电动机试验报告
电机认知实验实验报告

一、实验目的1. 了解电动机的基本结构和工作原理。
2. 掌握电动机的类型和分类。
3. 熟悉电动机的主要性能指标和测试方法。
4. 培养实验操作能力和数据分析能力。
二、实验内容1. 电动机基本结构观察(1)观察电动机的外部结构,包括定子、转子、端盖、轴承、接线盒等部分。
(2)了解各部分的作用和相互关系。
2. 电动机工作原理分析(1)分析电动机的电磁感应原理。
(2)阐述电动机的转动过程。
3. 电动机类型及分类(1)介绍电动机的类型,如异步电动机、同步电动机、直流电动机等。
(2)讲解电动机的分类依据,如按转速、功率、用途等。
4. 电动机性能指标及测试方法(1)介绍电动机的主要性能指标,如额定功率、额定电压、额定电流、额定转速等。
(2)阐述电动机性能指标的测试方法,如空载试验、负载试验、效率试验等。
5. 电动机实验操作(1)进行电动机空载试验,观察电动机的启动、运行、停止过程。
(2)进行电动机负载试验,记录电动机的转速、电流、功率等数据。
(3)分析实验数据,计算电动机的性能指标。
三、实验步骤1. 准备实验设备,包括电动机、电源、测功机、电流表、电压表、转速表等。
2. 观察电动机的基本结构,了解各部分的作用和相互关系。
3. 分析电动机的工作原理,阐述电动机的转动过程。
4. 了解电动机的类型及分类,掌握分类依据。
5. 熟悉电动机的主要性能指标和测试方法。
6. 进行电动机空载试验,观察电动机的启动、运行、停止过程。
7. 进行电动机负载试验,记录电动机的转速、电流、功率等数据。
8. 分析实验数据,计算电动机的性能指标。
9. 完成实验报告,总结实验过程和结果。
四、实验结果与分析1. 电动机空载试验观察电动机在空载状态下的启动、运行、停止过程,发现电动机启动平稳,运行稳定。
2. 电动机负载试验记录电动机在负载状态下的转速、电流、功率等数据,分析实验结果如下:(1)电动机在负载状态下的转速略低于额定转速,说明电动机在负载下存在一定的转速降。
电动机实验报告 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==电动机实验报告篇一:电机电机学实验报告电机学实验报告实验一直流他励电动机机械特性一.实验目的了解直流电动机的各种运转状态时的机械特性二.预习要点1.改变他励直流电动机械特性有哪些方法?2.他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况?3.他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。
三.实验项目1.电动及回馈制动特性。
2.电动及反接制动特性。
3.能耗制动特性。
四.实验设备及仪器1.MEL系列电机系统教学实验台主控制屏。
2.电机导轨及转速表(MEL-13、MEL-14) 3.三相可调电阻900Ω(MEL-03) 4.三相可调电阻90Ω(MEL-04)5.波形测试及开关板(MEL-05) 6、直流电压、电流、毫安表(MEL-06)7.电机起动箱(MEL-09)五.实验方法及步骤1.电动及回馈制动特性接线图如图5-1直流电流表mA1、A1分别为220V可调直流稳压电源自带毫安表、安倍表; mA2、A2分别选用量程为200mA、5A的毫伏表、安培表(MEL-06) R1选用900Ω欧姆电阻(MEL-03)R2选用180欧姆电阻(MEL-04中两90欧姆电阻相串联) R3选用3000Ω磁场调节电阻(MEL-09)R4选用2250Ω电阻(用MEL-03中两只900Ω电阻相并联再加上两只900Ω电阻相串联)开关S1、S2选用MEL-05中的双刀双掷开关。
按图5-1接线,在开启电源前,检查开关、电阻等的设置;(1)开关S1合向“1”端,S2合向“2”端。
(2)电阻R1至最小值,R2、R3、R4阻值最大位置。
(3)直流励磁电源船形开关和220V可调直流稳压电源船形开关须在断开位置。
电动机实验报告doc

电动机实验报告篇一:电机实验报告黑龙江科技大学综合性、设计性实验报告实验项目名称电机维修与测试所属课程名称电机学实验日期 XX年5.6—5.13班级电气11-13班学号姓名成绩电气与信息工程学院实验室篇二:电机实验报告实验报告本课程名称:电机拖动基础班级:电气11-2 姓名田昊石泰旭孙思伟指导老师:_史成平实验一单相变压器实验实验名称:单相变压器实验实验目的:1.通过空载和短路实验测定变压器的变比和参数。
2.通过负载实验测取变压器的运行特性。
实验项目:1. 空载实验测取空载特性U0=f(I0), P0=f(U0)。
2. 短路实验测取短路特性Uk=f(Ik), Pk=f(I)。
3. 负载实验保持U1=U1N,cos?2?1的条件下,测取U2=f(I2)。
(一)填写实验设备表(二)空载实验1.填写空载实验数据表格2. 根据上面所得数据计算得到铁损耗PFe、励磁电阻Rm、励磁电抗Xm、电压比k(三)短路实验1. 填写短路实验数据表格O(四)负载实验1. 填写负载实验数据表格表3 cos?2=1(五)问题讨论1. 在实验中各仪表量程的选择依据是什么?根据实验的单相变压器额定电压、额定电流、额定容量、空载电压,单相变压器电源电压和频率、线圈匝数、磁路材质及几何尺寸等。
2. 为什么每次实验时都要强调将调压器恢复到起始零位时方可合上电源开关或断开电源开关?防止误操作造成人身伤害、防止对变压器及其它仪器仪表等设备过压过流而损坏。
3. 实验的体会和建议1.电压和电流的区别:空载试验在低压侧施加额定电压,高压侧开路;短路试验在高压侧进行,将低压侧短路,在高压侧施加可调的低电压。
2.测量范围的不同:空载试验主要测量的是铁芯损耗和空载电流, 而短路试验主测量的是短路损耗和短路电阻。
3.测量目的不同:空载试验主要测量数据反映铁芯情况,短路试验反映的是线圈方面的问题。
4.试验时,要注意电压线圈和电流线圈的同名端,要避免接错线。
三相感应电动机 实验报告

三相感应电动机实验报告三相感应电动机实验报告引言:三相感应电动机是一种常见的交流电动机,广泛应用于工业生产和家庭用电。
本次实验旨在通过对三相感应电动机的实际操作和测量,探究其工作原理和性能特点。
一、实验目的本次实验的主要目的是:1. 了解三相感应电动机的基本结构和工作原理;2. 学习使用电动机测试仪器进行电机性能参数的测量;3. 掌握电动机的启动、制动和调速方法。
二、实验器材和仪器1. 三相感应电动机:型号XXX,额定功率XXX;2. 电动机测试台:包括电动机启动、制动和调速装置;3. 电动机测试仪器:包括电流表、电压表、功率表等。
三、实验步骤1. 连接电动机和测试仪器:将电动机的三相线连接到电动机测试台上的对应接线端子上,接上电流表、电压表和功率表等测试仪器;2. 启动电动机:按下电动机测试台上的启动按钮,观察电动机的启动过程和运行状态;3. 测量电机参数:在电动机运行时,通过测试仪器测量电机的电流、电压和功率等参数,并记录下来;4. 制动电动机:按下电动机测试台上的制动按钮,观察电动机的制动过程和停止状态;5. 调速电动机:通过电动机测试台上的调速装置,对电动机进行调速操作,观察电动机的转速变化和运行情况。
四、实验结果和分析1. 电机参数测量结果:根据实验测量数据,计算得到电动机的额定电流、额定功率和功率因数等参数,并进行分析;2. 电动机启动性能分析:观察电动机的启动过程和启动时间,分析电动机的起动性能;3. 电动机制动性能分析:观察电动机的制动过程和制动时间,分析电动机的制动性能;4. 电动机调速性能分析:通过调速装置对电动机进行调速操作,观察电动机的转速变化和调速效果,分析电动机的调速性能。
五、实验结论通过本次实验,我们对三相感应电动机的工作原理、性能特点和操作方法有了更深入的了解。
实验结果表明,该电动机具有较好的启动性能、制动性能和调速性能,能够满足不同工况下的工作要求。
六、实验总结本次实验通过实际操作和测量,加深了对三相感应电动机的理论知识的理解和应用。
检测试验报告6KV电动机

检测试验报告客户名称:电厂二期工程名称:电厂二期扩建工程项目名称:6kV电动机检验时间:2018年08月03日报告编号:AHDJ2—RET/KG11—001-022报告编写/日期:报告审核/日期:报告批准/日期:(检测报告章)安徽电力建设第二工程公司检测中心检测试验日期:2018年08月03日报告编号:AHDJ2-RET/KG11-001 样品名称:#4开式冷却水泵A样品安装位置:#4机汽机房0米二:定子线圈直流电阻测量:天气:晴温度:31℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:31℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:31℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月03日报告编号:AHDJ2-RET/KG11-002 样品名称:#4开式冷却水泵B样品安装位置:#4机汽机房0米二:定子线圈直流电阻测量:天气:晴温度:31℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:31℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:31℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月03日报告编号:AHDJ2-RET/KG11-003 样品名称:#4闭式冷却水泵A样品安装位置:#4机汽机房0米二:定子线圈直流电阻测量:天气:晴温度:28℃湿度:55%三:线圈绝缘电阻、吸收比测量:天气:晴温度:28℃湿度:55%四:定子绕组交流耐压试验:天气:晴温度:28℃湿度:55%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月03日报告编号:AHDJ2-RET/KG11-004 样品名称:#4闭式冷却水泵B样品安装位置:#4机汽机房0米二:定子线圈直流电阻测量:天气:晴温度:28℃湿度:55%三:线圈绝缘电阻、吸收比测量:天气:晴温度:28℃湿度:55%四:定子绕组交流耐压试验:天气:晴温度:28℃湿度:55%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月06日报告编号:AHDJ2-RET/KG11-005 样品名称:#4磨煤机A样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:29℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:29℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:29℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月06日报告编号:AHDJ2-RET/KG11-006 样品名称:#4磨煤机B样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:29℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:29℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:29℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月06日报告编号:AHDJ2-RET/KG11-007 样品名称:#4磨煤机C样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:29℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:29℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:29℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月06日报告编号:AHDJ2-RET/KG11-008 样品名称:#4磨煤机D样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:29℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:29℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月06日报告编号:AHDJ2-RET/KG11-009 样品名称:#4磨煤机E样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:29℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:29℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:29℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月06日报告编号:AHDJ2-RET/KG11-010 样品名称:#4磨煤机F样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:29℃湿度:60%三:线圈绝缘电阻、吸收比测量:天气:晴温度:29℃湿度:60%四:定子绕组交流耐压试验:天气:晴温度:29℃湿度:60%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月20日报告编号:AHDJ2-RET/KG11-011 样品名称:#4机凝结水泵A样品安装位置:#4机汽机房0米二:定子线圈直流电阻测量:天气:晴温度:30℃湿度:65%三:定子绕组直流耐压试验和泄露电流测量:天气:晴温度:30℃湿度:65%五:结论判断:检测试验日期:2018年08月20日报告编号:AHDJ2-RET/KG11-011 样品名称:#4凝结水泵A样品安装位置:#4机汽机房0米六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年08月20日报告编号:AHDJ2-RET/KG11-012 样品名称:#4机凝结水泵B样品安装位置:#4机汽机房0米二:定子线圈直流电阻测量:天气:晴温度:30℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:30℃湿度:65%五:结论判断:检测试验日期:2018年08月20日报告编号:AHDJ2-RET/KG11-012 样品名称:#4凝结水泵B样品安装位置:#4机汽机房0米六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年9月20日报告编号:AHDJ2-RET/KG11-013 样品名称:#4送风机A样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:24℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:24℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:24℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年9月20日报告编号:AHDJ2-RET/KG11-014 样品名称:#4送风机B样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:24℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:24℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:24℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年9月20日报告编号:AHDJ2-RET/KG11-015 样品名称:#4机一次风机A样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:24℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:24℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:24℃湿度:65%五:结论判断:检测试验日期:2018年9月20日报告编号:AHDJ2-RET/KG11-015 样品名称:#4机一次风机A样品安装位置:#4机锅炉房0米六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年9月20日报告编号:AHDJ2-RET/KG11-016 样品名称:#4机一次风机B样品安装位置:#4机锅炉房0米二:定子线圈直流电阻测量:天气:晴温度:24℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:24℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:24℃湿度:65%五:结论判断:检测试验日期:2018年9月20日报告编号:AHDJ2-RET/KG11-016 样品名称:#4机一次风机B样品安装位置:#4机锅炉房0米六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年11月1日报告编号:AHDJ2-RET/KG11-017 样品名称:#4机氧化风机A样品安装位置:#4机脱硫房0米二:定子线圈直流电阻测量:天气:晴温度:15℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:15℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:15℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年11月1日报告编号:AHDJ2-RET/KG11-018 样品名称:#4机氧化风机B样品安装位置:#4机脱硫房0米二:定子线圈直流电阻测量:天气:晴温度:15℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:15℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:15℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年11月1日报告编号:AHDJ2-RET/KG11-019 样品名称:#4机氧化风机C样品安装位置:#4机脱硫房0米二:定子线圈直流电阻测量:天气:晴温度:15℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:15℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:15℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年11月1日报告编号:AHDJ2-RET/KG11-020 样品名称:#4机吸收塔再循环泵A样品安装位置:#4机脱硫0米二:定子线圈直流电阻测量:天气:晴温度:15℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:15℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:15℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年11月1日报告编号:AHDJ2-RET/KG11-021 样品名称:#4机吸收塔再循环泵B样品安装位置:#4机脱硫0米二:定子线圈直流电阻测量:天气:晴温度:15℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:15℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:15℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:检测试验日期:2018年11月1日报告编号:AHDJ2-RET/KG11-022 样品名称:#4机吸收塔再循环泵C样品安装位置:#4机脱硫0米二:定子线圈直流电阻测量:天气:晴温度:15℃湿度:65%三:线圈绝缘电阻、吸收比测量:天气:晴温度:15℃湿度:65%四:定子绕组交流耐压试验:天气:晴温度:15℃湿度:65%五:结论判断:六:本次检测使用仪器:(以下空白)试验人员:。
电动机回路试验报告单

电动机回路试验报告单
电动机回路试验报告
一、实验目的
通过对电动机回路进行试验,了解电动机的工作原理和性能指标。
二、实验设备和材料
1. 一台电动机;
2. 一台电流表;
3. 一台电压表;
4. 一台功率表;
5. 实验线路。
三、实验步骤
1. 将电动机与电源、电流表、电压表和功率表依次连接起来;
2. 打开电源,调节电压和电流,记录电动机的实际工作电压和电流值;
3. 根据实际电压和电流值,计算出电动机的功率;
4. 关闭电源,断开电动机与电源的连接。
四、实验结果和数据分析
在实验过程中,调节电压和电流的过程中,观察到电动机的转速和运行状况。
根据实验数据,得出以下结果:
1. 电动机的工作电压为200V,工作电流为2A;
2. 根据实际电压和电流值,可以计算出电动机的功率为400W。
在实际应用中,电动机的工作电压和电流需要根据不同的场合和需求进行调节。
通过试验可以了解到电动机的工作状态和性能指标,从而对电动机的选择和应用提供参考依据。
五、实验结论
通过本次实验,我们了解到电动机回路的工作原理和性能指标。
电动机的工作电压和工作电流是确定其工作状态和性能的重要因素。
在实际应用中,需要根据不同的需求来调节电动机的工作电压和电流。
六、实验心得
通过这次实验,我对电动机的工作原理和性能有了更深入的了解。
通过观察电动机的转速和运行状况,可以判断电动机的工作状态和性能是否正常。
对于今后的工程实践和应用中的电动机选择和调节,这次实验对我有很大的帮助。
电动机试验报告(二)

电动机试验报告(二)引言概述:本文是关于电动机试验报告(二)的文档,通过对电动机进行实验测试,获取相关数据并进行分析,以评估电动机的性能和可靠性。
本文将以概述、正文和总结的方式呈现,正文分为五个大点来阐述电动机试验的具体内容。
正文:1. 试验目的- 确定电动机的额定功率和额定电压。
- 测试电动机的负载特性,包括负载扭矩和转速之间的关系。
- 检测电动机运行时的噪音和振动水平。
- 评估电动机的效率和能量消耗。
2. 试验方法- 设定电动机的额定电压和频率,记录相应的额定电流和功率。
- 在不同负载下,测量电动机的扭矩和转速,并绘制负载特性曲线。
- 使用合适的仪器测量电动机的噪音和振动水平。
- 通过测量输入功率和输出功率,计算电动机的效率。
- 重复试验多次以确保结果的准确性和可靠性。
3. 试验结果- 电动机的额定功率为XXX kW,额定电压为XXX V。
- 在不同负载下,电动机的扭矩和转速之间呈线性关系,且负载越大,转速越低。
- 电动机运行时的噪音水平为XXX dB,振动水平为XXXmm/s。
- 电动机的效率约为XX%,能量消耗为XXX kWh。
4. 结果分析- 电动机的额定功率和电压符合设计要求,能够满足实际工作需求。
- 负载特性曲线显示电动机在不同负载下的输出能力,可以作为设计时的参考。
- 噪音和振动水平在可接受范围内,不会对周围环境和设备造成过大影响。
- 电动机的效率较高,能够有效利用输入能源,减少能量浪费。
5. 结论通过电动机试验,我们得出以下结论:- 电动机具有合适的额定功率和电压,适合实际工作需求。
- 电动机的负载特性良好,能够稳定输出扭矩和转速。
- 电动机的噪音和振动水平在可接受范围内。
- 电动机的效率较高,能够有效利用输入能源。
总结:本文以电动机试验报告(二)为标题,通过引言概述、正文和总结的形式,详细介绍了电动机试验的目的、方法、结果以及分析。
试验结果表明电动机具备合适的额定功率和电压,负载特性良好,噪音和振动水平在可接受范围内,并且效率较高,能够有效利用能源。
电动机试验报告范文

电动机试验报告范文1.引言电动机是现代工业中广泛使用的一种电动设备,其作用是将电能转化为机械能,提供动力给各类机械设备。
为了验证电动机的性能和可靠性,进行电动机试验是必不可少的环节。
本试验旨在对型号电动机进行性能测试和运行特性分析。
2.试验目的与要求2.1目的(1)验证电动机额定功率和转速;(2)测试电动机的工作效率和功率因数;(3)分析电动机的负载特性和响应能力。
2.2要求(1)完成额定功率和转速的测试;(2)记录电流、电压和功率因数的变化曲线;(3)分析电动机在不同工作负载下的性能。
3.试验装置与试验方案3.1试验装置本次试验采用了以下装置:(1)电动机:型号电动机,额定功率为XX kW,额定电压为XX V,额定转速为XX rpm;(2)功率分析仪:用于测量电流、电压、功率因数等参数;(3)负载:通过机械装置提供不同工作负载;(4)数据采集系统:用于记录电流、电压和功率因数的变化。
3.2试验方案(1)按照额定电压和额定负载进行试验,并记录电流、电压和功率因数的变化曲线;(2)通过调节负载,测试电动机在不同工作负载下的性能和响应能力;(3)利用功率分析仪测量电动机的工作效率。
4.试验过程与结果分析4.1试验过程(1)按照试验方案连接电动机和功率分析仪,并保持电动机运行稳定;(2)记录电流、电压和功率因数的数值,并绘制曲线;(3)依次改变负载,记录电动机在不同工作负载下的参数变化。
4.2结果分析(1)根据试验记录,计算电动机的实际功率和效率,并与额定值进行比较,验证电动机的性能;(2)根据负载试验数据,分析电动机在不同负载下的响应速度和能力。
5.试验结论本次试验对型号电动机的性能进行了测试和分析,得出以下结论:(1)电动机的额定功率和转速符合设计要求;(2)电动机的工作效率达到预期值,并且在不同负载下变化不大;(3)电动机的响应速度和能力良好,能够适应不同工作负载的要求。
6.经验总结与改进建议通过本次试验,我们对电动机的性能有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流(A)
转速(r/min)
YKK3555-2
280
6.0
30.9
2974
功率因素
接法
出厂编号
出厂日期
制造厂
0.92
Y
70227
2007年06月
济南生建电机
绕组绝缘电阻和吸收比环境温度:13.8℃湿度:45.8%
相序
ABC对地
测试绕组(MΩ)
15S
60S
吸收比
定子绕组
3500
8500
2.43
标准
转子绝缘电阻>0.5 MΩ,定子>6 MΩ及吸收比不低于1.3
试验仪器
2500V绝缘电阻测试仪型号KEW3121A
结论
绕组直流电阻环境温度:13.8℃湿度:45.8%
相序
项目
AB
BC
CA
相差%
定子绕组(Ω)
2.535
2.539
2.539
0.16%
标准
3KV及以上或100KW及以上的电动机,中性点未引出者,线间电阻相互差值不应超过最小值的1%
预防性试验报告
名称:6KV高压电机
试验性质:小修
试验日期:2010年10月30日
班组验收:
生产部验收:
厂部验收:
山东京能生物质发电有限公司
#1引风机电机试验报告
型号
功率(kw)
电压(kv)
电流(A)
转速(r/min)
YNRKK500-6B
450
6.0
54.8
985
功率因素
转子电压/电流
内馈绕组
接法
冷却方式
2.541
2.545
2.540
0.20%
标准
3KV及以上或100KW及以上的电动机,中性点未引出者,线间电阻相互差值不应超过最小值的1%
试验仪器
直流双臂电桥QJ44型
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
中性点未引出者,线间电阻相互差值不应超过最小值的1%
试验仪器
直流双臂电桥QJ44型
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
#2引风机电机试验报告
型号
功率(kw)
电压(kv)
电流(A)
转速(r/min)
YNRKK500-6B
450
6.0
54.8
985
功率因素
转子电压/电流
内馈绕组
接法
中性点未引出者,线间电阻相互差值不应超过最小值的1%
试验仪器
直流双臂电桥QJ44型
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
#1给水泵电机试验报告
型号
功率(kw)
电压(kv)
电流(A)
转速(r/min)
YKK3555-2
280
6.0
30.9
2974
功率因素
接法
出厂编号
出厂日期
制造厂
0.92
相序
ABC对地
测试绕组(MΩ)
15S
60S
吸收比
定子绕组
2500
3500
1.4
标准
转子绝缘电阻>0.5 MΩ,定子>6 MΩ及吸收比不低于1.3
试验仪器
500V绝缘电阻测试仪型号KEW3121A;500V兆欧表
结论
绕组直流电阻环境温度:13.8℃湿度:45.8%
相序
项目
AB
BC
CA
相差%
定子绕组(Ω)
相序
ABC对地
测试绕组(MΩ)
15S
60S
吸收比
转子绕组
--
610
--
定子绕组
1200
2000
1.66
标准
转子绝缘电阻>0.5 MΩ,定子>6 MΩ及吸收比不低于1.3
试验仪器
2500V绝缘电阻测试仪型号KEW3121A;500V兆欧表
结论
绕组直流电阻环境温度:16.0℃湿度:41.5%
相序
项目
AB
Y
70242
2007年06月
济南生建电机
绕组绝缘电阻和吸收比环境温度:13.8℃湿度:45.8%
相序
ABC对地
测试绕组(MΩ)
15S
60S
吸收比
定子绕组
2500
3500
1.4
标准
转子绝缘电阻>0.5 MΩ,定子>6 MΩ及吸收比不低于1.3
试验仪器
2500V绝缘电阻测试仪型号KEW3121A
结论
绕组直流电阻环境温度:13.8℃湿度:45.8%
2500V绝缘电阻测试仪型号KEW3121A;500V兆欧表
结论
绕组直流电阻环境温度:15.6℃湿度:46.6%
相序
项目
AB
BC
CA
相差%
转子绕组(Ω)
0.01159
0.01160
0.01157
0.26%
定子绕组(Ω)
2.236
2.235
2.235
0.04%
标准
3KV及以上或100KW及以上的电动机各相绕组相直流电阻值的相互差值不应超过最小值的2%;
1.169
1.167
0.17%
标准
3KV及以上或100KW及以上的电动机各相绕组相直流电阻值的相互差值不应超过最小值的2%;
中性点未引出者,线间电阻相互差值不应超过最小值的1%
试验仪器
直流双臂电桥QJ44型
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
#1一次风机电机试验报告
型号
功率(kw)
0.84
818V/330A
770V110A
△
IC611
绝缘等级
接线方式
出厂编号
出厂日期
制造厂
F/F
Y
2007年06月
西安西玛电机
绕组绝缘电阻和吸收比环境温度:16.5℃湿度:42.5%
相序
ABC对地
测试绕组(MΩ)
15S
60S
吸收比
转子绕组
--
100
--
定子绕组
1000
2000
2
标准
转子绝缘电阻>0.5 MΩ,定子>6 MΩ及吸收比不低于1.3
试验仪器
2500V绝缘电阻测试仪型号KE流电阻环境温度:16.5℃湿度:42.5%
相序
项目
AB
BC
CA
相差%
转子绕组(Ω)
0.02249
0.02250
0.02249
0.04%
定子绕组(Ω)
1.178
1.176
1.176
0.17%
标准
3KV及以上或100KW及以上的电动机各相绕组相直流电阻值的相互差值不应超过最小值的2%;
试验仪器
直流双臂电桥QJ44型
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
#3给水泵电机试验报告
型号
功率(kw)
电压(kv)
电流(A)
转速(r/min)
YKK3555-2
280
6.0
30.9
2974
功率因素
接法
出厂编号
出厂日期
制造厂
0.92
Y
70241
2007年06月
济南生建电机
绕组绝缘电阻和吸收比环境温度:13.8℃湿度:45.8%
标准
转子绝缘电阻>0.5 MΩ,定子>6 MΩ及吸收比不低于1.3
试验仪器
2500V绝缘电阻测试仪型号KEW3121A;500V兆欧表
结论
绕组直流电阻环境温度:16.5℃湿度:43.0%
相序
项目
AB
BC
CA
相差%
转子绕组(Ω)
0.02260
0.02268
0.02264
0.35%
定子绕组(Ω)
1.169
电压(kv)
电流(A)
转速(r/min)
YRKKNT400-4
280
6.0
34
1482
调速范围
转子电压/电流
内馈绕组
接法
冷却方式
443-1482
396/434
394V205A
△
IC611
绝缘等级
接线方式
出厂编号
出厂日期
制造厂
F/F
Y
07S5003
2007年08月
西安西玛电机
绕组绝缘电阻和吸收比环境温度:16.0℃湿度:41.5%
相序
项目
AB
BC
CA
相差%
定子绕组(Ω)
2.541
2.535
2.535
0.24%
标准
3KV及以上或100KW及以上的电动机,中性点未引出者,线间电阻相互差值不应超过最小值的1%
试验仪器
直流双臂电桥QJ44型
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
#2给水泵电机试验报告
型号
功率(kw)
结论
试验日期:2010-10-30试验人:刘超陈勇审核人:
#2一次风机电机试验报告
型号
功率(kw)
电压(kv)
电流(A)
转速(r/min)
YRKKNT400-4
280
6.0
34
1482
调速范围
转子电压/电流
内馈绕组
接法
冷却方式
443-1482