1运筹学绪论PPT课件

合集下载

运筹学PPT完整版04761

运筹学PPT完整版04761

Page 21
3. 线性规划问题的标准形式
n
max Z c j x j j1
s.t
n j1
aij x j
bi
i 1,2,, m
x j 0, j 1,2,, n
特点:
(1) 目标函数求最大值(有时求最小值)
(2) 约束条件都为等式方程,且右端常数项bi都大于或等于零 (3) 决策变量xj为非负。
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量x j 0的变换
可令
x
j
xj
,显然
x
j
0
Page 23
线性规划问题的数学模型
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
n
简写为: max(min) Z c j x j j1
n
aij x j ( ) bi (i 1 2m)
j1
xj 0
(j 1 2n)
线性规划问题的数学模型
向量形式: max (min)z CX
pj xj
(
) B
X 0
其中: C (c1 c2 cn )
x1

运筹学 绪论PPT课件

运筹学 绪论PPT课件

No Image
●英1938年成立防空委员会,H.G.铁寨为主席 (历史上第一个运筹学小组)
当时正处在二战前夕,德国有一支强大的 空军,英国是一个岛国,国内任何一地点离海 岸线不超过一百公里,这段距离,德国飞机只 需飞十七分钟。英国要在十七分钟内完成预警、 起飞、爬高、拦击等动作,很难。
事。
No Image
(2)运筹学的发展阶段
运筹学的发展大致经历四个阶段:
① 萌芽阶段 (1915年~30年代)
上世纪初,一些数学方法逐渐应用于经营管理中, 如:
边际分析、盈亏平衡分析、经济批量模型等。 ●边际分析:包括边际成本分析、边际利润分析。
边际成本:增加单位产量所增加的成本。 边际利润:增加单位产量所增加的利润。
No Image
围魏救赵(齐国,孙宾提出直接攻 打魏都大梁)
赤壁之战(三国,诸葛,周俞,曹 操)
No Image
丁渭主持皇宫的修复(北宋,皇宫因火焚毁) 北宋真宗年间,皇城失火,宫殿烧毁,大臣丁谓主持了皇宫修复工
程。他采用了一套综合施工方案: ①先在需要重建的大道上就近取土烧砖; ②在取土后的深沟中引水,形成人工河,再由此水路运入建筑材料,
现代运筹学涵盖了一切领域的管理与优化问题,称为 Management Science
运筹学是研究人能够控制的、需要做出决策的、并且能用数学模型表达、 分析和优化的系统、是一系列用于提高系统有效性的分析工具(主要是 指数学模型)的集合,是人或组织进行合理决策的科学工具。
2.运筹学的发展简史
(1)朴素的运筹学思想
雷达的有效使用:
No Image
1938年,英国为解决空袭的早期 预警,作好反侵略战争准备,积极 进行“雷达”的研究。但随着雷达 性能的改善和配置数量的增多,出 现了来自不同雷达站的信息以及雷 达站同整个防空作战系统的协调配 合问题。为此,在1938年7月,波 德塞(Bawdsey)雷达站的负责人 罗伊(A.P.Rowe)提出立即进行 整个防空作战系统运行的研究,以 使军事领导人学会使用雷达定位敌 方飞机。

运筹学(第四版)清华大学出版社《运筹学》教材编写组-第1章 绪论课件PPT

运筹学(第四版)清华大学出版社《运筹学》教材编写组-第1章 绪论课件PPT

❖ 在运筹学中除常用的数学方法以外,还引入 一些非数学方法和理论。
❖ 美国运筹学家沙旦(T.L.Saaty),在20世纪70 年代末提出了层次分析法(AHP)。
❖ 切克兰特(P.B.Checkland)把传统的运筹学方 法称为硬系统思考,它适用于解决那种结构 明确的系统以及战术和技术性问题,而对于 结构不明确的,有人参与活动的系统就不太 胜任了。这就应采用软系统思考方法。
(例如投入产出方法)。在当时这些先遣者中,越民义先
生、刘源张院士、朱永津教授、桂湘云教授、陈锡康教授、
徐光煇教授、韩继业教授、李秉全教授、郭绍僖教授等。
2021/3/10
2
第2节 运筹学的性质和特点
❖ 运筹学是一门应用科学,至今还没有统一且 确切的定义。
❖ 莫斯(P.M.Morse)和金博尔(G.E.Kimball)曾对 运筹学下的定义是:“为决策机构在对其控 制下业务活动进行决策时,提供以数量化为 基础的科学方法。”
❖ 以上过程应反复进行。
2021/3/10
6
第4节 运筹学的模型
模型有三种基本形式: ❖ ①形象模型; ❖ ②模拟模型; ❖ ③符号或数学模型。
2021/3/10
7
构模的方法和思路有以下五种:
❖ (1) 直接分析法 ❖ (2) 类比法 ❖ (3) 数据分析法 ❖ (4) 试验分析法 ❖ (5) 想定(构想)法(scenario)
2021/3/10
12
近几年来出现一种新的批评
❖ 指出有些人只迷恋于数学模型的精巧、 复杂化,使用高深的数学工具,而不善 于处理面临大量新的不易解决的实际问 题。现代运筹学工作者面临的大量新问 题是经济、技术、社会、生态和政治等 因素交叉在一起的复杂系统。

1.YRG运筹学 绪论

1.YRG运筹学 绪论

“孙膑斗马术”说的是春秋战国时期齐王与田忌赛马的事。有一天,齐王要田忌和他赛马, 规定各人从自己的上、中、下三个等级的马中各选一匹来参赛,说好输一匹付出千金, 胜一匹可获千金。 田忌的谋士孙膑一直在场观赛,就给他出了主意, 叫他用下马对齐王的上马,中马对齐王的下马,上马对齐王的中马, 结果以2:1胜了齐王,以劣胜优
五 《运筹学》的学科特点
1.多种专业协作 用运筹学来解决实际问题需要各方面的专业知识,而运筹学家很难全部具备。 这就需要有各方面专家的集体智慧协作努力。 2.科学的方法 用运筹学解决实际问题必须用科学的方法,对各种原始资料进行处理,再用 科学的方法找到决策的依据。 3.解决实际问题 4.需要信息资料 5.需要建立模型 6.需要计算机 运筹学的解题的计算量很大,一个复杂的模型可能会有几十个甚至上百个变量, 没有计算机是无法计算的。
5.规划论 规划论是运筹学的一个重要分支,分为线性规划,整数规划,动态规划,非线性规划, 多目标规划,其中线性规划(Linear Programming)用途广泛,各种方法成熟, 是我们学习的重要内容。
线性规划,最直观的理解就是:研究在线性不等式或等式的约束下,使得某个 线性目标取得最大(小)的问题。线性规划在交通、工业、农业、军事、经济、 管理等方面都有很多成功的实例。
3、搜索论 搜索论是用来搜索一样东西的理论。是从军事上搜索潜艇开始的…… 搜索论现在用来合理的搜索人力、物力资源,如探矿,我国主要那些地方有石油, 如果全面去找,显然要花费大量人力、物力资源,利用搜索论可以合理的应用 最少的人力和物力,在最短的含时间里去发现石油资源。 4.存贮论 存贮论是研究物资管理,采购设备资源的一套数学理论。如工厂生产需储备 一定的原材料,如果原材料储备太多,积压了资金造成了浪费,如果设备太少 会造成生产上的停工待料,因此就必须根据生产活动的连续性决定最佳存 贮量,这就要进行科学计算。 (还有:水库的蓄水量,商品的库存量,机器零件的备用量,血库的储血量)

运筹学(一)ppt课件

运筹学(一)ppt课件

2x3 4 3x3 6
x1 0, x2 0, x3取值无约束
解: z令 z,x1 x1,x3x3 x3 ,其x中 3 , x3 0, 同时引入 x4和 松剩 弛余 变 x5,标 变 量准 量形式
m z x 1 a 2 x 2 x 3 x 3 3 x 3 0 x 4 0 x 5
案、措施,是问题中要确定的未知量。
2.目标函数:指问题要达到的目的要求,表示为 决策变量的函数。
3.约束条件:指决策变量取值时受到的各种可用 资源的限制,表示为含决策变量的等式或不等 式。
最新版的一般表示形式:
m ax (mm in ) 或 f ( xm ) a cz 1 x 1 c 1 cx x 21 i x 2 c 2 n x 2 ( cn x ) n c n x n
( 4 )无可行解。
目标函数为max z=3x1+x2,约束条件为
x 1 x 2 2 ; 最x 新1 版整 理ppt 2 x 2 6
库存管理。存储论应用于多种物资库存量的管理,确定某些设备的合 理的能力或容量以及适当的库存方式和库存量
运输问题。用运筹学中运输问题的方法,可以确定最小成本的运输线 路、物资的调拨、运输工具的调度以及建厂地址的选择。
人事管理。可以用运筹学方法对人员的需求和获得情况进行预测;确 定合适需要的人员编制;用指派问题对人员合理分配;用层次分析法 等方法来确定一个人才评价体系等。
数为0;
(4)第i 个约束为 型,在不等式左边减去一 个非负的变量,称为剩余变量;同时令该变量在目
标函数中的系数为0;
(5)若 ,x令0 xx
(6)若 无x约束,令 x,x其中x,
x,x0
例3:将下述线性规划模型化为标准形式:

运筹学-绪论PPT课件

运筹学-绪论PPT课件
运筹学编写组.运筹学.清华大学出版社 胡运权.运筹学教程.清华大学出版社 杜纲.管理科学基础.天津大学出版社 邓梁成.运筹学的原理和方法.华中科技大学 中国工程项目管理知识体系.建工社 其他:线性代数、管理学及部分杂志
➢ 设备维修和更新 ➢ 项目评价和选择 ➢ 工程优化设计
➢ 计算机和信息系 统
➢ 城市管理 ➢ 发展战略
五、教学及考试说明
➢ 以课本为主教学 ➢ 必要的习题(30~40题) ➢ 考试:采用闭卷 ➢ 平时成绩30%;考试成绩占70%
六、教材和参考书
➢ 教材: ➢ 胡云权.运筹学教程(第三版).清华大学出版社 ➢ 宋学峰.运筹学.东南大学出版社 ➢ 参考书:
➢ 60年代,相继在工业、农业、经济和社会问题各 领域都得到应用。
➢ 理论飞快发展,形成许多分支:数学规划、图与 网络、排队论、存储论、对策论、决策论等。
➢ 1959年成立国际运筹学联合会。我国1980年成 立运筹学会,1982年加入国际运筹学联合会。
四、运筹学解决问题的思路
➢ 提出问题——用自然语言描述问题。 ➢ 建立数学模型——用变量、函数、方程描述问
题。
➢ 求解——主要用数学方法求出模型的最优解、 次优解、满意解,复杂模型求解要用计算机。
➢ 解的检验——检查模型和求解步骤有无错误, 检查解是否反映现实问题。
➢ 决策实施——决策者根据自己的经验和偏好, 对方案进行选择和修改,作出实施的决定。
五、运筹学的运用
➢ 生产计划 ➢ 市场销售 ➢ 资本运营 ➢ 库存管理 ➢ 运输问题 ➢ 财政和会计 ➢ 人事管理
——近代一些运筹学工作者
一、什么是运筹学
➢ 3、运筹学的三大来源 1)军事
两次世界大战期间的军事运筹研究 2)管理

运筹学教学课件(全)

运筹学教学课件(全)

实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不

第1章 绪论《管理运筹学》PPT课件

第1章 绪论《管理运筹学》PPT课件
非可控输入既可以是非常明确的,也可以是不确定的 、变化的。
如果一个模型的非可控输入都是已知的、不可变的, 这样的模型称为确定模型。
如果一个模型的非可控输入是不确定的、变化的,这 样的模型就称为随机模型或概率模型。
本书主要研究确定型数学模型。
1.2 运筹学问题的求解过程
了解模型的相关概念之后,下一个问题就是如何将一 个现实问题转化为数学模型,也就是建模过程。既然运筹 学模型的几个要素是:目标函数,约束条件(包括自然约 束和强加约束),决策变量。那么根据我们要解决的问题 ,只要我们经常问自己下面这些问题,一个模型的框架是 不难建立的。
1.2 运筹学问题的求解过程
1.2.1 从现实系统到理论模型:模型建立
模型是现实世界的抽象化反映。运筹学的实质在于建 立和使用模型来解决实际问题。尽管模型的具体结构和形 式总是与要解决的问题相联系,但在这里将抛弃模型在外 表上的差别,从最广泛的角度抽象出它们的共性。模型在 某种意义上说是客观事物的简化与抽象,是研究者经过思 维抽象后用文字、图表、符号、关系式以及实体模样对客 观事物的描述。
第1章 绪论
“运筹于帷幄之中,决胜于千里之外”。运筹学 将科学的方法、技术和工具应用到经济管理、工程设计 等领域,以便为人们提供最佳的解决方案。
在这一章里,首先介绍运筹学的基本概况,包括 运筹学的历史和发展,运筹学的性质和特点,运筹学研 究的主要内容和以后的发展趋势。然后从运筹学问题解 决过程的角度,依次介绍建模、求解和实际应用时应该 注意的一些问题,使初学者对运筹学概念和方法有初步 的认识。
我们需要什么目标? 通过调节哪些因素可以使得我们达到这一目标? 调节的因素是变动的吗? 要与实际情况相符合有什么 限制条件吗? 在实现目标的过程中,有哪些约束条件? 这样建立的模型是相对完备的吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学
2020/11/28
英国舰队已占有优势。在全歼联合舰队后 部后,英国舰队两个主纵列还可以保留: (1064-529)1/2 =5161/2=23艘,再与小纵 列中舰队联合对联合舰队前部作战还占有 优势。即在最坏情况下,“纳尔森 (Nelson)秘诀”也可以使英国舰队获得 胜利。
运筹学
2020/11/28
运筹学
2020/11/28
运筹学的三个来源
▪ 军事 ▪ 管理 ▪ 经济
运筹学
2020/11/28
军事:运筹学的主要发源地
古代军事运筹学思想
中国古代的“孙子兵法”在质的论断中渗透着量的 分析(1981年美国军事运筹学会出版了一本书,书 中第一句话就是说孙武子是世界上第一个军事运筹 学的实践家),中国古代运筹学思想的例子还有: 田忌赛马、围魏救赵等等。
运筹学
2020/11/28
研究的问题:
设计将雷达信息传送给指挥系统及武器系统的 最佳方式;
雷达与防空武器的最佳配置;
对探测、信息传递、作战指挥、战斗机与 防空火力协调等获得成功。大大提高了英国本 土的防空能力,不久以后在对抗德国对英伦三 岛的狂轰滥炸中发挥了极大的作用。
“Blackett马戏团”在秘密报告中使用 了“Operational Research”,即“运 筹学”。
运筹学
2020/11/28
用兰彻斯特N2定律可以对“纳尔森(Nelson)秘诀”进行分 析:[站在英国舰队的角度分析]
整体战斗实力。 设双方单个战斗单位的战斗力相同,则有: 英国舰队:402=1600 联合舰队:462=2116 此时联合舰队占优势,设想联合舰队全歼英国舰队后, 联合舰队还有5161/2=23艘。 • 将联合舰队拦腰切断,23+23=46,是将联合舰队实力 减弱的最小分割法。此时,联合舰队的实力为: 232+232=1058 而英国舰队的实力为: (16+16)2+82=1088, 已略占有优势。
19世纪中叶,法国拿破伦统帅大军要与英国争夺海上霸 主地位,而实施这一战略的最主要的关键是消灭英国的舰队。 英国海军统帅、海军中将纳尔森亲自制定了周密的战术方案。
1805年10月21日,这场海上大战爆发了。英国是纳尔森 亲自统帅的地中海舰队,由27艘战舰组成;另外一方是由费 伦纽夫(Villenuve)率领的法国——西班牙联合舰队,共有 33艘战舰。
社,1990
运筹学
2020/11/28
什么是运筹学?
早上从起床到出门需要洗脸刷牙(5 min) 、刷水壶(2 min)、烧水(8 min)、泡面 (5 min)、吃饭(10 min)、听新闻(8 min) 几个步骤,如何安排最节省时间?
运筹学
绪论
运筹学的三个来源 运筹学的定义与性质 运筹学研究的问题与解决方法 运筹学的工作步骤 运筹学的特点
运筹学
2020/11/28
兰彻斯特(Lanchester)方程(1914):
设两军对抗中一方有x个战斗单位(战舰、战车、 战机、步兵单位等),另外一方有y个战斗单 位。基本假设:每一方战斗单位的损失率与对 方战斗单位的数量成正比。
于是,双方战斗损失的微分方程为
dy/dt= - ax,
dx/dt= - by. 其中, a>0与b>0 表示双方的平均战斗力。 因此可以得到: ax2=by2 上式称为兰彻斯特N2定律。
国外历史上的阿基米德、伽利略研究过作战问题; 纳尔森(Nelson)秘诀;第一次世界大战时,英国 的兰彻斯特(Lanchester)提出了战斗方程,指出 了数量优势、火力和胜负的动态关系;美国的爱迪 生为美国海军咨询委员会研究了潜艇攻击和潜艇回 避攻击的问题。
运筹学
2020/11/28
军事
特拉法加尔(Trafalgar)海战和纳尔森(Nelson)秘诀
运筹学的正式产生:第二次世界大 战
鲍德西(Bawdsey)雷达站的研究
1939年,以曼彻斯特大学物理学家、英国 战斗机司令部顾问、战后获得诺贝尔奖的 Blackett为首的一个研究小组(代号 “Blackett 马戏团”),研究如何改进英国 的空防系统,提高英国本土防空能力。
成员组成:心理学家3,数学家2,数学物理 学家2,天文物理学家1,普通物理学家1, 陆军军官1,测量员1。
秘密备忘录中的纳尔森(Nelson)秘诀: 预期参加战斗的英国舰队:40艘。 法国—西班牙联合舰队:46艘。 预计联合舰队战斗队形一字横列。 英国舰队的战斗队形与任务:分成两个主纵列及一个小纵列。
运筹学
2020/11/28
英国舰队: 主 纵 列2 (16艘)
(12艘)
主小


列1 列
(16艘) (8艘)
Trafalgar大海战的概况:费伦纽夫(Villenuve)率领的 法国——西班牙联合舰队采用常规的一字横列,以利炮火充 分展开,而纳尔森的战术则出乎常人所料。
运筹学
2020/11/28
军事
英国的舰队分成两个纵列:前卫上风纵列由12艘战舰 组成,由纳尔森亲自指挥,拦腰将法国——西班牙联合舰 队切为两段;后卫下风纵列由英国海军中将科林伍德 (Collingwood)指挥,由15艘战舰组成。在一场海战后,法 国——西班牙联合舰队以惨败告终:联合舰队司令费伦纽 夫连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。英军大 获全胜,只是,作为统帅的纳尔森阵亡。
运筹学
2020/1》教材编写组编 运筹学(修订版) 清
华大学出版社 1990年1月第2版.2005年6月第3 版
参考书:
1、胡运权编著,《运筹学》,哈尔滨工业大学 出版社,1985
2、王永县编著,《运筹学— 规划论及网络》, 清华大学出版社,1993
3、甘应爱等编著,《运筹学》,清华大学出版
(3-4艘)
联合舰队
(23艘)
(46艘)
运筹学
2020/11/28
主纵列1:16艘,由纳尔森亲自指挥,拦腰 将 法 国 —— 西 班 牙 联 合 舰 队 切 为 两 段 , 并攻击联合舰队的中间部分。
主纵列2:16艘,由英国海军中将科林伍德
指挥,从联合舰队后半部再切断,分割 并攻击后部12艘。 小纵列:8艘,在中心部分附近攻击其先头 部分的3-4艘。
相关文档
最新文档