-隐函数求导公式
微积分课件第5节隐函数的求导公式

z z dx dy. dz xz ( x z) y
2
一. 由一个方程确定的隐函数的微分法 x z ex2.设 ln , 求dz. z y
解2 (全微分法) x z 原式两边微分得: d ( ) d (ln ) z y zdx xdz y ydz zdy 即 2 z z y2 z z 整理得dz ( dx dy) xz y z z2 dx dy. xz ( x z) y
sin y x cos y y ye x ye x 0
sin y ye 所以, 得 y . x x cos y e
x
一. 由一个方程确定的隐函数的微分法
这里将进一步从理论上阐明隐函数的存在性, 并利用多元复合函数求导的链式法则建立隐函数 的求导公式, 给出用偏导数来求隐函数的导数的
F F ( x , f ( x )) F F ( x , y ), y f ( x )
连 续函 数 y f ( x ), 且y0 f ( x0 ); Fx dy (2)有连续导数 (一元隐函数的求导公式) . dx Fy 注意: (1) 证明从略, 求导公式推导如下: x 将函数 y f ( x ) 代入方程 F ( x , y ) 0 得 F dy F[ x, f ( x )] 0, 即Fx Fy 0, y dx 上式两端对x求导,由复合函数求导链式法则,得
Method3.也可先求偏导再代入全微分公式得所求.
一. 由一个方程确定的隐函数的微分法
z x y 例 4 设 z f ( x y z , xyz ),求 , , . x y z
z 思路:把 z 看成 x, y 的函数对x 求偏导数得 , x x 把 x 看成z, y 的函数对y 求偏导数得 , y y 把 y 看成 x, z 的函数对z 求偏导数得 . z 解 令 u x y z , v xyz, 则 z f ( u, v ),
隐函数的求导公式

当Fz cos z xy 0时,有
例 5 设 z f ( x, y ) 是由方程
z z , . 求 x y .
sinz xyz 所确定的隐函数,
得恒等式F ( x, f ( x)) 0
F F dy 求其全导数 0 x y dx
由于F y 连续且F y ( x0 , y0 ) 0, 所以存在( x0 , y0 ) 的一个邻域,在此邻域 内F y 0
F Fx dy x 于是 F dx Fy y
Fx dy dx Fy
把复合函数 z f [ u( x , y ), x , y ] 中 中的u 及 y 看作不 的 y 看作不变而对x 的偏导数 变而对 x 的偏导数
3、复合高阶偏导数
复合一阶偏导: z f (u, v ) u u( x, y), v v( x, y)
z z u z v z z u z v , x u x v x y u y v y
z x y 例 6 设 z f ( x y z , xyz ),求 , , . x y z
解 令 u x y z , v xyz, 则 z f ( u, v ),
把z 看成x, y 的函数对x 求偏导数得 z z z f u (1 ) f v ( yz xy ), x x x
例1 验证方程 x 2 y 2 1 0 在点( 0,1) 的某邻 域内能唯一确定一个单值可导、且 x 0 时 y 1 的隐函数 y f ( x ) ,并求这函数的一阶和二阶导 数在 x 0 的值. F ( x, y) x 2 y 2 1
第五节 隐函数求导公式

24
隐函数的求导公式
u u v v F ( x , y , u, v ) 0 求 , , , . x y x y G ( x , y , u, v ) 0 F ( x, y, u( x, y ), v( x, y )) 0 将恒等式 G( x, y, u( x, y ), v( x, y )) 0
两边关于x求偏导, 由链导法则得:
F F u F v x u x v x 0
G G u G v 0 x u x v x
u v 解这个以 为未知量的线性方程组. , x x
dy Fx ( x , y ) 隐函数的求导公式 dx Fy ( x , y ) (证明从略)仅推导公式. 将恒等式 F ( x , f ( x )) 0
两边关于x求导, 由全导数公式,得
4
隐函数的求导公式
F ( x , f ( x )) 0
dy Fx ( x , y ) Fy ( x, y ) 0 dx 所以存在 且Fy ( x0 , y0 ) 0, 由于Fy ( x, y)连续,
dz (1, 0, 1) dx 2dy
17
隐函数的求导公式
xyz x 2 y 2 z 2 2
法二 用全微分
yzdx xzdy xydz 2 xdx 2 ydy 2 zdz 0 2 x2 y2 z2 将点(1,0,1)代入上式, 得
dz (1, 0 , 1) dx 2dy
并有
Fy z Fx z . , Fz x Fz y
8
隐函数的求导公式
(证明从略)仅推导公式.
隐函数的求导公式

的求导运算,尤其是在求指定点的二阶偏导数时,
dy y 1.已知 ln x y arctan ,求 . x dx
2 2
2. 求由方程
x y
y
x
所确定的
隐函数 y f ( x)的导数.
(2)、二元隐函数求导法则
设方程 F ( x, y, z ) =0确定z是x, y的具有连续偏导 数的函数 z f ( x, y),将 z f ( x, y) 代入上述方 程,得到关于x,y 的恒等式 :
F ( x, y, f ( x, y)) 0
,
如果函数 F ( x, y, z ) 具有连续的偏导数,将上述 两端对x,y求偏导,根据复合函数求导法则有
F F z 0, x z x
若
F F z 0, y z y
Fz 0 ,得:
z Fx x Fz
②直接法
方程两边连续求导两次
方程两边对x求导得:Fx Fy 方程两边再对x求导得:
dy 0 dx
Fx
x y
x
Fy dy dy Fx Fx dy Fy d2y 1 ( 1 ) Fy 2 0 x y dx x y dx dx dx dy dy 2 d2y Fxx 2 Fxy Fyy ( ) Fy 2 0 dx dx dx 2 2 2 F F 2 F F F F F xy x y yy x 解得: d y xx y dx2 Fy3
dFy dFx Fy Fx 2 d y dx 于是 2 dx dx Fy2
Fy dx Fy dy Fx dx Fx dy ( ) Fy Fx ( ) x dx y dx x dx y dx Fy2
第五节 隐函数的求导公式

等式两端同时对 x 求偏导, 得
F x 1 +F y 0 +Fz 0 + Fu
在Fu 0的条件下 解得 ,
u x
=0
u x
u z
Fx Fu
类似可得
u y
Fy Fu
Fz Fu
例题:见课本例2-5
Fy Gy Fv Gv
二、隐函数的求导法
下面,总假设隐函数存在且可导, 在此前提下来讨论
求隐函数的导数或偏导数的方法。 1、一个方程的情形 (1) F ( x , y ) 0 设该方程确定了函数: y y( x )即 F [ x , y( x )] 0 等式两端同时对 x 求导, 得
在F y 0的条件下 解得 ,
Fv Gv Fv Gv
Fu v x 1 ( F , G ) J ( u, x ) Gu Fu Gu
Fx Gx Fv Gv
Fy u y 1 ( F , G ) J ( y, v ) Gy Fu Gu
Fv Gv Fv Gv
(3)
Fu v y 1 ( F , G ) J ( u, y ) Gu Fu Gu
Fx 1 + F y
dy
+ Fz
dz
0
dx dz + Gz 0 dx
即 Fy dx
dy
+ Fz + Gz
dz dx dz dx
Fx
G dy y dx
Fy Gy Fz Gz
Gx
在
0的条件下 解得 ,
Fz Gz Fz Gz Fx Fz Gz Fz Gz
高等数学第九章第五节 隐函数的求导公式

例5 设 xu yv 0, yu xv 1, 求 u,u,v 和v . x y x y
作业
P89. 1,2,3,10(1,2)
dy Fx x ,
dx Fy
y
dy 0, dx x0
d2y dx 2
y
xy y2
y x
y2
x y
1 y3
,
d2y dx2
x0
1.
例 2 已知ln x2 y2 arctan y ,求dy . x dx
2. F( x, y, z) 0
隐函数存在定理 2 设函数F ( x, y, z)在点 P( x0 ,
某一邻域内恒能唯一确定一个单值连续且具有连续导
数的函数 y f ( x),它满足条件 y0 f ( x0 ),并有
dy Fx .
dx Fy
隐函数的求导公式
例1 验证方程 x2 y2 1 0在点(0,1)的某邻 域内能唯一确定一个单值可导、且 x 0时 y 1 的隐函数 y f ( x),并求这函数的一阶和二阶导 数在 x 0的值.
确定一组单值连续且具有连续偏导数的函数
u u( x, y),v v( x, y),它们满足条件
u0 u( x0 , y0 ),v0 v
( x0 , y0 ),并有
Fx Fv
u 1 (F ,G) Gx Gv , x J ( x,v) Fu Fv
Gu Gv
v 1 (F ,G) Fu Fx Fu Fv x J (u, x) Gu Gx Gu Gv u 1 (F ,G) Fy Fv Fu Fv , y J ( y,v) Gy Gv Gu Gv v 1 (F ,G) Fu Fy Fu Fv . y J (u, y) Gu Gy Gu Gv
隐函数的求导公式

隐函数的求导公式在数学的领域中,隐函数是一个十分重要的概念,而与之紧密相关的隐函数求导公式则是解决众多问题的有力工具。
首先,让我们来明确一下什么是隐函数。
简单来说,如果方程 F(x, y) = 0 能确定 y 是 x 的函数,那么称这种方式表示的函数是隐函数。
比如说,方程 x^2 + y^2 = 1 就确定了一个隐函数。
那为什么我们需要隐函数求导呢?这是因为在很多实际问题中,函数关系并不是直接给出的,而是以隐函数的形式存在。
为了研究这些问题,就需要对隐函数进行求导。
接下来,咱们就来探讨隐函数求导的公式。
对于一个由方程 F(x, y) = 0 所确定的隐函数 y = y(x),其求导公式为:dy/dx = F_x / F_y这里的 F_x 表示 F 对 x 的偏导数,F_y 表示 F 对 y 的偏导数。
为了更好地理解这个公式,咱们通过一个具体的例子来看看。
假设我们有方程 x^2 + y^2 4 = 0,要求 y 对 x 的导数。
首先,我们对 F(x, y) = x^2 + y^2 4 分别求关于 x 和 y 的偏导数。
F_x = 2x ,F_y = 2y 。
然后,根据隐函数求导公式,dy/dx = F_x / F_y =-2x / 2y =x / y 。
再来看一个稍微复杂一点的例子,方程 xy + e^y = 0 。
先求偏导数,F_x = y ,F_y = x + e^y 。
所以,dy/dx = F_x / F_y = y /(x + e^y) 。
在运用隐函数求导公式时,有几个要点需要注意。
一是要准确求出偏导数,这就要求我们对常见的函数求导法则非常熟悉。
二是要注意符号的问题,确保计算过程中符号的正确性。
三是对于一些复杂的方程,可能需要多次运用求导法则和隐函数求导公式,要有耐心和细心。
隐函数求导公式在很多领域都有广泛的应用。
在物理学中,比如研究一些复杂的运动轨迹问题时,常常会遇到隐函数的形式,通过求导可以得到速度、加速度等重要物理量。
隐函数的求导公式

Fv Gv
Fv Gv
,
v y
1 (F ,G ) J (u, y )
Fu Gu
Fy Gy
Fu Gu
Fv Gv
.
例6
求
设 xu yv 0 , yu xv 1 ,
u x
,
u y
,
v x
和
v y
.
解1 直接代入公式; 解2 运用公式推导的方法, 将所给方程的两边对x求导并移项,得
则 方 程 组 两 边 对 x ( 或 y )求 导 ,
u v u v 解出 , (或 , ). x x y y
思考题
已知
x ( ) ,其中 为可微函数,求 z z y
x
z x
y
z y
?
思考题解答
( ), 则 F x , z z z y 1 x y ( y ) F y ( ) , F z 2 ( ) , 2 z z z z z y z ( ) Fy z Fx z z z , , y y x Fz y Fz x y ( ) x y ( ) z z
并有
Fx u Gx Fu x J ( x,v) Gu 1 (F ,G )
Fv Gv , Fv Gv
v x
u y
1 (F ,G ) J (u, x )
1 (F ,G ) J ( y,v )
Fu Gu
Fy Gy
Fx Gx
Fv Gv
Fu Gu
Fu Gu
F x ( x , y , z ) f 1 ( 1)
F y ( x , y , z ) f 1 f 2 z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5节:隐函数的求导公式教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。
教学重点:由一个方程确定的隐函数求导方法。
教学难点:隐函数的高阶导函数的计算。
教学方法:讲授为主,互动为辅 教学课时:2 教学内容:一、一个方程的情形在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。
现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式.隐函数存在定理1 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 yx F F dx dy-= (2) 公式(2)就是隐函数的求导公式这个定理我们不证。
现仅就公式(2)作如下推导。
将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F ,其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得,0=∂∂+∂∂dxdy y F x F 由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得.yx F F dx dy-= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得dx dy F F y F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22.232222y x yy y x xy y xx y x y x yy y xy y xyz y xx F F F F F F F F F F F F F F F F F F F F +--=⎪⎪⎭⎫⎝⎛-----=例1 验证方程0122=-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。
解 设=),(y x F 122-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此由定理1可知,方程0122=-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。
下面求这函数的一阶和二阶导数yx F F dx dy-==y x -,00==x dx dy ;22dx y d =,1)(332222y y x y y y xx y y y x y -=+-=---='--1022-==x dx y d 。
隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程F (z y x ,,)=0 (3) 就有可能确定一个二元隐函数。
与定理1一样,我们同样可以由三元函数F (z y x ,,)的性质来断定由方程F (z y x ,,)=0所确定的二元函数z =),(y x 的存在,以及这个函数的性质。
这就是下面的定理。
隐函数存在定理2 设函数F (z y x ,,)在点),,(000z y x P 的某一邻域内具有连续的偏导数,且0),,(000=z y x F ,0),,(000≠z y x F z ,则方程F (z y x ,,)=0在点),,(000z y x 的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数),(y x f z =,它满足条件),(000y x f z =,并有x z∂∂=z x F F -,y z ∂∂=zy F F -. (4)这个定理我们不证.与定理1类似,仅就公式(4)作如下推导. 由于 F (y x ,, f ),(y x )≡0, 将上式两端分别对x 和y 求导,应用复合函数求导法则得 x F +zF xz∂∂=0, y F +z F y z ∂∂=0。
因为z F 连续,且0),,(000≠z y x F z ,所以存在点),,(000z y x 的一个邻域,在这个邻域内z F ≠0,于是得x z∂∂=z x F F -,y z ∂∂=zy F F -。
例2 设04222=-++z z y x ,求.22xz∂∂解 设F (z y x ,,) =z z y x 4222-++,则x F =2x , z F =42-z .应用公式(4),得x z ∂∂=zx -2。
再一次x 对求偏导数,得22xz∂∂2)2()2(z x z x z -∂∂+-=.)2()2()2(2)2(3222z x z z z x x z -+-=-⎪⎭⎫⎝⎛-+-= 二、方程组的情形下面我们将隐函数存在定理作另一方面的推广。
我们不仅增加方程中变量的个数。
而且增加方程的个数,例如,考虑方程组 ⎩⎨⎧==.0),,,(,0),,,(z u y x G v u y x F (5)这时,在四个变量中,一般只能有两个变量独立变化,因此方程组(5)就有可能确定两个二元函数。
在这种情形下,我们可以由函数F 、G 的性质来断定由方程组(5)所确定的两个二元函数的存在,以及它们的性质。
我们有下面的定理。
隐函数存在定理3 设函数),,,(v u y x F 、),,,(v u y x G 在点),,,(00000v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且偏导数所组成的函数行列式(或称雅可比(Jacobi)式):=J ),(),(v u G F ∂∂=vG u Gv F uF∂∂∂∂∂∂∂∂ 在点),,,(00000v u y x P 不等于零,则方程组0),,,(=v u y x F ,0),,,(=v u y x G 在点),,,(0000v u y x 的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数),(),,(y x v v y x u u ==,它满足条件),(),,(000000u x v v y x u u ==,并有xu∂∂-=),(),(1v x G F J ∂∂-=,v u vu v x v xG G F F G G F Fxv ∂∂-=),(),(1x u G F J ∂∂-=,vuv u x u x uG G F F G G F F (6)y u ∂∂-=),(),(1v y G F J ∂∂-=,v v v uv y v yG G F F G G F Fy v ∂∂-=J 1),(),(y u G F ∂∂-=.vuv u u uG G F F G G F F y y这个定理我们不证.与前两个定理类似,下面仅就公式(6)作如下推导。
由于 F [y x ,,u ),(y x ,v ),(y x ]≡0, G [y x ,,u ),(y x ,v ),(y x ]≡0, 将恒等式两边分别对x 求导,应用复合函数求导法则得⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x vG x u G G x v F x u F F v u x v u x这是关于x u ∂∂, xv∂∂的线性方程组,由假设可知在点),,,(00000v u y x P 的一个邻域内,系数行列式=J vuvuG G F F ,0≠ 从而可解出x u ∂∂, xv ∂∂,得 x u ∂∂-=),(),(1v x G F J ∂∂, xv ∂∂-=),(),(1x u G F J ∂∂.同理,可得y u ∂∂-=),(),(1v y G F J ∂∂, y v ∂∂-=J 1),(),(y u G F ∂∂. 例3 设1,0=+=-xv yu yv xu ,求x u ∂∂,y u ∂∂,x v ∂∂和yv∂∂. 解 此题可直接利用公式(6),但也可依照推导公式(6)的方法来求解。
下面我们利用后一种方法来做。
将所给方程的两边对x 求导并移项,得⎪⎩⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂.,v x v x xu y u x v y x ux 在022≠+=-=y x xyy x J 的条件下,.,2222y x xv yu xy y x v y ux x v y x yv xu xy y x x v yu x u +-=---=∂∂++-=----=∂∂将所给方程的两边对y 求导,用同样方法在022≠+=y x J 的条件下可得,22y x yu xv y u +-=∂∂ .22yx yv xu y v ++-=∂∂ 例4 设函数),(),,(v u y y v u x x ==在点(v u ,)的某一邻域内连续且具有连续偏导数,又.0),(),(≠∂∂v u y x(1)证明方程组 ⎩⎨⎧==),(),,(v u y v u x x (7)在点),,,(v u y x 的某一邻域内唯一确定一组单值连续且具有连续偏导数的反函数),(),,(y x v v y x u u ==。
(2)求反函数),(),,(y x v v y x u u ==对y x ,的偏导数。
解 (1)将方程组(7)改写成下面的形式 ⎩⎨⎧=-≡=-≡.0),(),,,(,0),(),,,(v u y y v u y x G v u x x x u y x F则按假设 =∂∂=),(),(v u G F J .0),(),(≠∂∂v u y x由隐函数存在定理3,即得所要证的结论。
(2)将方程组(7)所确定的反函数),(),,(y x v v y x u u ==代入(7),即得 ⎩⎨⎧≡≡)].,(),,([)],,(),,([y x v y x u y y y x v y x u x x将上述恒等式两边分别对x 求偏导数,得⎪⎩⎪⎨⎧∂∂∂∂+∂∂•∂∂=∂∂∂∂+∂∂•∂∂=.0,1x v v y x u u y x v v x x u u x由于J ≠0,故可解得,1v y J x u ∂∂=∂∂ .1uy J x v ∂∂-=∂∂ 同理,可得,1v x J y u ∂∂-=∂∂ .1ux J y v ∂∂=∂∂小结:本节在前面已提出隐函数概念的基础上,根据多元复合函数的求导法导出隐函数的求导公式,给出了隐函数存在定理1、2、3,使我们能够计算有一个方程或方程组确定的隐函数的导数。
作业:89P 习题9-5 1、4、10(2)(4)、11.。