大学物理课后习题答案第22章
【最新试题库含答案】大学物理课后习题答案2222

大学物理课后习题答案2222:篇一:大学物理课后习题答案详解第一章质点运动学1、(习题1.1):一质点在xOy平面内运动,运动函数为x=2t,y=4t2?8。
(1)求质点的轨道方程;(2)求t=1 s和t=2 s 时质点的位置、速度和加速度。
解:(1)由x=2t得,22y=4t-8可得:y=x-8即轨道曲线(2)质点的位置: r?2ti?(4t2?8)j 由v?dr/dt则速度: v?2i?8tj 由a?dv/dt则加速度: a?8j 则当t=1s时,有r?2i?4j,v?2i?8j,a?8j当t=2s时,有r?4i?8j,v?2i?16j,a?8j2、(习题1.2):质点沿x在轴正向运动,加速度a??kv,k为常数.设从原点出发时速度为v0,求运动方程x?x(t).解:dv??kv dtdx?v0e?ktdtt1?ktdv??v0v?0?kdt v?v0e v?xdx??v0et?ktdt x?v0(1?e?kt) k3、一质点沿x轴运动,其加速度为a ? 4t (SI),已知t ? 0时,质点位于x ??10 m处,初速度v??? 0.试求其位置和时间的关系式.解:a?dv /dt?4t dv ?4t dt?vdv??4tdt v?2t2tv?dx /d t?2t2?xx0dx??2t2dt x?2 t3 /3+10(SI)t4、一质量为m的小球在高度h处以初速度v0水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的drdvdv,,. dtdtdt解:(1) x?v0t 式(1)11y?h?gt2 式(2) r(t)?v0ti?(h-gt2)j22gx2(2)联立式(1)、式(2)得 y?h?22v0(3)dr?v0i-gtj而落地所用时间 t?dtdr2h?v0i所以dtgjg2ghdvdvg2t2222??gjv?vx?vy?v0?(?gt) ?? 222dtdt[v?(gt)](v?2gh)005、已知质点位矢随时间变化的函数形式为r?t2i?2tj,式中r的单位为m,t的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理第22章 光的干涉

r2
相位差和光程差的关系:
2
8
例如:在S2P间插入折射率为n、厚度为d的媒质。求:光 由S1、 S2 到 P的相位差φ 。
2 2π φ δ λ
r d nd r
2 1
2 r2 r1 n 1d
r1 P · r2 d
第22章 光的干涉
§22.1 杨氏双缝干涉 §22.2 相干光 §22.5 光程 §22.6 薄膜干涉(一) —— 等厚干涉 §22.7 薄膜干涉(二) —— 等倾干涉 §22.8 迈克尔逊干涉仪 本章要点:理解掌握光的干涉条件、干涉实例 的分析及方法
1
§22.2 相干光
1.振动方向相同,频率相同的两列波的叠加
14 14
5.0 1014 ~ 5.4 1014 5.4 1014 ~ 6.1 1014 6.1 1014 ~ 6.4 1014
兰
紫
470~455
455~400
6.4 1014 ~ 6.6 1014
6.6 1014 ~ 7.5 1014
460
430
12
§22.1 杨氏双缝干涉
r暗 kR
1 r暗 R k ; 令k 1, 则r 随 k 间距 。 k 31
(2)牛顿环应用
•测量未知单色平行光的波长
已知第 k 级和第 m 级暗环直径 dk、dm
2
a 纹路深为: h 2L
L
h h
e
a L
27
ek ek+1
(2)测膜厚
A
B
Si O2
e e
n1 1
n2 1.57
大学物理第三版上册课后习题答案

大学物理第三版上册课后习题答案【篇一:物理学教程(第二版)上册课后习题答案详解】s=txt>第一章质点运动学v,||=(b) |v|≠v,||≠ v,||≠(d) |v|≠v,||=,即||≠. ?但由于|dr|=ds,故drds,即||=.由此可见,应选(c). dtdt1 -2dr(1)dt一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即; (2)drdt;ds(3)dt; (4)dxdydtdt22.下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确(c) 只有(2)(3)正确 (d) 只有(3)(4)正确分析与解drdt表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,drdt表示速度矢量;在自然坐标系中速度大小可用公式v22ds计dtdxdy算,在直角坐标系中则可由公式vdtdt表达式,即求解.故选(d).1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,dtdrds起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质dtdt分析与解点的速率v;而dvdt表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d).1 -4 一个质点在做圆周运动时,则有( ) (a) 切向加速度一定改变,法向加速度也改变 (b) 切向加速度可能不变,法向加速度一定改变 (c) 切向加速度可能不变,法向加速度不变 (d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b). 1 -5 已知质点沿x 轴作直线运动,其运动方程为s.求:(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t=4 s时质点的速度和加速度.x?2?6t2?2t3,式中x 的单位为m,t 的单位为xtx0,而在求路程时,就必dx0来确dt须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据dxd2xs??x1??x2,如图所示,至于t =4.0 s 时质点速度和加速度可用和2两式计算.dtdt题 1-5 图解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为dx0 dttp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dx48m?s?1dtt?4.0sd2xa?2??36m.s?2dtt?4.0s1 -6 已知质点的运动方程为r(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为2ti(2t2)j,式中r 的单位为m,t 的单位为s.求:y?2?这是一个抛物线方程,轨迹如图(a)所示.12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得其中位移大小2222r2r0x2y2x0y02.47m题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?dx10?60t dtdyvy15?40tdt22v0?v0x?v0y?18.0m?s?1v0yv0x3 2(2) 加速度的分量式为ax?则加速度的大小为dvydvx40m?s?2 ?60m?s?2 , ay?dtdta?ax?ay?72.1m?s?2ayax2 3分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为1y1?v0t?at221y2?h?v0t?gt22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h0.705sg?a(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt?0.716m 2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有10?h?(g?a)t22t?(2) 由于升降机在t 时间内上升的高度为2h0.705sg?a则1h??v0t?at22d?h?h??0.716m【篇二:大学物理上册课后习题答案】-1 |?r|与?r 有无不同?drdrdvdv和有无不同? 和有无不同?其不同在哪里?dtdtdtdt试举例说明.解:(1)r是位移的模,?r是位矢的模的增量,即?r?r2?r1,?r?r2?r1;(2)dsdrdr是速度的模,即. ?v?dtdtdtdr只是速度在径向上的分量. dt(式中r?叫做单位矢)∵有r?rr,则式中drdrdrr?rdtdtdtdr就是速度径向上的分量, dt∴drdr与不同如题1-1图所示.dtdt题1-1图dvdv?dv(3)表示加速度的模,即a?,是加速度a在切向上的分量.dtdtdt∵有v?v?(?表轨道节线方向单位矢),所以dvdv?dv dtdtdtdv就是加速度的切向分量. dtd??dr与(?的运算较复杂,超出教材规定,故不予讨论) dtdt式中1-2 设质点的运动方程为x=x(t),y=y(t),在计算质点的速度和加速度时,有人先求drd2r出r=x?y,然后根据v =,及a=2而求得结果;又有人先计算速度和加速度dtdt22的分量,再合成求得结果,即?dx??dy?=及a=dtdt?22d2xd2y22正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有r?xi?yj,drdxdyvijdtdtdt2?22drdxdy?a?2?2i?2jdtdtdt故它们的模即为dxdyv?v?vdtdt2x2y2222dxdy22a?ax?aydt2??dt2??22而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作drv?dtd2ra?2dtdrdrd2r与2误作速度与加速度的模。
大学物理:第 22 章 量子力学基础

三、微观粒子波动性的应用
• 1933 年,德国的 E.Ruska 和 Knoll 等人研制成功第 一台电子显微镜。 鲁斯卡:电子物理领域的基础 研究工作,设计出世界上第一 台电子显微镜,1986诺贝尔物 理学奖
• 1982年,IBM的G.Binnig和H.Rohrer研制成功第 一台隧道扫描显微镜(STM)。
1986 诺贝尔物理学奖 宾尼:设计出扫描式 隧道效应显微镜
END
1986 诺贝尔物理学奖 罗雷尔:设计出扫描 式隧道效应显微镜
§22.2 波函数及统计解释
一、波函数
既然粒子具有波动性,应该有描述波动性的函数— —波函数。
奥地利物理学家薛定谔(E.Schrö dinger)1925 年提出用波函数Ψ(r, t)描述粒子运动状态。
I
此时电表中应出现最 大的电流。
12.25 2d sin k U
k 1,2,3,
d
若固定 角,改变加速电压,会多次出现电流极大
I
实验结果:
若固定 角,改变加速电压,会多次出现电流极大
2. G.P.汤姆逊实验 1927年英国物理学家G.P.汤姆逊做了电子通过金 多晶薄膜的衍射实验
粒子在空间各点的概率总和应为 l,
Ψ (r , t )Ψ (r , t )dV 1
*
— ( 全空间 )
END
§22.3 不确定性关系
一、位置—动量不确定关系
按照经典波动理论,约束在空间某区域内的波不可 能是单色的——不可能具有唯一的波长。 这一结论对物质波同样正确:被束缚在某区域的粒 子不可能具有确定的动量,即粒子的坐标和动量不 能同时取确定值,存在一个不确定关系。
Bohr:
所有粒子的不确定性是原则的、本性的。
《大学物理》第22章_高斯定理

s 2e0
r en
E
E
2 0 S E
可见,无限大均匀带电
平面激发的电场强度与
离面的距离无关,即面 的两侧形成匀强电场。
σ
上页 下页 返回 退出
22-8 导体表面附近的电场
任意形状导体表面外的电场可 写成 E ,σ 是导体表面电荷面 密度。 0
解题思路 正如前例,选择小圆柱作为高斯面。选
Q
EdAE(4r2)0
上页 下页 返回 退出
(b)选择半径为r(r<r0)的同 心球壳为高斯面。 根据高斯定理,A2面内无电荷
E dQA en clE 0(4r2)0
E0
(c)这些结果同样也适用于均匀带电球形导体,因为 全部电荷都聚集在球表面。
问题:如果球体为绝缘体,会怎么样呢?
上页 下页 返回 退出
例22-4 带电实心绝缘球体
电荷Q均匀分布在半径r0的绝缘
球体上。试求电场:(a)球外;
(b)球内。
由于电荷球对称分布,所以电
场也对称。E只取决于r。
(a)球外,选择半径为r(r>r0)的同 心球面作为高斯面A1
QenclQ
E
1
4 0
Q r2
高斯定律可写为
EdA E(4r2)Q0
上页 下页 返回 退出
§22-1 电通量
电通量定义: 1.均匀电场中垂直通过平面 S⊥ 的电场强度通量.
S
F= ES^
2.电场与平面不垂直
对于均匀电场,穿过一 区域A的电通量定义为
上页 下页 返回 退出
是
E
沿垂直于区域A方向
的分量。
E E A E co A s
大学物理学电子教案 第22章 波和粒子

第22章波与粒子◆本章学习目标1.了解黑体和黑体辐射的经典定律、光电效应、普朗克的量子假定、爱因斯坦光电子假说、康普顿效应、微观粒子的波粒二象性、德布罗意假说和不确定关系;2.掌握光电效应的实验解释、康普顿效应的实验解释、波粒二象性的统计解释。
◆本章教学内容1.热辐射和基尔霍夫定律2.光电效应3.康普顿效应4.德布罗意波波粒二象性◆本章教学重点1.光电效应2.康普顿效应3.德布罗意波波粒二象性◆本章教学难点1.康普顿效应的实验解释;2.、波粒二象性的统计解释;◆本章学习方法建议及参考资料1.意讲练结合2.注意依据学生具体情况安排本章进度参考教材东南大学等七所工科院校编,《物理学》,高等教育出版,1999年11月第4版.§22.1 热辐射和基尔霍夫定律19世纪末,由麦克斯韦创立的光的电磁理论已经成为物理学的基本理论,这一理论深刻地揭示了光的电磁本质,成功地解释了光的电磁本质,光的干涉、衍射和光的偏振等波动现象,从而确立了光具有波动性。
然而再进一步研究光与物质的相互作用过程中发现许多实验(如:黑体辐射、光电效应、康普顿效应等)的实验结果与经典的电磁理论相违背,用光的电磁理论无法解释因此正是研究以上实验得过程中,在探索光的本性方面建立了光的量子概念,确立了光的量子特性,光的量子性概念的确立以及后来量子理论的发展,使人们对微观世界的探索的认识论和方法论发生了深刻的变化,从而带来了物理学上的又一次革命。
本章将通过讨论黑体辐射、光电效应、康普顿效应等实验及基本规律来阐明光的量子性,并对光及微观粒子的波粒二象性作初步介绍。
一、辐射和热辐射(1)物体以电磁波的形式向外发射能量的过程称为辐射。
辐射有两种:第一种是物体在辐射过程中不能仅用维持其温度来使辐射进行下去,而是依靠一些其他激发过程获得能量以维持辐射这种辐射称为发光。
另一种是通过加热来维持其温度辐射就可以持续地维持下去,这种辐射称为 热辐射。
(2)辐射本领和吸收本领1)辐射本领 描述物体热辐射能力大小的物理量。
大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。
答: E 。
位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。
2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。
答: C 。
三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。
3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。
答:C 。
由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。
三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。
问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。
解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。
2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。
大学物理,课后习题

13—1如图所示孤立导体球,带电为Q , (1)Q 是怎么分布的?为什么? (2)导体内部场强是多少?(3)导体球表面附近一点P 的场强是多少?P 点的场强是否是由P 点附近的电荷产生的?(4)当P 点很靠近球面时,对着P 点的那一部分球面可以看作无限大平面。
而无限大带电面两侧的场强为02εσ=E ,而这里的结果是εσ=p E ,两者是否矛盾?为什么?13—2上题中如果导体球附近移来一个带电为q 的另一导体A ,如图所示,达静电平衡后,(1)q 是否在导体球内产生场?导体球内场强是否仍为零? (2)导体球上Q 的分布是否改变?为什么?习题13-1 习题13-2(3)P 点的场强是否改变?公式0εσ=p E 是否成立?它是否反映了q的影响(即p E 是否包括了q 在P 点产生的场)?13—3 三个平行金属板A ﹑B 和C ,面积都是2002cm ,A ﹑B 相距0.4mm ,A ﹑C 相距0.2mm ,B ﹑C 两板都接地,如图所示,如果使A 板带正电C 7100.3-⨯,略去边缘效应,求: (1)B 板和C 板上的感应电荷各为多少? (2)取地的电势为O ,A 板的电势为多少?13—4 导体球半径为R ,带电量为Q ,距球心为d 处有一点电荷q ,如图所示,现把球接地,求流入大地的电量。
13—5 同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱体构成的,设内圆柱体的电势为1U ,半径为R ,外圆筒的电势为2U ,内半径为2R ,求其间离轴为r 处)(21R r R <<的电势。
习题13-3Q习题13-413—6 点电荷q 放在中性导体球壳的中心,壳的内外半径分别为1R 和2R ,求空间的电势分布。
13—7 如图所示,一半径为R 的中性导体球,中间有两个球形空腔,半径分别为1R 和2R ,在空腔中心处分别有点电荷1q 和2q ,试求: (1)两空腔内表面和导体外表面的电荷密度1σ﹑2σ﹑3σ (2)导体外任一点的场强和电势 (3)两空腔中的场强和电势。