=12=…=f=1时,由文【8]中推论2.9知AutA△(一1),这里△=(AutA)是AutA的极大正规子群,因此是幂零群,则是可解群,(zp一1)是Abel群,即AutA是可解子群△=Op(AutA)被Abel群的扩张,因而是可解的.反之,假设存在某个li>1,则GL2(zpn.)≤AutA,但是GL2(nt)的商群GL2()是不可解的,矛盾.所以?1=f2=…=0=1.(2)当P=2或3时,ct≤2(1≤i≤r),由文[8】中定理1.1和命题2.2知rAutA△×lJGLt(),t=1这里△=(AutA),它是幂零的因而是可解的.由引理 2.1,当2t≤2时,GLl(zp)是可解群,则兀GLt()是可解的.则AutA是可解子群△=Op(AutA)被可解群0=lr兀GLf,()的扩张,因而是可解的.反之,假设存在某个fi>2,则GL3(nt)≤AutA,但是GL3(nt)的商群GL3()是不可解的,矛盾.所以li≤2.事实上,对于有界Abelp-群也有同样的结论,定理2.1的证明也同样适用.另一方面,有限Abel群可以分解为有限Abelp-群的直和,每个分支都是全不变的,则是特征子群,所以有限Abel群的自同构群可以分解为有限Abelp-群自同构群的直积.因此对有限Abel群总可以约化到定理2.1的情形,类似地对有界Abel群也一样.为便于叙述,我们首先给出下面的引理,它是本文计算某些自同构群的基础.引理2.3设是Abel群,B是的特征子群,且A=B0,则AutA=Horn(C,B)(AutB×Aut).证的所有稳定B的自同构构成AutA的一个子群,记为Aut(A)B,即Aut()B={∈AutAIB”=B).由于是A的特征子群,所以AutA=Aut(A)B.由文f9]中定理2.1知Aut(A)8=Der,B)Pair(C,B).由于A是Abel群B与C的直和,即A=B0C,因此平凡地作用在Abel 群B上,则导子就是它们之间的同态,即Der(C,B)=Hom(C,),668数学年刊32卷A辑并且由直接验算Pair(C,B)满足的条件,可知Pair(C,B)=AutB×AutC,因此AutA=Hom(C,B)(AutB×Aut),AutB×AutC在Hom(C,B)上的作用为(,(,))一&.定理2.2设是满足极大条件的Abel群,则AutA可解的充要条件是的挠子群的白同构群是可解的且ro(A)≤1.证若AutA可解,由引理2.2,GL2(Z)不可解,知ro(A)≤1,并且A的挠子群的自同构群是AutA的子群,因此是可解的,必要性已证.下证充分性.注意到的挠子群是A的特征子群,设为,如果TO(A):0,则A是有限群,此时归为定理2.1的情形.不妨设TO(A)=1,则A=T0Z,由引理2.3,可得AutA=Hom(Z,T))日(AutTXAutz),其中Hom(Z,T)T,AutZ=Z2.由假设,有AutT可解,因此AutA可解.类似地,对于满足极小条件的Abel群有下面的定理.定理2.3设4是满足极小条件的Abelp-群,则AutA可解的充要条件是A的既约子群R的自同构群是可解的且的极大可除子群D的秩r(D)≤1.证设A是满足极小条件的Abelp-群,的极大可除子群为D,既约子群为R,则‘A=D0R且D是A的特征子群.由引理2.3,可得AutA=Hom(R,D)>日(AutD×AutR),而Horn(R,D)是Abel群,因此AutA可解的充要条件是AutD,AutR是可解的,引理2.2说明GL2(Zp)不可解,其中z是P一进整数环.因此的极大可除子群D的秩r(D)≤1.若r(D)=1,即D=z..,熟知当P>2时,AutZp..~10zp.当P=2 时,AutZ2..Z20z2,其中z是进整数环.反之,4的既约子群R的自同构群是可解的且的极大可除子群D的秩r(D)≤1时,AutA可解.注意到满足极小条件的Abel群的自同构群是其P一子群自同构群的直积,因此满足极小条件的Abel群的自同构群是可解的充要条件是其所有子群的自同构群都是可解的.于是,结合定理2.1和定理2.3我们可以得到满足极小条件的Abel 群的自同构群是可解的充要条件.由引理2.2和引理2.3可以得到下面的定理.定理2.4(i)有限Abel2’-群A的白同构群AutA幂零的充要条件是rp(A)≤1,当且仅当是循环群;(ii)满足极大条件的Abel群且其挠子群是2一群的自同构群AutA 幂零的充要条件是有限且(A)≤1或A=Z,即为循环群;(iii)满足极小条件的Abel2/_群的自同构群AutA幂零的充要条件是A有限且rv(A)≤l或A=0...6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群669证(i)不妨设是有限AbelP一群,由引理2.2,当P>2时,T2()不是幂零的,因此不含形如m0的子群,即是循环群,rp(A)≤1.反之显然.(ii)假设Z=n0Z,则AutAn(AutnX),计算[(1,(1,1)),(0,(1,))]l其中Oz是z的二阶自同构,注意到它的作用方式把它写成矩阵形式[((呈)]=(.12)这里(一2)≠0是因为是2一群,因此AutA不是幂零的,所以或者有限或者自由循环,当有限时,由(i)知也是循环的.(iii)此时的证明方法同(为了处理P=2的情形,我们需要下面定理,见文『1O].稳定性定理设群G忠实地作用在群上,G稳定的如下长度为2的正规群列1≤W<记Z:=41(W)是的中f1.,它自然地作成一个一模,则G≤Der(v/z),其中Der(Z)是到z的所有导子作成的Abel群.定理2.5(i)设是有限Abel2-群,且A=(Z2n)0(Z2n2).0…0(Z2)L,这里nl<?22<…<几,l是正整数,则AutA幂零的充要条件是l=1.(ii)设是自由Abel群与Abel2-群的直和,则A的自同构群AutA幂零当且仅当A=2r2n0Z2nz0?-?0Z2n0Z,这里礼1<礼2<…<72r.(iii)满足极小条件的Abel2-群A的自同构群AutA幂零当且仅当A=Z2n①Z2nz0…0n0..,这里札1<佗2<-??<竹r.证(i)设是有限Abel2-群,且A=(Z2n)h0(Z2n.)120?-?0(Z2n),这里几1<?22<…<n,ll是正整数.当所有的i,1=1时,群4的自同构群AutA是一个2一群,因此是幂零的.反之假设存在某个ft>1,则GL2(n)≤AutA 且它的一个商群是GL(),由引理2.2是非幂零的,矛盾.(ii)设是自由Abel群与Abel2一群的直和,且自由子群是自由循环群z若Abel2一子群B=Z2n0Z2n①…0Z2(其中?21<礼2<…<礼),它是特征子群,由引理2.3,可得AutA=Hom(Z,B)×(AutB×Autz),其中Horn(Z,B)B,AutB是一个2一群,AutZZ2,则AutA是一个2一群,因此是幂零的.670数学年刊32卷A辑当A=Z2n0Z2n.0…0n0z时,证明其自同构群是幂零的另一个方法是:设C=2”A={2”aIa∈),其中n>n,则C2Z,它是的特征子群,A/Cz2n10Z2n20…0Z2n0zn.考虑G=AutA在0≤C<A上的自然作用.记ca(c)={∈GIc.=c,c∈), Cc(A/C):{∈Gl(a+)=a+C,a+C∈A/C},贝0c/ca(c)≤AutC,C/Ca(A/C)≤Aut(A/C),且c/ca(c)rhCa(A/C)≤c/cc(c)XG/Ca(A/C),又cc(c)nCc(A/C)稳定,0<C<A,故根据稳定性定理知cc(c)nCG(A/C)≤Der(A/C,),A/C是有限的,而C是自由循环群,因此Der(A/C,C):Hom(A/C,C)=0.AutA/C是一个2一群,AutC,则G≤AutC×Aut(A/C)是幂零群.反之若AutA是幂零群,则AutA的子群AutB是幂零的,当且仅当B=Z2n0Z2”0…0…由于GL2(Z)不是幂零的,因此自由子群是自由循环群z,因此A=z2n0Z2n20…0n0Z,其中nl<n2<…<nr.(iii)由(ii)以及引理2.2知条件是必要的,下证充分性.设A=Z2n0Z2n20…0n0..,这里仡1<n2<…<nr,设B:Q2n(A)={0∈Al2ha=0),其中n>n,则Bz2n10z2n20…0n0n,它是A的特征子群.考虑G=AutA在0≤B<A上的自然作用.记Ca(B)=fQ∈G1b.=b,b∈B),Cc(A/B)={∈Gl(a+B)”=a+B,a+B∈A/B},则C/Ca(B)≤AutB,C/CG(A/B)≤Aut(A/B),且C/CG(B)nCc(A/B)≤C/Cc(B)×C/Cc(A/B).又Cc(B)nCc(A/B)稳定,0<B<A,故根据稳定性定理知Cc(B)nCc(A/B)≤Der(A/B,B),A/BZ2o.是可除的,而B有限,因此Der(A/B,B)=Hom(A/B,B)=0.AutA/B(o.)=Z20Z2是Abel群,由(i)知AutB是一个2一群,则C≤AutBXAut(A/B)是幂零群.下面讨论带极大,极小条件的Abel群的自同态环构成的Lie环是可解,幂零的条件,为此需要下面的引理.引理2.4(m)(一)可解,坞()(一)不可解.证直接计算可得[(),()]=(c—brz+-cyd一.6cr一一d).6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群671设L=M2(Z2)(一,则由上面的计算知则则)lm)为了计算,在上式中令d=一a,r=一x,有[),G)]=(2.b…z-cyn名一),{(m).令b=2b1,c:2c1,Y=2yl,=2zl,有),()]一blz…l-cly哪yza-bmlx/,)c∈m)归纳地,知M2(Z2m)(一)可解.记K=M3(Z2)(_.,则K=(e),其中表示(J)位置为1,其它位置全为0的矩由于当i≠J时,,eij1=eij,[eij,eft]=eli—ejj,有K=(eij,eii—eli≠歹).又因n>2,存在k满足k≠i,k≠J,i≠J,则eij=【eik,ekj],eii一jJ=【eij,e所以K=K≠0,因此不可解,即M3(Z2)(一)不可解引理2.5当P>2时,()(一)不可解;相伴Lie环(z)(一)和(zp)(一)不可解.证取L=(el2,e21>,由于(e12,e21】=ell—e22,【611一e22,el2】=2e12,【ell—e22,e21】=一2e21, 则el1一e22,e12,e21∈L,归纳地,对任意的正整数此()(一)不可解.m,有el1一e22,e12,e21∈(,则()≠0,L不可解,因()(一)是(z)(一)和Mn(Zp)(一)在自然同态z一以及zp一下诱导的Lie环同态像,因此(z)(一)和(zp)(一)不可解.定理2.6设P是奇素数,记A=(n)ll④(n.)④…0(),这里扎1<n2<…<n,如是正整数,则End(一)可解的充要条件是如=1672数学年刊32卷A辑证如果End(一)可解,由引理2.5知1=1,否则存在一个子环()(一)不可解,矛盾.另一方面,如果li=1,则A=n10zpn20 0EndA{(aij)laijEHorn(,’))且i<J,Pln巧.记L=End(_.,Cij=∑(aikakj—bikakj),如果cij∈L,则PlCij,i≤J.归纳地, Cij∈(,对任意的i,J,有PI.,且当i<J时,P.l,继续重复上述过程,直到Cij=0,因此可解.也可以用另外一种方法来证明可解:EndA在【21(A)上的限制就是n一诱导的环同态,即对每一位置模P,同态像是上的一个三角矩阵,同态的核是每个位置元素都能被P整除的数,即0Mod(p).由环的同态得到Lie环的一个同态,结合可解Lie环在扩张下封闭的性质得到Lie环L=End(一)是可解的.定理2.7设A=(Z2n)/10(Z2)120…0(Z2),这里n1<Tt2<…<n,f是正整数,则End(一)可解的充要条件是ft≤2证设fi≤2,自然同态z2n.一z2诱导的环同态,End(一)的同态像是一个下对角矩阵,并且对角线上是1阶或2阶可解块,因此同态像可解,同时核满足2Ia同上述定理相同的证明方式,知其可解,得到End(一)可解.反之,由引理2.4,如果End(一)可解,则li≤2.定理2.8设A是满足极大条件的Abel群,则End(一)可解的充要条件是EndA可解且_r0(A)≤1.证设A=0A0Z,0A是A的全不变子群,).(~EndAEndZEndA【H.m(z)J(,z/),又(0EndAp)~0EndA和z(一)都是可解的,按分块矩阵计算知EndA(一)是可解的.反之,End是End(一)的子环显然可解,且()(一)不可解,因此ro()≤1.类似的方法可以得到下面极小条件下的定理.定理2.9设是满足极小条件的Abel群,则End(一)可解的充要条件是EndA可解.End可解当且仅当End磷可解且rank(Dp)≤1,其中Rp和Dp分别是A的既约子群和极大可除子群.的引理2.6(z)(一)不是幂零的,若=n0m,n<m,则EndA(一)不是幂零证注意到对任意的正整数n,[el2,?tc22]=el2≠0由引理2.5和引理2.6,立即可得下面的定理6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群673定理2.10(i)有限Abel群的自同态环的相伴Lie环幂零的充要条件是rp(A)≤1;(ii)满足极大条件的Abel群A的自同态环的相伴Lie环幂零的充要条件是有限且口(A)≤1或A=z;(iii)满足极小条件的Abel群的自同态环的相伴Lie环幂零的充要条件是有限且rp(A)≤1或A=0..;P(iv)满足极大或极小条件的Abel群4的自同态环的相伴Lie环幂零的充要条件是的自同态环的相伴Lie环是Abel的.3完全分解的无挠Abel群下面考虑这样一类Abel群,首先介绍符号和一些简单的结论:记丌为某些素数的集合,设Q={兀.mIm,m∈Z}.对群Q有下列简单事Pl∈7r实:(a)Q的元具有无限丌一高,有限丌一高,即任意的P∈7r,P高为0(3,否则为有限.(b)Q的任意一个自同态可以由1的像完全决定.事实上,m=(m?1)妒=m?1;由(pp)=1,知p?(p)=1,因此(p)妒=p1妒,所以(兀m)妒=兀m?1;pp(c)如果71”17I”2,则Horn(Q,Q.)=0,否贝0Horn(Q,Q.)Q.事实上,如果丌17r2,存在P∈丌1一丌2,Q中的任意元具有无限71”1一高,特别地,1具有无限高,若∈Hom(QQ.),则1∈Q.也具有无限p一高,则1=0,因此Horn(Q丌l1Q)=0.如果71”171-2,任意的∈Hom(Q丌¨Q.),由1的像1完全决定,而1∈Q.,因此Horn(Q,Q.)Q..特别地,EndQ=Horn(Q,Q)Q.(d)AutQQ={l=士11p.,Pi∈7r,仃∈z)z2①ZI.特别地,AutQpQ=r,oZ2④Z.这是因为EndQ=Horn(Q,Q)Q,因此AutQQ.若兀m∈Q,则存在p:.兀他∈Q,使1=兀m兀n=兀m佗,贝0mn=1,m=土1.pppp设A:Q0Q.0…0Q此时称是”完全分解”的,首先我们讨论秩为2即=Q0Q.的情形.A=Q0Q的自同态环和自同构群具有下面的矩阵表达形式:EndA竺{I兰三}I∈Itom(p,Q),{,J=1,2},AutA』【【2()可逆,∈H.m(Q,Q)下面按集合71”1和71”2的包含关系分别讨论群A=Q0Q.的白同构群以及自同构群的可解幂零性.(i)当71”171”2,71”271”1时,记71”1=71”2=7r.End[g>(,AutGL2(674数学年刊32卷A辑由于GL2(Z)≤GL2(Q),而GL2(Z)是不可解群,因此GL2(Q)也不可解.GL2(Q)的中5-为CGL2(Q)=)aEQA),铡).易知O.charA,而A=Q0O由引理2.3,知AutAHom(O,O)>日(AutOXAutO)O.(Q.×Q)是可解的,但不是幂零的,事实上,Aut(!)f.∈AutQ.,c∈AutQ~,bEHom(Q,Q:>.若(!)∈~AutA,则()=)=I1c+)=(舌,6=..取是嵌入同态,则.限制在Q等于c,记为..所以()a01),即(~AutA=()I.).若1)∈(~2AutA,则对任意的)∈AutA,有[(6)j(舌tA又(=(.一)一[(),(吾)]=(n0一一ac一-16.)(0一一X--一1)(a..b)(苦Y) =(.1).由于(01)∈<Aut,其中=一a-1bc+X--1yz+a-ix一(6一y)zc=0,对任意的∈Q.,∈Q,Y∈Q成立.若Y=0,即一a-1bc+a-ix_1bzc=0,则b=0,且2C--lyz—a-1-1yzc=0,则a】=c.因此()=()∈(AutA,AutA=(AutA≤AutA,AutA不是幂零群.6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群675当I71-2J<..时,AutA=Q.(AutQ×AutQ.)是有限生成的可解群,但不是多循环的,由于Q.不是有限生成的.而超可解是多循环的,因此它不是超可解的.(iii)当71”171”2,7r27r1时,E..%OZI#ll~.,此时AutA是Abel群.因此若AutA是超可解或多循环的,则AutA是幂零的且是Abel的.当且仅当7rl丌2,7r27r1.一般地,有下面定理.定理3.1设A=Q0Q.0…0Q其中Q:{nm}mi,m∈Z},这里.1rk为某些素数的集合,则AutA可解当且仅当对任意的i≠J,71”i≠7rj.证当7’=2时,由前面的叙述(i)一(iii)知AutA可解当且仅当71”1≠71”2.先证充分性.假设对某个i≠J,7I”i=,当k≠i,时,设A1={∈AutAl使在Q上的限制为1,即lQ:1Q),则1是AutA的子群,且A1GL2(Q.),而GL2(Q)是不可解的,从而1是不可解的,于是AutA不可解,与已知矛盾.再证必要性.如果对任意的i≠J,亿≠,那么存在一个元,不妨记为丌,满足对任意的i≠r,有丌,否则,必有某两个集合相等,与已知矛盾.这样的丌称为集合{『1≤i≤r)的极大元.显然QcharA,则.r一1,,r一1,AutAHorn(0QQ)>日(Aut0Q×AutQ~r)jt=1i=1,r一1,r一1其中Horn(0QQ)0Horn(QQ)与AutQ都是Abel的,对r进行归,i=1=1 r一1纳,知Aut0Q是可解的,因此AutA是可解的.=1定理3.2设A;Q0Q.0…0Q其中Q:{npmIIYt,,m∈Z},这,pt∈丌’里丌为某些素数的集合,则AutA幂零当且仅当对任意的i≠J,死.证当r=2时,由前面的叙述知道AutA幂零当且仅当丌1/1”2,丌2丌1.先证充分性.如果对某个i≠J,7ri7r{,当k≠i,J时,设A1={∈AutAI使在Q上的限制为1,即lQ=1Q),则A1是AutA的子群,当死:时,A1GL~(Q);当时,AutAQ)日(AutQ×AutQ),而aL2(Q)和Q丌j(AutQ×AutQ丌j)都不是幂零群,因此A1不是幂零的,与AutA幂零矛盾.再证必要性.如果对任意的i≠J,7ri,则Horn(QQ)=0.676?数学年刊32卷A辑因此EndAA,AutA(Q)×(Q)×-??×(Q)日≥(z2.z’z’),=1AutA是Abel的,因而是幂零的.推论3.1设A=Q0Q0…0Q其中Q:{兀pmI?gti,m∈Z},这Pl∈.a-k. 里丌为某些素数的集合.则下列条件等价:fa)AutA是多循环的;(b)AutA是超可解的;fC]CAutA是幂零的;(d)AutA是Abel的.注意到群G称为是B的,如果G有一个正规列G=G1>G2>>Gn=1,即G司G,且Gi/Gi+1≤Q或Gi/Gi+l≤Q/z.定理3.3设A=Q0Q0…0Q其中Q={兀pmImt,仇∈z},这Pi∈7rk0里7r为某些素数的集合,则AutA是B1的当且仅当AutA是可解的. 证充分性显然,因为由定义B是可解的.下证必要性.当r=2时,AutAQ>日(AutQ×AutQ.)或AutA=r-oAutQl×AutQ2.若AutAQ:(AutQ×AutQ.),贝40<Q2<QZ2<Q.(Z20Z2)<Q.(Z20Z20Z)<Q>日(Z20Z20Z)<<Q.(Z20Z20Z/】+l.I)=AutA是AutA=Q.(AutQ×AutQ.)的一个正规列,其商因子分别为QZ2,Z2,Z,-? z,而QZ是Q的子群,是O,/Z的子群,因此AutA是B1的.如果AutA=e-,4AutQ1×AutQ2Zg.0Zl10Z20Zl,则AutA是Abel群,且可以分解为和z的直和,因此也是B1的.所以当r=2时,AutA是可解的则是B1的.当r≥3时,由定理3.1,存在一个极大元丌,使QcharA,则AutAHorn((~QQ)×(Al1t0QAutQ).记s=ml7r,1≤i<r)l,有r一1r一1Horn(Q,Q)Horn(Q,Q)Q,6期廖军杨艳刘合国带有限性条件Abel群的自同态环和自同构群677可以得到,r一1,AutAQ(Aut≥Q×AutQ).因Q,AutQ是B1的,由归纳假设Aut0Q是B1的,易知AutA是B1的. 定理3.4设A=Q0Q.0…0Q其中Q={兀pmlmi,m∈Z},这里丌k为某些素数的集合,则(a)EndA(一)可解的充要条件是7i”i≠对任意的i≠J;(b)EndA(一)幂零的充要条件是71”i对任意的i≠J,此时它是Abel的,其中End(一)是由自同态环EndA的加法群以及Lie积Y]=xy—yx构成的相伴Lie环.证先讨论r:2的情形:(i)当71”1=71”2时,EndA=(Q),由于(z)(一)≤(Q)(一)是不可解的,所以M2(Q)(一)不可解;(ii)当丌丌.,7r2丌时,End(Q~l.Q.)(%g),此时它构造的Lie环是可解的不是幂零的,因为[e12,n~22】:e12;(iii)当7r1丌z,7r271”1时,End(Q.Q.)(%.),此时的Lie环是幂零的,并且是交换的.一般地,如果71”i≠对任意的i≠J,则存在一个极大元丌,即7r,设A=B0Q,那么Q是全不变的,Ena(EBH.m),由于EndB(一)是可解的,因此EndA(一)可解.反之,显然有≠霄j对任意的i≠J.这就证明了第一部分.71”i对任意的i≠J,此时EndA0EndQAi是Abel的,因此是幂零的.反之由r=2情形易得对任意的i≠J,7ri参考文献[1]RobinsonDJS.Acourseinthetheoryofgroups[M].2nded.NewY ork:Spri nger—V erlag,1995.【2]KhukhroEI.p-AutomorphismsoffiniteP—groups[M】.Cambridge:Ca mbridgeUniver—sityPress,1998.[31Avifi6MA,SchultzP.Theuppercentralseriesofap-groupactingonaboun dedAbelianP—Group[EB/OL].arXiv:math.GR/0606605.『41Avifi6MA,SchultzP.TheendomorphismringofaboundedAbelianp-gro up[M]//678数学年刊32卷A辑AbelianGroups,RingsandModules,ContemporaryMathematics.V ol273,P rovidence,RI:AmerMathSoc,2001:75—84.[5】FuchsL.InfiniteAbeliangroupsV olI[M].NewY ork:AcademicPress,1970.[6]HausenJ,SchultzP.Themaximalnormalp-subgroupoftheautomorphism groupofanAbelianp-group[J】_ProcAmerMathSoc,1998,216:2525—2533. [7]AlperinJL,BellRB.Groupsandrepresentations[M】.NewY ork:Springe r—V erlag,1995.[8]Avifi6MA.SplittingtheautomorphismgroupofanAbelianp-group 【EB/OL].arXiv:math.GR/0603747.【9]樊恽,黄平安.分裂扩张的稳定自同构群[J].数学年刊,2001,22A(6):791—796.[10】SegalD.Polycyclicgroups[M】.Cambridge:CambridgeUniversityPress,19 83.EndomorphismRingsandAutomorphismGroupsof AbelianGroupswithFinitenessConditionsLIAOJunYANGY an.LIUHeguo. SchoolofMathematicalSciences,PekingUniversity,Beijing100871,China. E—mail:*************.an2DepartmentofMathematics,HubeiUniversity,Wuhan430062,China. E—mail:unicornyy~163.corn3Correspondingauthor.DepartmentofMathematics,HubeiUniversity,Wlu han430062,China.E—mail:ghliu~.ca AbstractLetAbeanAbeliangroupwithmaximumorminimumcondition.Th eauthors givenecessaryandsufficientconditionsfortheautomorphismgroup(resp.Li eringasso—ciatedwiththeendomorphismring)beingsolvable(resp.nilpotent).Moreove r,necessary andsufficientconditionsfortheautomorphismgroup(resp.Lieringassociate dwiththeendomorphismring)beingsolvable(resp.nilpotent)forA=Q7r10Q20…0Q 7rarealsogiven.KeywordsAutomorphismgroup,Endomorphismring,Solvable,Nilpotent 2000MRSubjectClassification20K30,20F16,20F18。

抽象代数知识点总结

抽象代数知识点总结

抽象代数知识点总结一、群的基本概念与性质1、集合及其基本概念集合是研究对象的所有对象的总体,且每个对象都是它的一个成员。

集合的基本概念有空集、全集等。

2、二元运算及其基本性质设M是一个非空的集合,如果对于M中的每一对元素(a,b),都有一个元素:c与之对应,那么就称c在二元运算下,是a和b的像,记作:c=a*b or c=ab 或c=a×b。

3、群的基本概念设G是一个非空集合,*是G上的一个二元运算,如果满足下列4条性质:1)封闭性:对于G中的任意两个元素a、b,有a*b=c,则c也是G中的一个元素。

2)结合律:对于G中的任意三个元素a、b、c,有(a*b)*c=a*(b*c)。

3)存在单位元:存在G中的一个元素e,对于G中的任意一个元素a,都有e*a=a*e=a。

4)存在逆元:对于G中的任意一个元素a,存在G中的一个元素b,使得a*b=b*a=e。

则称(G,*)为一个群,*e*为群的单位元,b为a的逆元。

4、群的基本性质群具有唯一性、反号的相等性、等式的一般性质以及二次方向等性质。

5、群的记号与群的表示法群记号一般由两部分组成,它们的含义可以简单分别叫做群名和运算名,前者表示群的所有元素的种类,后者表示群的元素相互之间的运算。

这是群的基本概念与性质的介绍,群是代数结构中的一种基本结构,具有很强的普适性,因此在很多数学分支中都有广泛的应用。

二、群的子群与陪集1、子群的定义设(G,*)是一个群,对于G的一个非空子集H来说,如果在G的运算*下,H构成一个群,则称H是G的一个子群。

2、子群的判定定理判定定理是指定群的一个非空子集是否为子群的方法,使得许多确定子群是否存在的问题可以迅速得到解决。

3、陪集的基本概念给定群G,a是G的一个元素,在G中a的左陪集和右陪集分别定义。

4、陪集的划分与陪集的等价关系陪集的划分是一个重要概念,若H是G的一个子群,a是G的一个元素,G可被H分成无穷个不相交的子集(陪集):aH={(ah|h∈H)}及Ha={(ha|h∈H)}三、同态与同态定理1、同态的定义设(G,*)和(G’,*’)是两个群,如果G、G’之间的映射f满足一定条件,即对于任意的a.b∈G,有f(a*b)=f(a)*’f(b),则称映射f为从(G,*)到(G’,*’)的同态映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理 1[1] 群范畴中存在自由对象
根据文献[1]中定理Ⅱ.1.1,在 Abel 群范畴中同 样存在自由对象。 下面用另一种方法证明该结论, 这要引用上面的定理 1 及下面的两个引理:
引理 1[2] 如果 f:G→H 是群同态,N 是 G 的正规 子群,并且 N奂Kerf,则存在唯一的同态 f:G/N→H, 使得对所有 a∈G,f(N)=f(a),Imf=Imf,Kerf=Kerf/N。
23
金华职业技术学院学报
2010年
理证毕。 对 整 数 集 Z,令 Z[i]={a+bi︳a,b∈Z},易 知 Z[i]
关于数的加法,乘法均成整环,称之为高斯整数环。 文献[2,3]中都证明了 Z[i]是欧氏环,下面给出该结 论的另一个证明。
定义 2 设 D 是一个整环,若存在 D-{0}到非负 整数集 N 的一个映射 f, 使得对任意 a,b∈D,b≠0 均有 q,r∈D,满足
About the Proof of Two Conclusions in Abstract Algebra
— ——A note on Free Abel Group and Gaussian Integral Ring YU Min1,JIAO Ya-min2
(Shanxi Economy-Trade School,Xian 710075,China) Abstract:Reference [1],[2],[3] have given traditional demonstration of two conclusions in Abstract Algebra that there exists Free Abel Group and Gaussian Integral Ring is Euclidean Ring. This article indicates a new method of proof. Key words:Free Abel Group,Euclidean Ring,prove
设另有同态映射 h:F1→A,使得 hi1=f1,则 hπ 是 F 到 A 的同态,且(hπ)i=h(πi)=hi1=f1,这样,对于群 A,及 f1:X→A,有两个同态 F 到 A 的 hπ 及 g,使得 gi=(hπ)i=f1,由于 F 是自由群,故 hπ=g,注意到 π 是 同态满射,即对坌x∈F1,必有 a∈F 使 π(a)=x,从而 h(x)=h(π(a))=hπ(a)=g(a)=f1π(a)=f1(π(a))=f1(x),

,n>r1>
n 2
,从而
0>
r1-n>-
n 2
,即 0>r>- n 2
,|r|< n 2

② 若 r1<0,取 r=n+r1,q=q1-1,则 a= q1n+ r1=(q1-1)
参考文献:
n+(r1+n)=`qn+r。
此时,n>
-r1>
n 2
,从而
0>-r1-n>-
n 2
,即
0<r<
n 2
,|r|<
(r)f(β軌),f(ββ軌)=f(β)f(β軌),f(β軌)>0,从而 f(r)<f(β)。
这里应用了如下结论:
坌α,β∈Z[i],f(α)f(β)=f(αβ)。
事实上,令 α=a+bi,β=c+di,则
f(αβ)=f((ac-bd)+(ad+bc)i) =(ac-bd)2+(ad+bc)2 =(a2+b2)(c2+d2)= f(α)f(β)。
第 10 卷第 3 期 2010 年 6 月
金华职业技术学院学报
关于抽象代数中两个结论的证明
— ——关于自由 Abel 群及高斯整数环的注记
于 敏 1,焦亚民 2
(陕西省经贸学校,陕西 西安 710075)
Vol.10 No.3 Jun. 2010
摘要: 对抽象代数中如下两个结论:(1)存在自由 Abel 群;(2)高斯整数环是欧氏环。在文献[1]、[2]、[3]中都给出了 传统理论意义上的证明。 此文分别给出一种不同于已有文献的证明方法。
di,β≠0,由于 ββ軌=c2+d2>0,故据(2)有 q,r0∈Z[i],使
得 αβ軌=q(ββ軌)+ r0,r0=0 或 f(r0)<f(ββ軌)。
取 r=α-qβ,则 α=qβ+r。 若 r≠0,由于 rβ軌=αβ軌-q(β
β軌)= r0, f(r0)<f(ββ軌),于是 f(rβ軌)<f(ββ軌),注意到 f(rβ軌)=f
引理 2 [2] G 是一个群,a,b∈G,aba-1b-1 称为 a 和 b 在 G 中的换位子,G 的所有换位子生成的子群 [G,G]称为 G 的换位子群(或导群)。 [G,G]是 G 的正 规子群,且其商群 G/[G,G]是 Abel 群。 此外,若 K 是 G 的正规子群而 G/K 是 Abel 群,则[G,G]哿K。
综上所述,Z[i]是欧氏环。
[1] HUNGERFORD THOMAS w. Algebra[M]. New York:Springer-Verlag,1974. [2] 姚慕生. 抽象代数[M]. 上海:复旦大学出版社,1998. [3] 胡冠章. 应用近世代数[M]. 北京:清华大学出版社,1999.
q2β+r2,|r1|≤
β 2
,|r2|≤
β 2

这里 q1,q2,r1,r2∈z,
取 q=
q1+ q2i,r= r1+ r2i, 则 α=qβ+r, 而 r=0 或 f (r)= r12+
r22≤
β2 4
+ β2 4
<β2=f(β)。
现设 α,β 是 Z[i]中任意两个元素,α=a+bi,β=c+
这说明 h=f1。 综上所述,F1 是 Abel 群范畴中的自由对象。 定
收 稿 日 期 :2010-01-22 作者简介:于 敏(1963- ),女,陕西西安人,陕西省经贸学校讲师,研究方向为代数研究;焦亚民(1960- ),男,陕西西安人,陕西 省 经 贸 学 校 高级讲师,研究方向为代数研究。
g(x)=g(aba-1b-1)=g(a)g(b)g(a-1)g(b-1)= g(a)g(a-1)g(b)g(b-1)=g(aa-1)g(bb-1)=0
这里应用了 A 的可换性,O 是 A 中的单位元,于是由 引理 1,存在唯一的同态 f1:F1=F/[F,F]→A 使得 g=f1π, 从而 f1i1=f1(πi)=(f1π)i=gi=f1,即只要取 i1=πi,则对任 意 Abel 群 A 及映射 f1:X→A,均存在同态映射 f1:F1→ A,使得 f1i1= f1。 下证满足此性质的 f1 是唯一的。
根据以上定义、定理、引理,可以用新的方法证 明以下命题:存在自由 Abel 群。
定理 2[1] Abel 群范畴中存在自由对象
证明 由定理 1,群范畴中存在自由对象 F,令 F1
F→G,使得 fi=f,于是,对于任意 Abel 群 A 及映射 f1: X→A,均存在唯一的同态映射 g:F→A,使得 gi=f1。

r,使得
a=qn+r,其中
|r|≤
n 2

由于整数环是欧氏环,故对任意整数 a,n,n>0,
存在整数 q1,r1,使得 a=q1n+r1,|r1|<n。

果|r1|≤
n 2
,则取 r=r1,q=q1,结论(1)成立。

果|r1|>
n 2
,分两种情况讨论:①
若 r1>0,取 r=
r1-n,q=q1+1,则 a= q1n+ r1=(q1+1)n+(r1-n)=qn+r。 此
由于 F 是群范畴中的自由对象, 故对任意非空
空集合,i:X→F 是集合之间的映射,称 F 在集合 X 上
集合 X, 有集合间的映射 i:X→F, 使得对任意群 G
是自由的, 是指 & 的每个对象 A 和集合之间的映射
及集合间的映射 f:X→G,均存在唯一的同态映射 f:
f:X→A,均存在 & 中唯一的态射 f:F→A,使得 fi=f。
取 i1=πi,其中 π 为 F 到 F1=F/[F,F]的正则射影 (即坌x∈F,π(x)=x[F,F],是 x 所在的陪集),则 i1 是 X 到 F1 的映射。 由于 g 是 F 到 A 的同态,[F,F]是 F 的正规子群,易知[F,F]哿Kerg(对任意 x∈[F,F]),存 在 a,b∈F 使 x= aba-1b-1,而
关键词:自由 Abel 群;欧氏环;证明 中图分类号:O153 文献标识码:A 文章编号:1671-3699(2010)06-0023-02
关于范 畴 中 的 自 由 对 象 ,自 由 群 ,文 献[1]中 有 如下的定义和结论。
定义 1 假设 F 是范畴 & 中的一个对象,X 为非
是 F 关于其换位子群[F,F]的商群 F/[F,F],由引理 2,F1 是 Abel 群。 下证 F1 即是 Abel 群范畴中自由对象。
n 2

总之,(1)成立。
欲证坌α,β∈Z[i],β≠0,存在 q,r∈Z[i],使 α=qβ+ r,r=0 或 f(r)<f(β)分两步证明,首先证明下述结论:
(2)对任意的 α=a+biZ[i],β∈z,β>0,存在 q,r Z
[i],使 α=qβ+r,r=0 或 f(r)<f(β)。
对于 a,β 及 b,β 应用结论 (1) 得:a=q1β+r1,b=
相关文档
最新文档