大学物理第十八章题解
18章总结

答案:AD
试计算氢原子光谱中巴耳末系的最长波和最短波的波长各是多少?(R =1.10×107 m-1)
[解析] 根据巴耳末公式1λ=R(212-n12)(n=3,4,5,…)
答案:B
10.(多选)对于如图所示的实验装置,下列说法正确的是( )
A.这是检验阴极射线是否带电的实验装置 B.密立根首次观察到阴极射线 C.汤姆孙确定了组成阴极射线的粒子是电子 D.赫兹认为阴极射线是一种电磁波
解析:1897年汤姆孙利用题图的实验装置,确定了组成阴极 射线的粒子是电子,A、C正确;1858年普吕克尔首次观察到阴 极射线,B错误;赫兹认为阴极射线是一种电磁波,D正确.
答案:A
10.关于原子的特征谱线,下列说法不正确的是( ) A.不同原子的发光频率是不一样的,每种原子都有自己的特征谱线 B.炽热的白光通过温度较白光低的气体后,再色散形成的吸收光谱,可用于光谱分析 C.可以用特征谱线进行光谱分析鉴别物质和确定物质的组成成分 D.原子的特征谱线是原子具有核式结构的有力证据
解析:对于处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率 有3种,选项C正确.
答案:C
(多选)由玻尔理论可知,下列说法中正确的是( ) A.电子绕核运动有加速度,就要向外辐射电磁波 B.处于定态的原子,其电子做变速运动,但它并不向外辐射能量 C.原子内电子的可能轨道是连续的 D.原子内电子的可能轨道是不连续的
解析:在卢瑟福α粒子散射实验中,α粒子穿过金箔后, 绝大多数α粒子仍沿原来的方向前进,故A对.少数α粒 子发生大角度偏转,极少数α粒子偏转角度大于90°,极 个别α粒子反弹回来,所以在B位置只能观察到少数的闪 光,在C、D两位置能观察到的闪光次数极少,故B、D 错,C对. 答案:AC
大学物理习题详解—近代物理部分.doc

狭义相对论基本假设、洛伦兹变换、狭义相对论时空观 17. 2两火箭A 、B 沿同一直线相向运动,测得两者相对地球的速度大小分别是 =0.9c, v B = 0.8c.则两者互测的相对运动速度大小为:(A) 1.7c ; (B) 0.988c ; (C) 0.95c ;(D) 0.975c.答:B .分析:以 A 为 S ,系,则 w=0.9c, V v =-0.8c,由相对论速度变换关系可知:SAS'爪VB-0.8c-0.9c•0&・・。
.9疽一第十七章相对论17. 1在狭义相对论中,下列说法哪些正确?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速,(2) 质量、长度、时间的测量结果都是随物体与观察者的运动状态而改变的, (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其它一切惯性系中 也是同时发生的,(4) 惯性系中观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比 与他相对静止的相同时钟走得慢些.(A) (1) (3) (4) ; (B) (1) (2) (4); (C)(2) (3) (4) ;(D) (1)(2)(3).[]答:B. 分析:(1) 根据洛仑兹变换和速度变换关系,光速是速度的极限,所以(1)正确; (2) 由长度收缩和时间碰撞(钟慢尺缩)公式,长度、时间的测量结果都是随 物体与观察者的运动状态而改变的;同时在相对论情况下,质量不再是守恒量,也 会随速度大小而变化,所以(2)是正确的;(3) 由同时的相对性,在S'系中同时但不同地发生的两个事件,在S 系中观察不是同时的。
只有同时、同地发生的事件,在另一惯性系中才会是同时发生的,故排 除⑶;(4) 由于相对论效应使得动钟变慢,故(4)也是正确的。
所以该题答案选(B)所以选(B)17. 3 —宇航员要到离地球5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他乘的火箭相对于地球的速度为:(A)c/2;(B) 3c/5;(C)4c/5;(D) 9c/10. [ ] 答:C.分析:从地球上看,地球与星球的距离为固有长度L。
大学物理第十八章题解

第十八章静电场中的导体和电介质18-1.如图所示,三块平行放置的金属板A 、B 、C ,面积均为S .B 、C 板接地,A 板带电量Q ,其厚度可忽略不计.设A 、B 板间距为l ,B 、C 板间距为d .因d 很小,各金属板可视为无穷大平面,即可忽略边缘效应.试求:(1)B 、C 板上的感应电荷,(2)空间的场强及电势分布.解因d 很小,各金属板可视为无穷大平面,所以除边缘部分外,可认为E 沿Oz 方向,z 相同处E 的大小相同,即()z E E z k =.(1)设B 、C 表面的面电荷密度为1σ、2σ、3σ、4σ如图所示.由于B 、C 板接地,故B 、C 板电势与无穷远相同,电势均为零.若B 、C 板外表面带有电荷,必有电场线连接板外表面与无穷远,则B 、C 板电势与无穷远不同,因此可知B 、C 板外表面不带电荷,即140σσ==.作高斯面为闭合圆柱面如图,两底面在B 、C 板内部、与Oz 垂直,侧面与Oz 平行,由高斯定理23101d 0()Q E S S S σσε⋅==++⎰⎰可得23Q S σσ+=-(1) 根据叠加原理,Ⅰ区E 为3个无穷大带电平面产生的场强的叠加,即321000222z Q S E σσεεε=-- 同理,Ⅱ区电场强度322000222z Q S E σσεεε=+- 因为A 、B 间的电压AB U 与A 、C 板的电压AC U 相等,12()z z E l E d l -=-,即3322000000()()()222222Q S Q S l d l σσσσεεεεεε---=+-- 即232Q d l S dσσ--=-(2) 联立求解(1)(2)式得:2d l Q d S σ-=-,3l Q d Sσ=-.所以B 、C 板内表面分别带电 22d l Q S Q d σ-=⋅=-,33l Q S Q dσ=⋅=- (2)Ⅰ区321000222z Q S E σσεεε=--0001()222d l l Q d d S εεε-=--+0()d l Q dSε-=- 00111d d z z z E l E l ϕ=⋅=-⋅⎰⎰0()d l Q z dSε-= Ⅱ区322000222z Q S E σσεεε=+-0001()222d l l Q d d S εεε-=-++0lQ dSε= 222d d d d z z z E l E l ϕ=⋅=⋅⎰⎰0()lQ d z dSε=- 18-2.点电荷q 放在电中性导体球壳的中心,壳的内外半径分别为1R 和2R ,如图所示.求场强和电势的分布,并画出r E -和r -ϕ曲线.解由于电荷q 位于球心O ,导体球壳对球心O 具有球对称性,故感应电荷和电场的分布也对球心O 具有球对称性;可知感应电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强的大小E 相等.设球壳内表面带电1Q ,外表面带电2Q .用以O 点为球心,12R r R <<为半径的球面为高斯面,根据高斯定理101d 0()E S q Q ε⋅==+⎰⎰可知1Q q =-;由于导体球壳电中性,由120Q Q +=,所以2Q q =.根据叠加原理,场强和电势分别为点电荷q 、均匀带电1Q 和2Q 的球面的场强和电势的叠加.考虑到在电荷球对称分布情况下,在电荷分布区以外的场强和电势与总电量集中在球心的点电荷的场强和电势的表达式相同.取参考点在无穷远;2r R >时,121220044q Q Q q E r r πεπε++==,1210044q Q Q q r rϕπεπε++== 21R r R ≥≥时,112004q Q E r πε+==,12100202444q Q Q q r R R ϕπεπεπε+=+= 1r R <时,1204q E rπε=,12100102012111()4444Q Q q q r R R r R R ϕπεπεπεπε=++=-+ 请读者画出r E -和r -ϕ曲线.18-3.一半径为A R 的金属球A 外罩有一个同心金属球壳B ,球壳很薄,内外半径均可看成B R ,如图所示.已知A 带电量为A Q ,B 带电量为B Q .试求:(1)A 的表面1S ,B 的内外表面2S 、3S 上的电量;(2)A 、B 球的电势(无穷远处电势为零).解由于金属球A 和同心金属球壳B 对球心O 具有球对称性,故电荷和电场的分布也对球心O 具有球对称性;可知电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强的大小E 相等.(1)金属球A 带电A Q 分布于A 的外表面1S ;设金属球壳B 内表面带电2Q ,外表面带电3Q ,23B Q Q Q +=.用以O 点为球心、B r R =为半径、位于球壳B 金属内部的球面为高斯面,根据高斯定理A 201d 0()E S Q Q ε⋅==+⎰⎰可知2A Q Q =-;由于23B Q Q Q +=,所以3A B Q Q Q =+.(2)根据叠加原理,电势为三个均匀带电球面产生电势的叠加,即B r R ≥区域,A 23A B 10044Q Q Q Q Q r r ϕπεπε+++== 令B r R =,即为B 球的电势A B B 0B4Q Q R ϕπε+=. B A R r R >≥区域,3A 2A B 200B 0B 0B1()4444Q Q Q Q Q r R R r R ϕπεπεπεπε=++=+ 令A r R =,即为A 球的电势A B A 0A B 1()4Q Q RR ϕπε=+. 18-4.同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱构成,如图所示.设内圆柱体的半径为1R ,外圆柱体的内半径为2R .使内圆柱带电,单位长度上的电量为η,试求内外圆柱间的电势差.解由于两个同轴金属直圆柱可视为无限长、对圆柱轴线O 轴对称;所以电荷和电场的分布也对圆柱轴线O 轴对称;电场线在垂直于圆柱轴线的平面内,为过圆柱轴线的放射状半直线;场强E 沿半径方向,在到轴线O 的距离r 相同处,场强的大小E 相等.用以圆柱轴线为轴,两底面与圆柱轴线垂直的闭合圆柱面为高斯面.高斯面的两底面与圆柱轴线O 垂直,半径为r ,21R r R >>;两底面与E 平行,E 通量为零;圆柱侧面长度为l ,与E 正交,E 通量2rlE ϕπ=.由高斯定理10d 2l E S rlE ηπε⋅==⎰⎰可得02E rηπε=. 沿电场线积分,由1R 沿半径到2R ,内外圆柱间的电势差 2221112001d d d ln 22R R R R R R R U E l E r r r R ηηπεπε=⋅===⎰⎰⎰ 18-5.半径为2.0cm 的导体球外套有一个与它同心的导体球壳,球壳的内外半径分别为4.0cm 和5.0cm (如图所示).球与球壳间是空气,球壳外也是空气,当内球带电荷为83.010C -⨯时,试求:(1)这个系统的静电能;(2)如果用导线把球壳与球连在一起,结果如何?解(1)考虑系统对球心O 具有球对称性,可知内球表面均匀带电83.010C Q -=⨯.根据高斯定理可以求得球壳的内表面均匀带电83.010C Q --=-⨯,球壳的外表面均匀带电83.010C Q -=⨯.根据导体性质和叠加原理可得10.02m r r <=区和230.04m 0.05m r r r =<<=区,0E =;12r r r <<区和3r r <区,204r Q E e r πε=. 系统静电能2132222t 00220011()4d ()4d 2424r r r Q Q W r r r r r rεπεππεπε∞=+⎰⎰ 20123111()8Q r r r πε=-+41.810(J)-=⨯ (2)如果用导线把球壳与球连在一起,则球壳与球成为一个导体,仅球壳的外表面均匀带电83.010C Q -=⨯.根据导体性质和叠加原理可得 3r r <区,0E =;3r r <区,204r Q E e r πε=. 系统静电能322t 0201()4d 24r Q W r r r εππε∞=⎰20318Q r πε=58.110(J)-=⨯ 18-6.范德格拉夫起电机球形高压电极A 的外半径为20cm ,空气的介电强度(击穿场强)为13kV mm -⋅,问此范德格拉夫起电机最多能达到多大电压?解球形高压电极A 的外半径为0.20m R =,电极A 外接近电极处场强最大61max 20310k m 4q E Rπε-==⨯⋅ 起电机能达到最大电压5max max 0610(V)4q U E R Rπε==⋅=⨯18-7.如图所示,682μF C C ==,其余的电容均为3μF .(1)求A 、B 间总电容.(2)若900V AB U =,求1C 、9C 上的电量.(3)若V U AB 900=,求CD U .解(1)3C 、4C 、5C 串联,3453451111C C C C =++ 所以3451F C =μ.345C 与6C 并联,则345634563F C C C =+=μ3456C 与2C 、7C 串联,电容为C ',3456271111C C C C =++' 可得1F C '=μ.C '与8C 并联,电容为C '',83F C C C '''=+=μ.C ''与1C 、9C 串联,电容为AB C ,191111AB C C C C =++'' 因此1F AB C =μ.(2)1C 、9C 与C ''串联,19C C C ''==,19AB U U U U ''++=, 所以191300V 3AB U U U U ''====,故41199910(C)C U C U C U -''''===⨯.(3)由300V U ''=,3456C 、2C 、7C 串联,3456273F C C C ===μ,故100V CD U =. 18-8.收音机里用的电容器如图所示,其中共有n 个面积为S 的金属片,相邻两片的距离均为d .奇数片连在一起作为一极,它们固定不动(叫做定片).偶数片连在一起作为另一极,可以绕轴转动(叫做动片).(1)转动到什么位置C 最大?转动到什么位置C 最小?(2)忽略边缘效应,证明C 的最大值dS n C 0max )1(ε-=. 解相邻的奇数金属片和偶数金属片的相对面构成一个平行板电容器,电容0i S C d ε'=,S '为相邻两金属片相对的面积.因奇数金属片和偶数金属片分别连成一极,n 个金属片就构成了(1)n -个并联的平行板电容器,其电容量0(1)(1)i S C n C n d ε'=-=-当S '最大,即可动金属片完全旋进时(可动金属片转至和固定金属片完全相对),此电容器的电容最大,0max (1)SC n d ε=-;当S '最小,即可动金属片完全旋出时,min 0C =.18-9.一个电偶极子,其电偶极矩为8210C m p -=⨯⋅,把它放在510 1.010V mE -=⨯⋅的均匀外电场中.(1)外电场作用于电偶极子上的最大力矩多大?(2)把偶极子从0=θ位置转到电场力矩最大(2θπ=)的位置时,外力所做的功多大?解(1)0T p E =⨯,当2θπ=时853max 021********(N m)T pE .--==⨯⨯⨯=⨯⋅(2)电场力做功,0δsin d sind AF l qlE θθθθ+=-=-,20000sin d A qlE qlE pE πθθ=-=-=-⎰外力做功30210(J)A A pE -'=-==⨯18-10.如图所示,平行板电容器两板带电量分别为Q ±,两板间距为d ,其间有两种电介质:1区介质电容率为1ε,所占面积为1S ;2区介质电容率为2ε,所占面积为2S .求:(1)两区的1D 、1E 和2D 、2E ,两区对应极板上的自由电荷面密度1σ、2σ;(2)电容器的电容C .解作z 轴垂直于板面.忽略边缘效应.D 均匀,沿z 方向.取高斯面为小圆柱面如图,根据高斯定理可得111d D S D S S σ⋅=∆=∆⎰⎰,1D σ=所以11D k σ=.同理22D k σ=.两极板是导体,极板为等势体,12E d E d =,12E E =. 由于111E k σε=,222E k σε=,所以1212σσεε=.又因1122S S Q σσ+=,故 111122Q S S εσεε=+,221122Q S S εσεε=+ 121122Q E E k S S εε==+ 1111122Q D k k S S εσεε==+,2221122Q D k k S S εσεε==+ (第十八章题解结束)。
大学物理18章重点习题解答

18.3.8 设想地球上有一观察者测得一宇宙飞船以0.6 测得速率向东飞行,5.0s后该飞船与一个以0.8c的速率 向西飞行的彗星相碰撞。试问: 1、飞船中的人测得彗星将以多大的速率向它运动? 2、从飞船中的钟来看,还有多少时间容许它离开航线, 以避免与彗星碰撞? /
解:1、如右图,取地球为S系,飞 船A为S/系,则S/系相对于S系的速 度u=0.6c,彗星B相对S系的速度 vx=-0.8c,则B相对S/系(A)的速 度为
l 0.6ct 3c
飞船上测得地以0.6c朝飞船运动,根据长度收缩效应,
2 v l' l 1 2 3c 1 0.62 2.4c c
飞船上测得两事件的时间间隔为 即:所剩逃避时间为 4s
l t 4s 0.6c
18.3.10半人马座 星是距离太阳系最近的恒星,它 16 4 . 3 10 m ,设有一宇宙飞船自地球往返于 距离地球 半人马座 星之间,若宇宙飞船相对地球的速度为 0.999c,按地球上的时钟计算,飞船往返一次需要用 多少时间?如以飞船上的时钟计算,所需时间又为多 少?
解:按地球上的时钟计算,飞船往返一次所需时间为
2s 2 4.3 1016 t 9.1年 8 v 0.999 3 10 365 24 3600
若用飞船上的钟测量,飞船往返所需时间为
1t 1 0.9992 9.1 0.4年
c 情况下,粒子的动量等于非相 18.1.5、在速度υ= 3 对论动量的两倍;在速度υ= 2 c 情况下,粒子的 动能等于它静止能量。
解:1、粒子的动量为
3 2
p
m0 v
2
c2
1
m0 v 2m0 v
2020年理综全国Ⅰ卷第18题的多种解法赏析

2020年11月1日理科考试研究•综合版• 45 .题的过程中,不难发现,无论是弹簧连接体模型,抑或 降落伞问题,都可以利用牛顿运动定律建立质点运动 学微分方程.除上述两个物理模型外,利用微分方程 还可以严格求解阻尼运动、谐振子、放射性元素衰变、稳/暂态电路、流体流量等多类物理问题.从普通力学 到理论力学、从量子力学到天体物理,微分方程贯穿 于物理学的各个领域,应用性强、覆盖面广.物理学是应用数学方法最充分、最成功的一门科 学['物理学中的数学方法是物理思维和数学思维高 度融合的产物[3].在应用微分方程解决物理问题时,利用物理定律 分析模型、按照逻辑定性描述物体运动状态是物理思 想,将分析模型转化为方程并严格求解、借助函数定 量阐述物体运动规律则是数学思想,两者的有机融合 便构成了“数理思想从高观点视域下进行习题分析,能够使学生掌握 归纳演绎、逻辑推理、数学计算等技能,培养学生的数 理思想,进而在一定程度上增强学生学习兴趣与动 机、提升学生物理学习的能力.5结束语本文以“弹簧连接体”和“降落伞模型”为例,阐述了微分方程在解决高中物理问题中的实际应用,引导中学物理教师要从高站位、高观点的视域下看待中 学物理教学.科技高速发展时代、知识碎片化时代,都可能使 学生的原有认知结构随时发生变化,其知识储备M和 新知识组块能力都可能随时代的发展而加速变化.因 此在中学物理实际教学中,教师不能仅拘泥于教材、教参、练习册、试卷体现出的知识点和解题方法,不能 长期坚持原有的传统教学模式,应尝试努力扩展知识 储备、革新教学理念、创新教学模式、提升教学素养、开发教学特色,正所谓“教师要给学生一碗水,自己要 有一桶水”[4],致力于将物理学科核心素养在新时代 的中学物理教学中“落地生根参考文献:[1 ]同济大学数学系.高等数学第六版上册[M].北京:高等教育出版社,2007(04) :294.[2] [3]阎金铎,梁树森.物理学习论[M].南宁:广西教育 出版社,1996( 12) :89 -90.[4 ]陈向明.教师的作用是什么——对教师隐喻的分析 [J].教育研究与实验,2001 (01):13 - 19 + 72.(收稿日期:2020-07 -21)2020年理综全国I卷第18题的多种鮮法貴析薛彦学(莒县第一中学山东日照276500)摘要:本题属于带电粒子在有界磁场中运动的问题,磁场边界由直线和圆组合而成,比较新颖.在规范作图基础 上,可以形成多种解题思路.思路1利用余弦定理和均值不等式求解;思路2利用现有图形构造椭圆,利用椭圆的性质 找到最大圆心角;思路3运用多次试探作图找到最大圆心角,然后利用几何知识巧妙求解;思路4利用定性判断和排除 法结合求解.关键词:余弦定理;椭圆性质;相切1问题呈现(2020 •全国 I卷 18T)—匀::::::::::::::强磁场的磁感应强度大小为b,方LLLi丨丨i丨:i j l U向垂直于纸面向外,其边界如图i e d 中虚线所示,2为半圆与直图1径《/;共线,间的距离等于半圆的半径.一束质量为m、电荷量为9(9>〇)的粒子,在纸面内从c点垂直于 a c射人磁场,这些粒子具有各种速率.不计粒子之间 的相互作用.在磁场中运动时间最长的粒子,其运动时间为()•»lirm..5mn r 47rm n3Tim2^B2解法赏析分析本题属于带电粒子在有界匀强磁场中运动问题,磁场边界为直线边界和圆形边界组合,粒子 具有各自不同速度,轨道半径不同,在圆形磁场组合 运动时间不同,要求最长时间对应轨迹圆心角最大. 本题规范作图后,就变成一个数学问题了,因此可以作者简介:萍彦学(1968 -),男,山东日照人,领士,中学高级教师,研究方向:高三物理实验班教学.• 46 •理科考试研究•综合版2020年11月1日从代数和几何两个方向思考.如图2,设带电粒子速度为 ^时轨迹半径为/?,a c 间的距离 为半圆圆心为0,轨迹圆心*5 角为T T +0,粒子出射点为e ,由 洛伦兹力和向心力公式得图2=竽,,=¥,在磁场中运动时间为i =d方法i运用余弦定理和均值不等式求解由余弦定理得nR2 + (2r - R )2 R 2r -R ^ 1C 〇s6 = 2R (2r -R ) = 2(2r -R ) + 2R ^ ~1(均值不等式),故0纭f ,运动时间最长t =^f .方法2利用三角形的特点构造椭圆,利用楠圆的性质解题在三角形oae 中,ae = /?,oe = r 为 定值,oa =2r -/?,由椭圆的定义,到两 定点距离之和为定值的点组成集合.我们构造一个以为焦点的椭圆,则 到o e 两定点的距离之和为不变.如图3所示,根据椭圆的性质,〇a与 e a 的夹角在椭圆的短半轴与椭圆交点最大,即=ae此时三角形为等边三角形,0=60°,同上可得 到C 正确.方法3有序试探作图,发现极值,利用三角形圆心角与圆周角关系求证如图4所示,我们用圆规分别作出速度逐渐增大的四个轨迹,发现当《连线与d 的夹角先增大后减小.当〇62与磁场边界圆相 切时,圆周角oce 最大,对应 圆心角0最大,也可利用弦 切角等于圆周角一半,直接 观察出相切为极值.由几何关系得sina= +,a =3〇。
大学物理第十八章题解

第十八章静电场中的导体和电介质18-1.如图所示,三块平行放置的金属板A 、B 、C ,面积均为S .B 、C 板接地,A 板带电量Q ,其厚度可忽略不计.设A 、B 板间距为l ,B 、C 板间距为d .因d 很小,各金属板可视为无穷大平面,即可忽略边缘效应.试求:(1)B 、C 板上的感应电荷,(2)空间的场强及电势分布.解因d 很小,各金属板可视为无穷大平面,所以除边缘部分外,可认为E 沿Oz 方向,z 相同处E 的大小相同,即()z E E z k =.(1)设B 、C 表面的面电荷密度为1σ、2σ、3σ、4σ如图所示.由于B 、C 板接地,故B 、C 板电势与无穷远相同,电势均为零.若B 、C 板外表面带有电荷,必有电场线连接板外表面与无穷远,则B 、C 板电势与无穷远不同,因此可知B 、C 板外表面不带电荷,即140σσ==.作高斯面为闭合圆柱面如图,两底面在B 、C 板内部、与Oz 垂直,侧面与Oz 平行,由高斯定理23101d 0()Q E S S S σσε⋅==++⎰⎰可得23Q S σσ+=-(1) 根据叠加原理,Ⅰ区E 为3个无穷大带电平面产生的场强的叠加,即321000222z Q S E σσεεε=-- 同理,Ⅱ区电场强度322000222z Q S E σσεεε=+- 因为A 、B 间的电压AB U 与A 、C 板的电压AC U 相等,12()z z E l E d l -=-,即3322000000()()()222222Q S Q S l d l σσσσεεεεεε---=+-- 即232Q d l S dσσ--=-(2) 联立求解(1)(2)式得:2d l Q d S σ-=-,3l Q d Sσ=-.所以B 、C 板内表面分别带电 22d l Q S Q d σ-=⋅=-,33l Q S Q dσ=⋅=- (2)Ⅰ区321000222z Q S E σσεεε=--0001()222d l l Q d d S εεε-=--+0()d l Q dSε-=- 00111d d z z z E l E l ϕ=⋅=-⋅⎰⎰0()d l Q z dSε-= Ⅱ区322000222z Q S E σσεεε=+-0001()222d l l Q d d S εεε-=-++0lQ dSε= 222d d d d z z z E l E l ϕ=⋅=⋅⎰⎰0()lQ d z dSε=- 18-2.点电荷q 放在电中性导体球壳的中心,壳的内外半径分别为1R 和2R ,如图所示.求场强和电势的分布,并画出r E -和r -ϕ曲线.解由于电荷q 位于球心O ,导体球壳对球心O 具有球对称性,故感应电荷和电场的分布也对球心O 具有球对称性;可知感应电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强的大小E 相等.设球壳内表面带电1Q ,外表面带电2Q .用以O 点为球心,12R r R <<为半径的球面为高斯面,根据高斯定理101d 0()E S q Q ε⋅==+⎰⎰可知1Q q =-;由于导体球壳电中性,由120Q Q +=,所以2Q q =.根据叠加原理,场强和电势分别为点电荷q 、均匀带电1Q 和2Q 的球面的场强和电势的叠加.考虑到在电荷球对称分布情况下,在电荷分布区以外的场强和电势与总电量集中在球心的点电荷的场强和电势的表达式相同.取参考点在无穷远;2r R >时,121220044q Q Q q E r r πεπε++==,1210044q Q Q q r rϕπεπε++== 21R r R ≥≥时,112004q Q E r πε+==,12100202444q Q Q q r R R ϕπεπεπε+=+= 1r R <时,1204q E rπε=,12100102012111()4444Q Q q q r R R r R R ϕπεπεπεπε=++=-+ 请读者画出r E -和r -ϕ曲线.18-3.一半径为A R 的金属球A 外罩有一个同心金属球壳B ,球壳很薄,内外半径均可看成B R ,如图所示.已知A 带电量为A Q ,B 带电量为B Q .试求:(1)A 的表面1S ,B 的内外表面2S 、3S 上的电量;(2)A 、B 球的电势(无穷远处电势为零).解由于金属球A 和同心金属球壳B 对球心O 具有球对称性,故电荷和电场的分布也对球心O 具有球对称性;可知电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强的大小E 相等.(1)金属球A 带电A Q 分布于A 的外表面1S ;设金属球壳B 内表面带电2Q ,外表面带电3Q ,23B Q Q Q +=.用以O 点为球心、B r R =为半径、位于球壳B 金属内部的球面为高斯面,根据高斯定理A 201d 0()E S Q Q ε⋅==+⎰⎰可知2A Q Q =-;由于23B Q Q Q +=,所以3A B Q Q Q =+.(2)根据叠加原理,电势为三个均匀带电球面产生电势的叠加,即B r R ≥区域,A 23A B 10044Q Q Q Q Q r r ϕπεπε+++== 令B r R =,即为B 球的电势A B B 0B4Q Q R ϕπε+=. B A R r R >≥区域,3A 2A B 200B 0B 0B1()4444Q Q Q Q Q r R R r R ϕπεπεπεπε=++=+ 令A r R =,即为A 球的电势A B A 0A B 1()4Q Q RR ϕπε=+. 18-4.同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱构成,如图所示.设内圆柱体的半径为1R ,外圆柱体的内半径为2R .使内圆柱带电,单位长度上的电量为η,试求内外圆柱间的电势差.解由于两个同轴金属直圆柱可视为无限长、对圆柱轴线O 轴对称;所以电荷和电场的分布也对圆柱轴线O 轴对称;电场线在垂直于圆柱轴线的平面内,为过圆柱轴线的放射状半直线;场强E 沿半径方向,在到轴线O 的距离r 相同处,场强的大小E 相等.用以圆柱轴线为轴,两底面与圆柱轴线垂直的闭合圆柱面为高斯面.高斯面的两底面与圆柱轴线O 垂直,半径为r ,21R r R >>;两底面与E 平行,E 通量为零;圆柱侧面长度为l ,与E 正交,E 通量2rlE ϕπ=.由高斯定理10d 2l E S rlE ηπε⋅==⎰⎰可得02E rηπε=. 沿电场线积分,由1R 沿半径到2R ,内外圆柱间的电势差 2221112001d d d ln 22R R R R R R R U E l E r r r R ηηπεπε=⋅===⎰⎰⎰ 18-5.半径为2.0cm 的导体球外套有一个与它同心的导体球壳,球壳的内外半径分别为4.0cm 和5.0cm (如图所示).球与球壳间是空气,球壳外也是空气,当内球带电荷为83.010C -⨯时,试求:(1)这个系统的静电能;(2)如果用导线把球壳与球连在一起,结果如何?解(1)考虑系统对球心O 具有球对称性,可知内球表面均匀带电83.010C Q -=⨯.根据高斯定理可以求得球壳的内表面均匀带电83.010C Q --=-⨯,球壳的外表面均匀带电83.010C Q -=⨯.根据导体性质和叠加原理可得10.02m r r <=区和230.04m 0.05m r r r =<<=区,0E =;12r r r <<区和3r r <区,204r Q E e r πε=. 系统静电能2132222t 00220011()4d ()4d 2424r r r Q Q W r r r r r rεπεππεπε∞=+⎰⎰ 20123111()8Q r r r πε=-+41.810(J)-=⨯ (2)如果用导线把球壳与球连在一起,则球壳与球成为一个导体,仅球壳的外表面均匀带电83.010C Q -=⨯.根据导体性质和叠加原理可得 3r r <区,0E =;3r r <区,204r Q E e r πε=. 系统静电能322t 0201()4d 24r Q W r r r εππε∞=⎰20318Q r πε=58.110(J)-=⨯ 18-6.范德格拉夫起电机球形高压电极A 的外半径为20cm ,空气的介电强度(击穿场强)为13kV mm -⋅,问此范德格拉夫起电机最多能达到多大电压?解球形高压电极A 的外半径为0.20m R =,电极A 外接近电极处场强最大61max 20310k m 4q E Rπε-==⨯⋅ 起电机能达到最大电压5max max 0610(V)4q U E R Rπε==⋅=⨯18-7.如图所示,682μF C C ==,其余的电容均为3μF .(1)求A 、B 间总电容.(2)若900V AB U =,求1C 、9C 上的电量.(3)若V U AB 900=,求CD U .解(1)3C 、4C 、5C 串联,3453451111C C C C =++ 所以3451F C =μ.345C 与6C 并联,则345634563F C C C =+=μ3456C 与2C 、7C 串联,电容为C ',3456271111C C C C =++' 可得1F C '=μ.C '与8C 并联,电容为C '',83F C C C '''=+=μ.C ''与1C 、9C 串联,电容为AB C ,191111AB C C C C =++'' 因此1F AB C =μ.(2)1C 、9C 与C ''串联,19C C C ''==,19AB U U U U ''++=, 所以191300V 3AB U U U U ''====,故41199910(C)C U C U C U -''''===⨯.(3)由300V U ''=,3456C 、2C 、7C 串联,3456273F C C C ===μ,故100V CD U =. 18-8.收音机里用的电容器如图所示,其中共有n 个面积为S 的金属片,相邻两片的距离均为d .奇数片连在一起作为一极,它们固定不动(叫做定片).偶数片连在一起作为另一极,可以绕轴转动(叫做动片).(1)转动到什么位置C 最大?转动到什么位置C 最小?(2)忽略边缘效应,证明C 的最大值dS n C 0max )1(ε-=. 解相邻的奇数金属片和偶数金属片的相对面构成一个平行板电容器,电容0i S C d ε'=,S '为相邻两金属片相对的面积.因奇数金属片和偶数金属片分别连成一极,n 个金属片就构成了(1)n -个并联的平行板电容器,其电容量0(1)(1)i S C n C n d ε'=-=-当S '最大,即可动金属片完全旋进时(可动金属片转至和固定金属片完全相对),此电容器的电容最大,0max (1)SC n d ε=-;当S '最小,即可动金属片完全旋出时,min 0C =.18-9.一个电偶极子,其电偶极矩为8210C m p -=⨯⋅,把它放在510 1.010V mE -=⨯⋅的均匀外电场中.(1)外电场作用于电偶极子上的最大力矩多大?(2)把偶极子从0=θ位置转到电场力矩最大(2θπ=)的位置时,外力所做的功多大?解(1)0T p E =⨯,当2θπ=时853max 021********(N m)T pE .--==⨯⨯⨯=⨯⋅(2)电场力做功,0δsin d sind AF l qlE θθθθ+=-=-,20000sin d A qlE qlE pE πθθ=-=-=-⎰外力做功30210(J)A A pE -'=-==⨯18-10.如图所示,平行板电容器两板带电量分别为Q ±,两板间距为d ,其间有两种电介质:1区介质电容率为1ε,所占面积为1S ;2区介质电容率为2ε,所占面积为2S .求:(1)两区的1D 、1E 和2D 、2E ,两区对应极板上的自由电荷面密度1σ、2σ;(2)电容器的电容C .解作z 轴垂直于板面.忽略边缘效应.D 均匀,沿z 方向.取高斯面为小圆柱面如图,根据高斯定理可得111d D S D S S σ⋅=∆=∆⎰⎰,1D σ=所以11D k σ=.同理22D k σ=.两极板是导体,极板为等势体,12E d E d =,12E E =. 由于111E k σε=,222E k σε=,所以1212σσεε=.又因1122S S Q σσ+=,故 111122Q S S εσεε=+,221122Q S S εσεε=+ 121122Q E E k S S εε==+ 1111122Q D k k S S εσεε==+,2221122Q D k k S S εσεε==+ (第十八章题解结束)。
大学物理下18章习题参考答案中国石油大学

18章习题参考答案18-3 当波长为3000Å的光照射在某金属外表时,光电子的能量范围从0到J 100.419-⨯。
在做上述光电效应实验时遏止电压是多大?此金属的红限频率是多大?[解] 由Einstien 光电效应方程()02max 21νν-=h mv 2max 2max 02121mv hc mv h h -=-=λνν19191910626.2100.410626.6---⨯=⨯-⨯=红限频率 Hz 1097.3140⨯=ν 遏止电压a U 满足 J 100.421192max a -⨯==mv eU 所以 V 5.2106.1100.41919a a =⨯⨯==--e eU U 18-4 图中所示为一次光电效应实验中得出的遏止电压随入射光频率变化的实验曲线。
(1)求证对不同的金属材料,AB 线的斜率相同;(2)由图上数据求出普朗克常量h 的值。
[解] (1) 由Einstien 光电效应方程得 A h U e -=νa 即 eA e hU -=νa 仅A 与金属材料有关,故斜率eh与材料无关。
(2)()s V 100.4100.50.100.21514⋅⨯=⨯-=-e h 所以 s J 104.6106.1100.4341915⋅⨯=⨯⨯⨯=---h18-6 在康普顿散射中,入射光子的波长为0.03Å,反冲电子的速度为光速的60%。
求散射光子的波长和散射角。
[解] (1) 电子能量的增加ννh h E -=∆02min λ ()⎪⎪⎭⎫ ⎝⎛--=-=160.01122020c m c m m2025.0c m =0434.025.011200=⎪⎪⎭⎫⎝⎛-=-h c m λλÅ(2) 由于 )cos 1(0φλ-=∆cm h所以 554.0cos 100=-=-cm h λλφ解得 0463.=φ18-7 已知X 射线光子的能量为0.60MeV ,假设在康普顿散射中散射光子的波长变化了20%,试求反冲电子的动能。
大学物理第18章

2 Y 2 Y0
线偏振光透过晶片后,可形成圆或椭圆偏振光, 也可以是线偏振光。
1 π 1.当 ,四分之一波片, 4 2 2 2 EX EY 2 1 2 E X 0 EY 0
为正椭圆。当=45时,为圆偏振光。
1 2.当 , 二分之一波片, π 2 EY 0 EY EX EX 0
I I 0 (1 cos 4t ) / 16
I0
自然光
I
P1
P2
P3
I0
自然光
I1
I2
I
P1
P2
P3
P3
P2
π 2
证明 如图所示,在 t 时刻, I1 I 0 / 2, I 2 I1 cos2 2 π I I 2 cos 2
P1
2 2 2 1 2 1 2
马吕斯定律
I 2 I1 cos
2
立体电影
例1 有三个偏振片堆叠在一起,第一块与第三块 的偏振片化方向相互垂直,第二块和第一块的偏 振化方向相互平行,然后第二块偏振片以恒定的 角速度 绕光传播的方向旋转,设入射自然光的 光强为 I0。试证明:此自然光通过这一系统后, 出射光的光强为
仍为线偏振光,但振 动方向转过2。
18-3 偏振光的干涉及其应用
1、两偏振片正交放置
Ae 2 Ae1cos Acoscos Ao 2 Ao1cos Acoscos 2π no ne d π
2、两偏振片平行放置
Ae 2 Ae1cos Acos
正晶体 no ne , vo v e 如石英晶体 no 1.543, ne 1.552 负晶体 no ne , vo v e 如方解石晶体 no 1.658, ne 1.468
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章 静电场中的导体和电介质18-1.如图所示,三块平行放置的金属板A 、B 、C ,面积均为S .B 、C 板接地,A 板带电量Q ,其厚度可忽略不计.设A 、B 板间距为l ,B 、C 板间距为d .因d 很小,各金属板可视为无穷大平面,即可忽略边缘效应.试求:(1)B 、C 板上的感应电荷,(2)空间的场强及电势分布.解 因d 很小,各金属板可视为无穷大平面,所以除边缘部分外,可认为E 沿Oz 方向,z 相同处E 的大小相同,即()z E E z k =.(1)设B 、C 表面的面电荷密度为1σ、2σ、3σ、4σ如图所示.由于B 、C 板接地,故B 、C 板电势与无穷远相同,电势均为零.若B 、C 板外表面带有电荷,必有电场线连接板外表面与无穷远,则B 、C 板电势与无穷远不同,因此可知B 、C 板外表面不带电荷,即140σσ==.作高斯面为闭合圆柱面如图,两底面在B 、C 板内部、与Oz 垂直,侧面与Oz 平行,由高斯定理23101d 0()Q E S S S σσε⋅==++⎰⎰ 可得 23Q Sσσ+=- (1) 根据叠加原理,Ⅰ区E 为3个无穷大带电平面产生的场强的叠加,即321000222z Q S E σσεεε=-- 同理,Ⅱ区电场强度 322000222z Q S E σσεεε=+- 因为A 、B 间的电压AB U 与A 、C 板的电压AC U 相等,12()z z E l E d l -=-,即3322000000()()()222222Q S Q S l d l σσσσεεεεεε---=+-- 即 232Q d l S dσσ--=- (2) 联立求解(1)(2)式得:2d l Q d S σ-=-,3l Q d Sσ=-.所以B 、C 板内表面分别带电 22d l Q S Q d σ-=⋅=- ,33l Q S Q dσ=⋅=- (2)Ⅰ区 321000222z Q S E σσεεε=--0001()222d l l Q d d S εεε-=--+0()d l Q dS ε-=- 00111d d z z z E l E l ϕ=⋅=-⋅⎰⎰0()d l Q z dSε-= Ⅱ区 322000222z Q S E σσεεε=+-0001()222d l l Q d d S εεε-=-++0lQ dSε= 222d d d d z z z E l E l ϕ=⋅=⋅⎰⎰0()lQ d z dS ε=-18-2.点电荷q 放在电中性导体球壳的中心,壳的内外半径分别为1R 和2R ,如图所示.求场强和电势的分布,并画出r E -和r -ϕ曲线.解 由于电荷q 位于球心O ,导体球壳对球心O 具有球对称性,故感应电荷和电场的分布也对球心O 具有球对称性;可知感应电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强的大小E 相等.设球壳内表面带电1Q ,外表面带电2Q .用以O 点为球心,12R r R <<为半径的球面为高斯面,根据高斯定理101d 0()E S q Q ε⋅==+⎰⎰ 可知1Q q =-;由于导体球壳电中性,由120Q Q +=,所以2Q q =.根据叠加原理,场强和电势分别为点电荷q 、均匀带电1Q 和2Q 的球面的场强和电势的叠加.考虑到在电荷球对称分布情况下,在电荷分布区以外的场强和电势与总电量集中在球心的点电荷的场强和电势的表达式相同.取参考点在无穷远;2r R >时,121220044q Q Q q E r r πεπε++== ,1210044q Q Q q r rϕπεπε++== 21R r R ≥≥时, 112004q Q E rπε+== ,12100202444q Q Q q r R R ϕπεπεπε+=+= 1r R <时,1204q E rπε=,12100102012111()4444Q Q q q r R R r R R ϕπεπεπεπε=++=-+ 请读者画出r E -和r -ϕ曲线.18-3.一半径为A R 的金属球A 外罩有一个同心金属球壳B ,球壳很薄,内外半径均可看成B R ,如图所示.已知A 带电量为A Q ,B 带电量为B Q .试求:(1)A 的表面1S ,B 的内外表面2S 、3S 上的电量;(2)A 、B 球的电势(无穷远处电势为零).解 由于金属球A 和同心金属球壳B 对球心O 具有球对称性,故电荷和电场的分布也对球心O 具有球对称性;可知电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强的大小E 相等.(1)金属球A 带电A Q 分布于A 的外表面1S ;设金属球壳B 内表面带电2Q ,外表面带电3Q ,23B Q Q Q +=.用以O 点为球心、B r R =为半径、位于球壳B 金属内部的球面为高斯面,根据高斯定理A 201d 0()E S Q Q ε⋅==+⎰⎰可知2A Q Q =-;由于23B Q Q Q +=,所以3A B Q Q Q =+.(2)根据叠加原理,电势为三个均匀带电球面产生电势的叠加,即B r R ≥区域, A 23A B 10044Q Q Q Q Q r rϕπεπε+++== 令B r R =,即为B 球的电势A B B 0B 4Q Q R ϕπε+=.B A R r R >≥区域,3A 2A B 200B 0B 0B 1()4444Q Q Q Q Q r R R r R ϕπεπεπεπε=++=+ 令A r R =,即为A 球的电势A B A 0A B 1()4Q Q R R ϕπε=+.18-4.同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱构成,如图所示.设内圆柱体的半径为1R ,外圆柱体的内半径为2R .使内圆柱带电,单位长度上的电量为η,试求内外圆柱间的电势差.解 由于两个同轴金属直圆柱可视为无限长、对圆柱轴线O 轴对称;所以电荷和电场的分布也对圆柱轴线O 轴对称;电场线在垂直于圆柱轴线的平面内,为过圆柱轴线的放射状半直线;场强E 沿半径方向,在到轴线O 的距离r 相同处,场强的大小E 相等.用以圆柱轴线为轴,两底面与圆柱轴线垂直的闭合圆柱面为高斯面.高斯面的两底面与圆柱轴线O 垂直,半径为r ,21R r R >>;两底面与E 平行,E 通量为零;圆柱侧面长度为l ,与E 正交,E 通量2rlE ϕπ=.由高斯定理10d 2l E S rlE ηπε⋅==⎰⎰可得02E rηπε=. 沿电场线积分,由1R 沿半径到2R ,内外圆柱间的电势差 2221112001d d d ln 22R R R R R R R U E l E r r r R ηηπεπε=⋅===⎰⎰⎰18-5.半径为2.0cm 的导体球外套有一个与它同心的导体球壳,球壳的内外半径分别为4.0cm 和5.0cm (如图所示).球与球壳间是空气,球壳外也是空气,当内球带电荷为83.010C -⨯时,试求:(1)这个系统的静电能;(2)如果用导线把球壳与球连在一起,结果如何?解 (1)考虑系统对球心O 具有球对称性,可知内球表面均匀带电83.010C Q -=⨯.根据高斯定理可以求得球壳的内表面均匀带电83.010C Q --=-⨯,球壳的外表面均匀带电83.010C Q -=⨯.根据导体性质和叠加原理可得10.02m r r <=区和230.04m 0.05m r r r =<<=区,0E =;12r r r <<区和3r r <区,204r Q E e rπε=. 系统静电能 2132222t 00220011()4d ()4d 2424r r r Q Q W r r r r r rεπεππεπε∞=+⎰⎰ 20123111()8Q r r r πε=-+41.810(J)-=⨯ (2)如果用导线把球壳与球连在一起,则球壳与球成为一个导体,仅球壳的外表面均匀带电83.010C Q -=⨯.根据导体性质和叠加原理可得 3r r <区,0E =;3r r <区,204r Q E e r πε=. 系统静电能 322t 0201()4d 24r Q W r r r εππε∞=⎰20318Q r πε=58.110(J)-=⨯18-6.范德格拉夫起电机球形高压电极A 的外半径为20cm ,空气的介电强度(击穿场强)为13kV mm -⋅,问此范德格拉夫起电机最多能达到多大电压?解 球形高压电极A 的外半径为0.20m R =,电极A 外接近电极处场强最大 61max 20310k m 4q E R πε-==⨯⋅ 起电机能达到最大电压 5max max 0610(V)4q U E R Rπε==⋅=⨯18-7.如图所示,682μF C C ==,其余的电容均为3μF .(1)求A 、B 间总电容.(2)若900V AB U =,求1C 、9C 上的电量.(3)若V U AB 900=,求CD U .解 (1)3C 、4C 、5C 串联, 3453451111C C C C =++ 所以3451F C =μ.345C 与6C 并联,则345634563F C C C =+=μ3456C 与2C 、7C 串联,电容为C ',3456271111C C C C =++' 可得1F C '=μ.C '与8C 并联,电容为C '',83F C C C '''=+=μ.C ''与1C 、9C 串联,电容为AB C ,191111AB C C C C =++'' 因此1F AB C =μ.(2)1C 、9C 与C ''串联,19C C C ''==,19AB U U U U ''++=,所以191300V 3AB U U U U ''====,故41199910(C)C U C U C U -''''===⨯. (3)由300V U ''=,3456C 、2C 、7C 串联,3456273F C C C ===μ,故100V CD U =.18-8.收音机里用的电容器如图所示,其中共有n 个面积为S 的金属片,相邻两片的距离均为d .奇数片连在一起作为一极,它们固定不动(叫做定片).偶数片连在一起作为另一极,可以绕轴转动(叫做动片).(1)转动到什么位置C 最大?转动到什么位置C 最小?(2)忽略边缘效应,证明C 的最大值dS n C 0max )1(ε-=. 解 相邻的奇数金属片和偶数金属片的相对面构成一个平行板电容器,电容0i S C d ε'=,S '为相邻两金属片相对的面积.因奇数金属片和偶数金属片分别连成一极,n 个金属片就构成了(1)n -个并联的平行板电容器,其电容量0(1)(1)i S C n C n d ε'=-=-当S '最大,即可动金属片完全旋进时(可动金属片转至和固定金属片完全相对),此电容器的电容最大,0max (1)S C n d ε=-;当S '最小,即可动金属片完全旋出时,min 0C =.18-9.一个电偶极子,其电偶极矩为8210C m p -=⨯⋅,把它放在510 1.010V mE -=⨯⋅的均匀外电场中.(1)外电场作用于电偶极子上的最大力矩多大?(2)把偶极子从0=θ位置转到电场力矩最大(2θπ=)的位置时,外力所做的功多大?解 (1)0T p E =⨯,当2θπ=时853max 021********(N m)T pE .--==⨯⨯⨯=⨯⋅(2)电场力做功,0δsin d sin d A F l qlE θθθθ+=-=-,20000sin d A qlE qlE pE πθθ=-=-=-⎰外力做功 30210(J)A A pE -'=-==⨯18-10.如图所示,平行板电容器两板带电量分别为Q ±,两板间距为d ,其间有两种电介质:1区介质电容率为1ε,所占面积为1S ;2区介质电容率为2ε,所占面积为2S .求:(1)两区的1D 、1E 和2D 、2E ,两区对应极板上的自由电荷面密度1σ、2σ;(2)电容器的电容C .解 作z 轴垂直于板面.忽略边缘效应.D 均匀,沿z 方向.取高斯面为小圆柱面如图,根据高斯定理可得111d D S D S S σ⋅=∆=∆⎰⎰,1D σ=所以11D k σ=.同理22D k σ=.两极板是导体,极板为等势体,12E d E d =,12E E =.由于111E k σε=,222E k σε=,所以1212σσεε=.又因1122S S Q σσ+=,故 111122Q S S εσεε=+ ,221122Q S S εσεε=+ 121122Q E E k S S εε==+ 1111122Q D k k S S εσεε==+ ,2221122Q D k k S S εσεε==+ (第十八章题解结束)。