考研数学利用变限积分求导计算函数极限的方法

考研数学利用变限积分求导计算函数极限的方法
考研数学利用变限积分求导计算函数极限的方法

考研数学:利用变限积分求导计算函数极限的方法

在考研数学中,利用变限积分求导来计算定积分、函数极限和证明积分等式或不等式是常考的题型,事实上,变限积分是与微积分基本定理(牛顿-莱布尼茨公式)紧密联系在一起的,其重要性不言而喻。在上一篇文章中,文都考研数学辅导老师向大家介绍了利用变限积分求导来计算定积分的技巧,下面对利用变限积分求导来计算函数极限这类题的解题方法进行分析介绍,供各位考生参考,希望对大家有所裨益。 变限积分求导的基本公式: 公式1:若()f x 连续,则

()()x

a

d f t dt f x dx =?; 公式2:若()f x 连续,12(),()x x ??可导,则21

()

2211()()(())()(())()x x d f t dt f x x f x x dx ??????''=-? 利用变限积分求导计算函数极限的基本方法:

1)如果函数是含变限积分的分式,可以考虑使用变限积分求导法计算极限; 2)通常是对

00型和∞

型不定式积分使用,并结合洛必达法则使用; 3)如果被积函数中含参数x ,应该先将参数x 分离出来,提到积分号前面去。

例1. 求极限2

2

2lim

x t x x te dt

x e

→∞

?

解析:这是一个

型不定式极限,可以运用洛必达法则,而分子是一个变上限积分函数,因此可如下计算:2

2

2

2

2

20

232lim

lim

22x t x x x x

x x te dt

x e x x e

xe x e →∞

→∞

?==+?2

2

lim

11x x x →∞=+ 例2. 0

()()(0)0,lim

()x

x x tf x t dt

f x f x f t dt

→-≠??若连续,求

解析:这是一个

型不定式极限,可以运用洛必达法则,但分子中的被积函数含参数x ,需要先将x 分离出来,提到积分号外面去,这可以通过积分换元法实现,具体过程如下:

1.()()()()()()()x t u

x

x

x

x

x

tf x t dt x u f u du x t f t dt x f t dt -=-=

--=

-=-??

?

?

?

()()()()2.lim

lim

lim

()()()

()()

x

x

x

x

x

x x

x x x f t dt

x f t dt tf t dt

f t dt

x I x f t dt

f t dt xf x f t dt f x x

→→→-===++?

?

???

?

?

()(0)1

3.

lim

lim ()(0),(0)(0)2

x

x x f t dt f f x f I x

f f →→==∴=

=+?

例3. 224

00

0()()

()lim 2,()(),lim x x x f x F x f x F x tf x t dt x

x →→==-?设连续,

求 22

2202

2

2222

00

1111.()()()()(

222x t u x

x x x F x tf x t dt f x t d x t f u du f -==

-=---=-=?

???解:()

22204432000011

()()2()1()1222.lim lim lim lim 442

x x x x x f u du f x x F x f x x x x x →→→→??====? 上面就是对考研数学中利用变限积分求导来计算函数极限这种题型的基本解题方法,在以后的时间里,文都考研数学辅导老师还会向考生们介绍利用变限积分求导来证明积分等式或不等式的解题技巧,以及考研数学中其它常考题型和相应的解题方法,希望各位考生留意查看。最后预祝各位学子在2015考研中取得佳绩,成功实现自己的人生梦想。

隐函数的求导方法总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

隐函数与参数方程求导法则

5.3 隐函数与参数方程求导法则 一、隐函数求导法则 表示函数f (对应关系)有多种不同的方法,其中有这样一种方法,自变量x 与因变量y 的对应关系f 是由二元方程F (x ,y )=0所确定。 定义 设有两个非空数集A 与B.若A x ∈?,F (x ,y)=0对应唯一一个B y ∈,则称此对应关系f (或写为y=f (x))是二元方程F(x ,y)=0确定的隐函数。 由隐函数的定义看到,二元方程F(x ,y)=0确定的隐函数y=f (x)(A x ∈,B y ∈)必是二元方程F(x ,y)=0的解,因此,A x ∈,有 F[x ,f(x)]=0 (或F[x ,f(x)]≡0 ). 例如,二元方程F(x ,y)=2x-3y-1=0在R 确定(从中解得)一个隐函数。 事实上,R x ∈?,由二元方程对应唯一一个312-= x y R ∈,且 F (x , 312-x )=2x-33 12-x -1≡0. 二元方程F(x ,y)=x 2+y 2-a 2=0(a>0)在A=[-a ,a]确定两个连续的(B 1=[0 ,+∞)与 B 2=(-∞ ,0])隐函数。 事实上,],[a a x -∈?,由二元方程对应唯一一个1y =],0[122+∞=∈-B x a ,且 0),(),(221≡--=x a x F y x F 与]0,(2222-∞=∈--=B x a y ,且 0),(),(222≡--=x a x F y x F 于是,二元方程F(x ,y)=x 2+y 2-a 2=0在A=[-a ,a]确定了两个连续的隐函数。 ],0[221a x a y ∈-= 与]0,[222a x a y -∈--=。 这两个隐函数的图像是以原点为心以a 为半径的在区间],[a a -的上半圆周与下半圆周,如图5.5 由此可见,所谓隐函数就是对应关系f 不明显的隐含在二元方程之中,相对隐函数来

作业11隐函数与参数方程求导

1、填空题 1)设函数()x y y =由方程() x y x y x sin ln 3 2 +=+确定,则()= '0y 1 2)设()()???-=-=13t e f y t f x π,其中()t f 可导,且()00≠'f ,则= =0 t dx dy 3 3)设()0,0>>? ? ? ????? ????? ??=b a a x x b a b y b a x ,则=dx dy ()??? ? ????? ??-+??? ??---1ln a b x a b x b a x a b a b a b x a b a b 2、求下列方程所确定的隐函数()x y 的导数 1)xy x y e += 解:方程两边关于x 求导得:()1 11xy xy xy ye y e y xy y xe -'''+=+?=-。 2)()tan cos y x x y =+ 解:方程两边关于x 求导得:()()2 tan sec 1sin y x y x y x y ''+=-++?。 ()()2sin sec sin tan x y y x y x y x -+-'=++ 3 ()0a =>上任意一点处的切线在坐标轴上的截距和为常数 a 。 证明:方程两边关于x 0y y ''+=?=()00,x y 为曲线上 任意一点,此点处切线方程为)00y y x x -=-,其对应截距式方程为 1= a == 4、求下列函数的导数dx dy 1) y xe =

解:方法一、 22cos 1x x e x y e xe -'= 方法二、y xe = ()21 ln ln ln sin 12 y x x x =++- 两边关于x 求导得:()() 22 cos 111 1sin 1x x y y x x -'=+ +- ()()2 2 cos 111sin 1x x y xe x x ?-'?=++?-? 2)()()x y y x sin cos = 解:()()x y y x sin cos =两边取对数得: y x x y sin ln cos ln = 两边关于x 求导得:y y x y x y x y '?+=-'cot sin ln tan cos ln y x x y x y y cot cos ln sin ln tan -+= ' 5、求下列参数方程所确定函数的导数 dx dy 1)()32 ln 1x t t y t t ?=-+??=+?? 解: () ()()()()322323211ln 111t t dy t t t t dx t t t '++===++'-+-+ 2)()?? ?=-=θ θθθcos sin 1y x 解:()()()θ θθθθθθθθθcos sin 1sin cos sin 1cos ---='-'=dx dy 6、求三叶玫瑰线()()03sin >=a a r θ上对应于4 π θ=点处的切线方程(直角坐标形式)。 解:?? ?====θ θθθθθsin 3sin sin cos 3sin cos a r y a r x ,θθθθθ θθθsin 3sin cos 3cos 3cos 3sin sin 3cos 3a a a a dx dy -+=

考研数学利用变限积分求导计算函数极限的方法

考研数学:利用变限积分求导计算函数极限的方法 在考研数学中,利用变限积分求导来计算定积分、函数极限和证明积分等式或不等式是常考的题型,事实上,变限积分是与微积分基本定理(牛顿-莱布尼茨公式)紧密联系在一起的,其重要性不言而喻。在上一篇文章中,文都考研数学辅导老师向大家介绍了利用变限积分求导来计算定积分的技巧,下面对利用变限积分求导来计算函数极限这类题的解题方法进行分析介绍,供各位考生参考,希望对大家有所裨益。 变限积分求导的基本公式: 公式1:若()f x 连续,则 ()()x a d f t dt f x dx =?; 公式2:若()f x 连续,12(),()x x ??可导,则21 () 2211()()(())()(())()x x d f t dt f x x f x x dx ??????''=-? 利用变限积分求导计算函数极限的基本方法: 1)如果函数是含变限积分的分式,可以考虑使用变限积分求导法计算极限; 2)通常是对 00型和∞ ∞ 型不定式积分使用,并结合洛必达法则使用; 3)如果被积函数中含参数x ,应该先将参数x 分离出来,提到积分号前面去。 例1. 求极限2 2 2lim x t x x te dt x e →∞ ? 解析:这是一个 ∞ ∞ 型不定式极限,可以运用洛必达法则,而分子是一个变上限积分函数,因此可如下计算:2 2 2 2 2 20 232lim lim 22x t x x x x x x te dt x e x x e xe x e →∞ →∞ ?==+?2 2 lim 11x x x →∞=+ 例2. 0 ()()(0)0,lim ()x x x tf x t dt f x f x f t dt →-≠??若连续,求 解析:这是一个 型不定式极限,可以运用洛必达法则,但分子中的被积函数含参数x ,需要先将x 分离出来,提到积分号外面去,这可以通过积分换元法实现,具体过程如下: 1.()()()()()()()x t u x x x x x tf x t dt x u f u du x t f t dt x f t dt -=-= --= -=-?? ? ? ?

考研高数重要知识点讲解:变限积分求导

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研高数重要知识点讲解:变限积分求 导 在考研复习的初期,打好基础是学好数学的关键。下面,考研高数重要知识点讲解之变限积分求导,希望能帮助到大家。 数学虽然属于理科科目,但是仍然有许多重要的知识点需要记忆和运用。特别为广大考生归纳一下高等数学的部分知识点。这次我们介绍的是变限积分求导。 变限积分求导是考研试卷中每年必考的内容,该知识点可以和高等数学中所有内容都可以结合起来考查综合题,重点是考查变限积分函数求导,其基本原理是如下三个公式: 在这三个公式中,被积函数中不含有参数x,而考试的时候经常被积函数中间含有参数x,处理的时候有两种情况,第一种情况是参数x和积分变量t是可以分离;第二种情况参数x 和积分变量t是没法分离的,用定积分的换元法来处理。

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点 ()()x a F x f t dt =? 形如上式的积分,叫做变限积分。 注意点: 1、在求导时,是关于x 求导,用课本上的求导公式直接计算。 2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。 (即在积分内的x 作为常数,可以提到积分之外。) 关于积分上限函数的理论 定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则?=x a dt t f x F )()(在],[b a 上连续。 定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。 定理3如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[ b a 上可导,而且有 ).(])([)(x f dt t f dx d x F x a == '? ========================================== 注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。 (Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

变上限定积分函数及其导数教案

高等数学教案 变上限定积分函数及其导数 教学内容:变上限定积分函数及其导数。 知识目标:使学生掌握变上限定积分函数的定义; 使学生了解原函数存在定理的证明; 使学生会熟练运用原函数存在定理求导数。 情感目标:通过原函数存在定理体会积分和微分之间的联系。 教学重点:通过对变上限定积分的掌握和原函数存在定理的结论会求 变上限定积分函数的导数。 教学难点:原函数存在定理的证明。 教学设计:对高职生来说,原函数存在定理的证明过程是本节课的难点,所以采用提前给出储备知识减弱学生负担,同时又辅以数形结合 来形象展示。对变上限积分函数的导数采用讲练结合来强化重点。 教学方法:讲练结合+任务驱动 教学过程: 一课程导入 在前面我们通过两个实例曲边梯形的面积和变速直线运动的路程引入了定积分的概念。求定积分的过程实际上是求和式的极限一般来说,根据定义求定积分计算是很复杂的,所以,必须寻求一种简单而有效的方法。牛顿-莱布尼兹在创建微积分时,就发现定积分和不定积分有密切的联系。我们第二讲要讲的牛顿-莱布尼兹公式,从而把求定积分的问题转化为求不定积分(既原函数)的问题,为人们计算定积分提供了简便的方法。本节课所要讲的原函数存在定理,在微分

和积分之间建立了关系,牛顿和莱布尼兹利用这种关系用来计算计算定积分,得出了著名的牛顿-莱布尼兹公式。 二 储备知识 引导学生复习下面一些知识点,为后面的知识做准备。 1 原函数:若)()(x f x =Φ',则)(x Φ是)(x f 的一个原函数。 2 可导的概念:若x x f x ??→?)(lim 0存在 ,则)(x f 可导。 3 复合函数求导:)()())(((x u u f x u f dx d '?'= 4 定积分的积分区间可加性:dx x f dx x f dx x f b c b ???+=c a a )()()(。 5 定积分积分中值定理 :)())(()(b a a b f dx x f b a ≤≤-=?ξξ。 三 给出课堂任务目标 给出本节课的任务目标,以便让学生明白本节课的主要任务。 本堂课主要有三个任务目标 :1 掌握变上限积分函数的概念; 2 了解原函数存在定理的证明; 3 会熟练运用原函数存在定理求导数。 四 课程内容 1变上限定积分函数的概念 设)(x f 在],[b a 上连续,],[b a x ∈,则)(x f 在],[x a ,即定积分?x a dx x f )(存在,这样很容易混淆,又定积分的值与积分变量无关,我们把积分变量换成t,即得?x a dt f )t (。若固定积分下限a ,则对任意一个],[ b a x ∈,定积分?x a dt f )t (都有唯一的值与x 对应,所以?x a dt f )t (是上限变量x 的函数,称它为变上限定积分函数, 记作?=Φx a dt f x )t ()(。 从定积分的几何意义来解释变上限积分是x 的函数。

隐函数地求导方法总结材料

地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间确定 了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy = ) 1,(!y x =1

显函数.隐函数.参数方程求导总结

显函数.隐函数.参数方程求导总结 我在大学以前的函数求导的学习中,学到的都是显函数的求导。显函数这种函数的表达方式的特点是:等号的左端是因变量的符号,而右端是含有自变量的式子当自变量取定义域内任一值时,由这式子能确定对应的函数值。在这些显函数的求导时,我们都是利用公式。 如:()sin cos x x '=` ()x x e e ' =` ()2 1arcsin 1x x '= -等等。刚开始的时候是一 些很明显的函数。如:sin y x =. 2 455y x x =++ x y e =等。而后来的我 们又学习了一些复合函数。如 x y e = 1 sin y x =等。这时我们就必须 设()y f u =,而()u x ?=则复合函数()y f x ?=????的导数为dy dy du dx du dx =,或()( )()y x f u x ? '''=。 等到了大学我们就碰到了像 3 10x y +-= 这样的,而当变量x 和y 满足一个方程(),y f x y =这种形式时称为隐函数。而对于隐函数的求导一种方法是化成显函数,也就是隐函数的显化。这样就可以用显函 数的求导方法了。例如310x y =-=可以化为3 1y x =-。但实际问题中, 有时需要计算隐函数的导数,因此,我们学习了不管隐函数能否显化,都能直接由方程算出它所确定的隐函数的导数来,下面通过具体例子来说明这种方法: 例 方程0y e xy e +-=所确定的隐函数的导数dy dx 。 解 方程两边分别对x 求导

( )()0y d e xy e dx '+-= y dy dy e y x dx dx ++= 从而y dy y dx x e =-+ y x e +=() 例 方程1sin 02x y y -==所确定的隐函数的二阶导数22 d y dx 。 解 方程两边对x 求导 ()1cos 02x y y '??' -+= ??? 11cos 02dy dy y dx dx -+= 22cos dy dx y = - 方程两边再对x 求导 ()()223 22sin 4sin 2cos 2cos dy dx d y y y dx y y --== -- 之后我们又学习了参数方程,而参数方程的解法不同于显函数隐函数。但也有相同的地方,下面通过具体例子来说明这种方法: 例 已知参数方程为sin cos x t y t =?? =?(t 为参数),求dy dx 。 解 由公式()()cos sin cos sin dy dt t dx dt t t dy dy dt t dx dt dx t t '=== =- ' 例 已知参数方程2 21t x y t ?=?=-?(t 为参数),求2 2 d y dx 。 解 由公式 ()()2 2 11dy dt dx t dt t dy dy dt dx dt dx t '-====- '

3变限积分函数的性质及其应用

404 §3 变限积分函数的性质及其应用 由于定积分概念是利用极限工具给出的,所以利用定积分的定义计算定积分是十分困难的,有时甚至是不可能的。为了让定积分概念能得到实际应用,必须寻找简便有效的计算定积分的方法,那么我们必须探求定积分更加深刻的性质。本节将介绍两个重要的定理,通过沟通定积分与不定积分的关系,给出了一个解决定积分计算问题的有效途径。 3.1 变限积分 定积分有一个十分特殊而重要的性质,它对进一步考察微分和积分的关系起十分关键的作用。但需要先介绍一个概念: 注 由于 ?? -=x b b x dt t f dt t f )()(,因此,只要讨论变上限函数即可。 证 利用连续函数的定义及定积分的性质即可证得。 对[a ,b ]上的任一点x ,只要[],x x a b +?∈,按照Φ的定义有 ()()x x x a a x x x fdt f dt +??Φ=Φ+?-Φ=- ? ? 。 又函数 ) (x f 在[a , b ]上可积,则 ) (x f 在[a , b ]上有界,即存在正数M ,对 一切[],x a b ∈有()f x M ≤。又当0x ?≥时有 x x x x x x x x x f d t f d t M d t M x +?+?+??Φ=≤≤=?? ? ? 。

405 又不难验证,当0x ?<时,上述不等式M x ?Φ≤?仍然成立。从而有 lim 0x ?→?Φ=。这就证得Φ在[],a b 上的连续性。 3.2 微积分学基本定理 1 变限积分的可微性 ——微积分学基本定理 当函数得可积性问题获得解决后,接着是要找到一种计算定积分得有效方法。下面将通过揭示定积分与不定积分之间的内在联系来完成这一任务。下面的两个定理,由于所起的重要作用而被称为微积分学基本原理。 证 ],[b a x ∈?,任取0≠?x ,且],[b a x x ∈?+,则 ? ? - = Φ-?+Φ=?Φ?+x a x x a t d t f t d t f x x x )()()()( ? ? ? ? ?+?+= - + = x x x x a x x x x a t d t f t d t f t d t f t d t f )()()()(, 由积分中值定理知,存在ξ 介于x 与x +?x 之间,使得 x f ?=?Φ)(ξ, 由于x x →?→?ξ0,再由导数定义及) (x f 的连续性知 )()(l i m )(l i m l i m )(00x f f f x x x x x ===??Φ =Φ'→→?→?ξξξ。 注 (1) 当],[b a C f ∈时, ? = Φx a dt t f x )()(可导且在点∈x ] , [b a 的导数 恰为被积函数在上限的值。 亦即 )(x Φ是)(x f 的一个原函数。即连续函数必有原函数,因此定理1又称原函数存在定理。 (2) 变上限函数与分段函数有点类似,是一个难点,从而也是一个考试的热点,它常与极限、求导、最值等知识结合出现形成综合性的题目,应与重视。我们将这里拓宽一下。 若)(x ?可导,则)(x ?与变上限函数)(x Φ构成了复合函数?) ()(x a t d t f ?,由复 合函数求导法则知

关于积分上限函数的小结.doc

关于积分上限函数 积分上限函数(或变上限定积分)F(x)= 的自变量是上限变量兀, Ja 在求导时,是关于兀求导,但在求积分时,则把兀看作常数,积分变量r在积分区间上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1.关于积分上限函数的理论 定理1如果/(X)在[。,饲上可积,则F(X)= ( 在[a,h]上连续. 定理2如果/⑴在[a.b]±连续,则F(x)=[f(t)dt在⑷切上可导,且r(x) = £[f/(r)t/z]= /(%). 注:(I)从以上两个定理可看出,对门力作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数/(兀)经过求导后,其导函数广(兀)甚至不一定是连续的。 (n)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 = -/(%) 推论2 f I=川0⑴]0(0 dx 4 推论3 ⑴如=⑴]0⑴一/"⑴]0(兀)

2.积分限函数的几种变式 (1)比如F(x) = ^(x-t)f(t)dt (被积函数中含X,但X可提到积分号外面来.) 在求”(兀)时,先将右端化为f xf^dt -[=⑴刃的形式,再对尢求导。 (2)比如F(x)= ^tf(t-x)dt (f的自变量中含X,可通过变量代换将X置换到f的外面来) 在求F(力时,先对右端的定积分做变量代换u=t-x(把兀看作常数),此时, dt = du , / = 0时,w = -x ; t = x时,w = 0 ,这样,FO)就化成了以”作为积分变量的积分下限函数:F(x) = f (x + u)f(u)du = x f(u)du + uf(u)du ,然后再对x求导。 J-x J-x 丄JV (3)比如F(x) = ^f(xt)dt (这是含参数x的定积分,可通过变量代换将x变换到积分限的位置上去) 在求F(力时,先对右端的定积分做变量代换u = xt(把兀看作常数),此时, dt = —y t = 0时,w = 0 ; t = 1时,u = x ,于是,F(x)就化成了以“作为积 x 分变量的积分上限函数:F(兀) = £(/(u)du ,然后再对x求导。 3.有积分限函数参与的题型举例 (1)极限问题: .2 3 f sin 2 tdt 例1 lini ------------------ (答:12) ' >0 £ t(t - sin t)dt

隐函数求导的简单方法

·1· 数学中不等式的证明方法 王贵保 一、利用拉格朗日中值定理 1.拉格朗日中值定理:设)(x f 满足:(1)在闭区间[a , b ]上连续;(2)在开区间(a , b )内可导,则有一点∈ξ(a , b ),使得 )()()(ξf a b a f b f '=-- 2.从上式可以看出,如果能确定了)(ξf '介于某两个数m 与M 之间,则有如下形式的不等式: m ≤a b a f b f --)()(≤M 因此,欲证形如a b a f b f --)()(或构造成为a b a f b f --)()(形式的不等式,可用该方法。 例1:证明,当x >0时,有1-x e >x . 证明:由原不等式,因为x >0,可改写为x e x 1->1的形式,或改写为00--x e e x >1的形式,这里t e t f =)(,区间为[0, x ],于是可用拉格朗日中值定理证明。 令t e t f =)(,∈t [0, x ],则)(t f 满足拉格朗日中值定理的条件,于是存在∈ξ[0, x ]有 0--x e e x =ξe >1 所以,有不等式1-x e >x . 例2:证明不等式x +11<x x ln )1ln(-+<x 1 (x >0) 证明:x x ln )1ln(-+=x x x x -+-+)1(ln )1ln(这里x b +=1,x a =,于是可对t t f ln )(=在[x , 1+x ]上应用拉格朗日中值定理. 令t t f ln )(= ]1,[x x t +∈ (x >0),则)(t f 在[x , 1+x ]上满足中值定理的条件,于是有]1,[x x +∈ξ,即x <ξ<x +1,使得

隐函数的求导方法总结

河北地质大学 课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一个隐函数。例如,方程013=-+y x 表示一个函数,因为当变量x 在()∞+∞-,内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2 x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy =) 1,(!y x =1

隐函数的求导方法汇总

隐函数的求导方法汇总

————————————————————————————————作者:————————————————————————————————日期:

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (6) 一.隐函数的概念 (6) 二.隐函数求偏导 (6) 1.隐函数存在定理1 (6) 2.隐函数存在定理2 (7) 3.隐函数存在定理3 (8) 三. 隐函数求偏导的方法 (9) 1.公式法 (9) 2.直接法 (10) 3.全微分法 (10) 参考文献 (12)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数 dx dy 在x=1处的值。

隐函数的求导方法总结

河北地质大学课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 .......................................................................... 错误!未指定书签。 一.隐函数的概念 .................................................. 错误!未指定书签。 二.隐函数求偏导 .................................................. 错误!未指定书签。 1.隐函数存在定理1 ................................................ 错误!未指定书签。 2.隐函数存在定理2 ................................................ 错误!未指定书签。 3.隐函数存在定理3 ................................................ 错误!未指定书签。 三.隐函数求偏导的方法 .......................................... 错误!未指定书签。 1.公式法 ................................................................... 错误!未指定书签。 2.直接法 ................................................................... 错误!未指定书签。 3.全微分法 ............................................................... 错误!未指定书签。 参考文献 .................................................................. 错误!未指定书签。 摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数偏导数方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一

相关文档
最新文档