电气主接线设计论文

合集下载

毕业设计(论文)-风电场电气主接线设计与优化

毕业设计(论文)-风电场电气主接线设计与优化

毕业设计(论文)-风电场电气主接线设计与优化华北电力大学本科毕业设计(论文)摘要风力发电作为一种清洁的可再生能源发电方式,已越来越受到世界各国的欢迎,与此同时,风电场设计也备受重视。

虽然风电场电气设计与传统电厂设计的原理相同,但传统的设计方法并不一定适合风电场设计。

所以有必要进行专门针对风电场电气主接线设计的研究。

风电场的电气设计主要包含几个方面:风力发电机组升压方式、风电场集电线路选择、风机(风电机组)分组及连接方式。

现国内外风力发电机组出线电压多为690V,多采用升至35kV方案。

风电场集电线路方案一般采用架空线或电缆敷设方式。

架空线的成本较低,但可靠性较低,电缆的成本高,可靠性也高;集电线路结构有4种常用方案,链形结构;单边环形结构;双边环形结构;复合环形结构。

链形结构简单,成本不高。

环形设计成本较高,但其可靠性较高。

风力发电机分组多为靠风机的排布位置、及结合现场施工的便捷性制定。

作者主要针对风电场电气主接线进行设计和优化,通过对风机的分组和连接方式、风电场集电线路方案、风电场短路电流计算及设备选取等的问题进行深入的计算与讨论,提出一些关于风机分组连接、集电线路设计的可行方案。

并通过现有风电场的数据,对方案进行技术和经济方面的比较,确定最终方案并对其进行优化。

为今后的风电场设计提供一些经验和参考意见, 便于今后找出一套适用于风电场电气主接线设计的方法。

关键词:风电场,电气设计, 集电系统,优化I华北电力大学本科毕业设计(论文)ABSTRACTBy the wind power as one kind of clean renewable energy source the electricity generation way, the design of wind farm has been popular and been paid attention to with the world. Although the electrical design of wind farm and the traditional design technology at the electrical principle is the same, but sometimes the methods are not suitable in fact. So specifically forthe electrical design of wind farm has come into being.The electrical design of wind farm mainly includes several aspects: wind turbine generators, wind energy booster way of electrical collector system, WGTS’s groupand connection. Now the WGTS’s voltage qualifies for 690V, and much taking the voltage to 35kV. Wind farm electrical collector system generally uses the bus or cable.The cost of bus is relatively lower, but reliability is low, cableis high costs and high reliability; The electrical collector system has four common solutions, stringclustering; Unilateral redundancy clustering; Bilateral redundancy clustering;Composite redundancy clustering. String clustering is simple structure, cost is not high. With redundancy design cost is higher, but it has high reliability. For more on WTGS group and combining lay on its location and the convenient of building.We will discuss about the main points of the wind farm electrical design and optimized. It will get some design which is about thegrouping and connection and the connection lines that can be used, by calculating and discussing, include the grouping and connection of the WTGS, the connection lines, the wind farm electrical short-circuitcurrent computation , the equipment selection and so on. We will compare different schemes from the economic and technical aspects based onexciting wind farm data, then optimizing and being sure these plans. These conclusions and viewpoints can be references for the future wind farm design, and be easy finding out a set of way to be suitable the electrical design of wind farm.KEY WORDS: Wind farm, electrical design, electrical collector system, optimizationII华北电力大学本科毕业设计(论文)目录摘要..............................................................................? ABSTRACT..............................................................................? 第1章绪论 (3)1.1研究背景 (3)1.2研究意义 (4)1.3国内外研究现状 (4)1.4本文主要内容...................................................5 第2章风场介绍及主要设备选型 (6)2.1风电场基本资料 (6)2.2电气主接线设计 (6)2.3主要设备选型 (8)2.3.1风电机组的选型 (8)2.3.2风机箱变的选型 (8)2.3.3主变压器的选型................................................9 第3章风电场接线方案比选 (11)3.1概述 (11)3.2集电线路方案比选 (11)3.2.1方案描述及比较 (11)3.2.1.1技术特点 (11)3.2.1.2经济比较 (12)3.2.2结论 (13)3.3风机分组和连接方案的比选 (13)3.3.1方案描述 (13)3.3.2方案比较 (13)3.3.2.1技术比较 (13)3.3.2.2经济比较 (21)3.3.3结论 (21)1华北电力大学本科毕业设计(论文)3.4本章小结............................................................22 第4章短路电流计算及其它电气设备的选取 (23)4.1计算说明 (23)4.2系统等效简化图 (23)4.3短路电流的计算 (24)4.3.1各元件的标幺值 (24)4.3.2 各短路点的短路电流计算 (24)4.4其它电气设备的选取 (26)4.4.1 断路器的选取 (26)4.4.2隔离开关的选取 (28)4.4.3 电压互感器的选取 (28)4.4.4电流互感器的选取 (28)4.5本章小结............................................................30 第5章方案优化 (31)5.1概述 (31)5.2风机分组的优化 (31)5.2.1技术比较 (31)5.2.2经济比较 (34)5.2.3结论 (34)5.3线路优化 (35)5.3.1线路的选择 (35)5.3.2技术比较 (35)5.3.3经济比较 (38)5.3.4结论……………………………………………………38 5.4本章小结………………………………………………………………39 结论……………………………………………………………………40 参考文献..............................................................................41 附录..............................................................................42 致谢 (45)2华北电力大学本科毕业设计(论文)第1章绪论1.1 研究背景风能是一种无污染的、储量丰富的可再生能源。

电厂电气主接线方案 电力工程论文 精品

电厂电气主接线方案 电力工程论文 精品

摘要摘要本篇论文主要针对主要针对直岗拉卡水电站在电力系统的地位,拟定本电厂的电气主接线方案,经过技术经济比较,确定推荐方案,对其进行短路电流的计算,对电厂所用设备进行选择,然后对各级电压配电装置及总体布置设计。

并且对其发电机继电保护进行设计。

在这些设计过程中需要用到各种电力工程设计手册,并且借用AutoCAD辅助工具画出其电气主接线图、室外配电装置图、发电机保护的原理接线图、展开图、保护屏的布置及端子排接线图。

尤其是厂用电在不同电源切换过程中存在的问题进行了较深入的分析,解决了厂用电切换经常不成功并损坏开关等电力设备这一严重问题。

本人首先分析了厂用电系统的结构及厂用电切换对于电厂安全运行的重要性。

从理论上对厂用电切换过程中电气量的变化规律进行了较深入的分析。

对厂用电切换过程中切换装置所采用的“快速切换”、“残压切换”或“延时切换”及“同期捕捉切换”等方式分别进行了分析研究,特别是对于每种方式可能对厂用电的安全运行所造成的影响进行了分析。

关键词电气主接线厂用电系统- I -目录摘要 (I)第1章电气主接线设计 (1)1.1设计原则 (1)1.2各方案比较 (2)第2章厂用电设计及安全切换 (8)2.1 厂用电设计原则 (8)2.2 厂用电安全切换的重要性 (8)第3章短路电流计算 (10)3.1 对称短路电流计算 (10)第4章电器主设备选择 (12)4.1 对方案I的各主设备选择 (12)4.2 对方案Ⅱ的各主设备选择 (18)第5章发电机继电保护原理设计及保护原理 (19)5.1 初步分析 (19)5.2 对F1的保护整定计算 (19)5.3 对F5的保护整定计算 (22)第6章结论与展望 (27)参考文献 (28)- II -第一章电气主接线设计第1章电气主接线设计1.1设计原则电气主接线是水电站由高压电气设备通过连线组成的接收和分配电能的电路。

电气主接线根据水电站在电力系统中的地位、回路数、设备特点及负荷性质等条件确定,并应满足运行可靠、简单灵活、操作方便、易于维护检修、利于远方监控和节约投资等要求。

电气主接线设计论文全面解析电力系统的关键设计要点

电气主接线设计论文全面解析电力系统的关键设计要点

电气主接线设计论文全面解析电力系统的关键设计要点电力系统是现代社会中不可或缺的基础设施之一,而电气主接线则是电力系统中至关重要的一环。

本论文将对电气主接线设计的关键要点进行全面解析,旨在提供相关领域的专业知识和实践经验,以指导电力系统设计者更好地进行电气主接线设计。

第一部分:引言电气主接线设计在电力系统中具有重要的地位和作用。

作为电力系统中连接输电线路和负荷设备的关键部分,合理的电气主接线设计不仅能够保证电力系统的安全稳定运行,还能提高电力系统的效率和可靠性。

第二部分:电气主接线设计的基本原则1. 安全原则:电气主接线设计必须优先考虑人身和设备安全,确保电气设备的正常运行,减少潜在的安全隐患。

2. 可靠性原则:电气主接线设计应考虑电力系统的可靠供电,通过合理的设计,降低线路故障和停电的风险。

3. 经济性原则:电气主接线设计应考虑运行成本和设备投资成本之间的平衡,确保电力系统的运行经济合理,提高资源利用效率。

第三部分:电气主接线设计的关键要点1. 接线方式的选择:a. 单电源接线:适用于一台发电机供电的场景,线路简洁明了,成本较低。

b. 双电源接线:适用于备用电源冗余的场景,通过断路器实现切换,提高电力系统的可靠性。

c. 多电源接线:适用于多台发电机同时供电的场景,可根据负荷需求和电源状态进行灵活切换。

2. 线路选型:a. 导线选择:根据电流负载和传输距离选择适当的导线截面积,避免过载和能量损失。

b. 绝缘材料选择:根据环境条件和负荷特点选择适当的绝缘材料,确保电气设备的绝缘性能。

3. 过载和短路保护:a. 过载保护:通过合理计算和选择熔断器或断路器来保护电气设备避免过载损坏。

b. 短路保护:通过选择合适的熔断器或断路器,实现对短路故障的及时切除和保护。

4. 接地设计:a. 设备接地:通过合理的设备接地设计,实现电气设备的安全运行和人身安全保护,减少电气事故的发生。

b. 系统接地:通过系统接地设计,实现电气系统的运行稳定和防止电气干扰。

水电站电气主接线毕业设计论文

水电站电气主接线毕业设计论文

Southwest university of science and technology本科毕业设计(论文)某水电站电气主接线系统设计学院:年级:专业:电气工程及其自动化姓名:学号:指导教师:二〇一三年六月某水电站电气主接线系统设计摘要:该水电站以发电为主,兼顾拦沙、防洪等综合利用效益。

水电站总装机容量约为 10 MV.A,为小型水电站。

小型水电站的设计需要遵循国家相关设计标准,力求做到经济,安全,实用。

本设计设计从原始资料入手,根据所给发电机的装机容量和相关参数,分析比较了电气主接线的的基本方式,确定35KV母线主接线方式,然后进行主变压器选择。

通过短路电流的计算结果,选择了最终的电气设备,如断路器,隔离开关,电流互感器、电压互感器等,并进行了选型和校验,完成该水电站一次设备装置配置,最后论文对电站常用继电保护以及防雷保护做了基本阐述。

关键字:小型水电站;电气主接线;变压器;电气设备;The design of the main electrical system ofthe Hydropower StationAbstract:The main purpose of power balance of the hydropower station, and comprehensive utilization benefit of sediment, flood control. The total installed capacity of hydropower is about 10M.V A, for small hydropower station! Need to follow the design standard, economy, safety design of small hydropower station, utility! The design begins with primitive data, according to the installed capacity of generators, choice of the main electrical wiring basic way, determine the main wiring of main transformer selection, in the choice of main wiring and main transformer, calculation of short circuit current, after short-circuit current calculation, according to short-circuit current calculation the results of the final selection, electrical equipment, such as circuit breaker, isolating switch, current transformer, complete an equipment area, and finally to two protection calculation options! All selected electrical equipment to CAD, and mark out! Through this design can improve the design of hydropower station master, to raise awareness and understanding each part of hydropower station, the future study and life has a lot of help.Key words:Small hydropower station; the main electrical wiring; transformer; the electrical equipment目录第一章概述 (6)前言 (6)1.1 设计目的 (6)1.2 水电站定型 (6)1.3 设计内容 (7)第二章电气主接线设计 (8)2.1 电气主接线的基本要求 (8)2.2水电站电气主接线基本形式 (8)2.2.1电气主接线的特点 (8)2.2.2 发电机电压侧接线 (9)2.2.3 高压侧接线 (11)2.2.4 原始资料 ................................................................ 错误!未定义书签。

牵引变电所电气主接线设计毕业设计(论文)

牵引变电所电气主接线设计毕业设计(论文)

牵引变电所电⽓主接线设计毕业设计(论⽂)⽬录摘要 ································································································· .I第1章设计的原始资料. ·······················错误!未定义书签。

1.1 题⽬ ······································································································错误!未定义书签。

谈水电站电气主接线优化设计-优化设计论文-设计论文

谈水电站电气主接线优化设计-优化设计论文-设计论文

谈水电站电气主接线优化设计-优化设计论文-设计论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:所谓水电站电气主接线,即是将发电机、变压器、电容器、避雷器等一次电气设备按照事先设计的生产流程构成电能生产、转化、输送和分配的电气回路,电气主接线优化设计是水电站电气方面设计的重点工作之一,其优化设计的合理性直接决定着电力系统与水电站的安全运行,因此,本文将简要阐述水电站电气主接线优化设计的原则,并提出水电站主线路优化设计的可行性策略,希望为水电站相关技术工作者提供有价值的参考与建议。

关键词:水电站;电气主接线;优化设计水电作为一种绿色能源,在国民建设中扮演着十分重要的角色,为了保障水电站可以安全可靠地运行,选择技术可靠、经济合理的电气主接线方案就显得尤为重要,而且在实际应用的过程中,技术工作者还需要对电气设备选用、配电装置布局和继电保护进行优化设计,这样才能全方位保障水电站的安全经济运行。

在传统的水电站电气主线路设计过程中,主要是针对短路计算、配电装置、无功补偿以及变压器等相关设备设施进行详细设计,短路计算与设备的选用是传统电气设计的主要方向,针对电气主接线方式的研究不够透彻,而在电力技术快速发展的形势下,电气主接线作为一种新型的接线方式,在水电站电气设计中得到了广泛应用,而且在实际运行中也发挥着不可或缺的重要作用,在具体设计时强化了水电站电气主接线设计优化的重点。

一、水电站电气主接线优化设计的原则毋庸置疑,水电站电气主接线设计的合理性直接关系着电力系统、水电站的安全稳定运行,设计人员必须要坚持可靠性、灵活性和经济性的原则来设计水电站电气主线路,以此来获得最优化的电气主线路设计方案,为水电站的安全稳定运行营造出良好的条件。

首先,可靠性原则。

可靠性是水电站设计与运行的首要要求,也是保证水电供电系统的基础,通常情况下,对于水电站电气主接线可靠性衡量的标准是在断路器检修过程汇总,系统的供电不能受到影响,而且在母线发生故障、断路器产生问题或者母线在检查维修的过程中,要能够减少停运的回路数和停运时间,电气主线路的设计方案要有利于降低或者消除发电厂、变电所停止运行的可能性。

水电站电气主接线优化设计研究论文

水电站电气主接线优化设计研究论文

水电站电气主接线优化设计研究论文摘要:水电站电气主接线设计合理与否直接影响到电力系统、水电站等安全运行。

以某水电站为研究对象,设计了单母线接线、扩大单元接线等几种形式,通过对比其经济性、灵活性和可靠性,获得该电站最优电气主接线。

关键词:水电站;电气主接线;设计电气主接线就是将发电机、变压器、断路器、隔离开关、电抗器、电容器、互感器和避雷器等一次电气设备按照预期的生产流程构成的电能生产、转化、输送和分配的电气回路。

其设计是大中小型水电站电气部分设计的重要组成之一,直接影响各种电气设备的选择、配电装置的布置以及继电保护的确定,对于建成后水电站的安全经济运行有着至关重要的作用。

以往水电站电气主接线设计主要围绕短路计算,变压器、配电装置以及无功补偿装置等开展电气主接线具体设计,即重点在于短路计算和设备选型,对电气主接线方式分析不足。

本文在总结电气主接线理论和工作经验的`基础上,以某水电站为例,具体分析发电机侧和变压器侧均用单母线接线、发电机侧采用单元接线和扩大单元接线而变压器侧采用单母线接线、发电机侧单母线接线而变压器侧角形接线、电源单元及扩大单元而主变角形接线等方案的优劣,获得最优电气主接线设计方案,进而强调了电站电气主接线设计优化的重点。

1电气主接线设计原则主接线设计应满足可靠性、灵活性和经济性等3项基本要求。

具体要求如下:1.1可靠性供电可靠性是电力生产和分配的首要要求,主接线首先满足这个要求。

可靠性的衡量标准具体如下:1)断路器检修时,系统的供电不宜受影响。

2)断路器或者母线发生故障以及母线检修时,尽量减少停运的回路数和停运时间。

3)尽量避免发电厂,变电所全部停运的几率。

1.2灵活性主接线应满足在调度、检修及扩建时的灵活性。

1)调度时,应可以灵活得投入和切除发电机变压器和线路,满足系统在事故运行方式、检修运行方式系统调度,并尽可能减少隔离开关的操作次数。

2)检修时,可以方便的停运断路器和其他继电保护装置,进行安全检修而不至于影响电力系统的管理运行和对用户的供电。

变电站电气主接线设计设计论文

变电站电气主接线设计设计论文

变电站电气主接线设计设计论文毕业设计(论文)题目 110KV变电站电气主接线设计专业电气自动化技术成人教育学院2012年09月10日本次设计为110kV降压变电站电气一次部分的初步设计,根据原始资料,以设计任务书和国家有关电力工程设计的规程、规范及规定为设计依据。

变电站的设计在满足国家设计标准的基础上,尽量考虑当地的实际情况。

在本变电站的设计中,包括对变电站总体分析和负荷分析、变电站主变压器的选择、电气主接线、电气设备选择、短路电流计算等部分的分析计算以及防雷设计。

在保证供电可靠性的前提下,减少事故的发生,降低运行费用。

本次设计正文分设计说明书和设计计算书两个部分,设计说明书包括电气主接线设计、变压器选择说明、短路电流计算说明、电气设备选择说明、配电装置设计、电气总平面布置和防雷保护设计;设计计算书包括变压器选择、短路电流计算、电气设备选择及校验等,并附有电气主接线图及其它相关图纸。

关键词:110kV变电站;短路电流;一次部分;设备选择摘要 (Ⅰ)第一部分设计说明书1原始资料 (1)1.1变电站的基本情况 (1)1.2设计任务 (2)2 变压器选择 (3)2.1 变压器绕组与调压方式的选择 (3)2.2 变压器相数的选择 (3)2.3 变压器容量和台数的选择 (3)2.4变压器的冷却方式 (4)3电气主接线设计 (5)3.1主接线的设计原则 (5)3.2主接线设计的基本要求 (6)3.3 主接线方案的比较和确定 (7)4短路电流计算 (11)4.1短路电流计算的目的 (11)4.2短路电流计算的规定 (11)4.3短路电流计算的步骤 (12)4.4短路类型及其计算方法 (12)5高压电器选择 (14)5.1高压断路器的选择 (14)5.2隔离开关的选择 (14)5.3各级电压母线的选择 (15)5.4 电流互感器的选择 (15)5.5电压互感器的选择 (16)5.6避雷器的选择 (16)6配电装置设计 (18)6.1配电装置的基本要求 (18)6.2配电装置的种类及应用 (18)7防雷保护设计 (19)7.1防雷保护的特点 (19)7.2变电站直击雷防护 (19)7.3进线保护 (19)第二部分计算书8变压器容量计算及选择 (20)8.1本站负荷计算 (20)8.2变压器容量及型号的选择 (20)9短路电流计算 (21)9.1原始资料 (21)9.2短路计算 (21)10高压电器的选择与校验 (27)10.1最大持续工作电流计算 (27)10.2断路器的选择及校验 (27)10.3隔离开关的选择及校验 (30)10.4 电流互感器的选择及校验 (31)10.5 限流电抗器的选择及校验 (35)10.6电压互感器的选择及校验 (35)10.7导体的选择及校验 (37)10.8绝缘子及穿墙套管的选择 (39)总结 (40)参考资料 (41)致谢 (42)第一部分 设计说明书1 原始资料1.1变电站的基本情况1.1.1变电站建设性质及规模本站位于蒙城边缘,供给城市和近郊工业、农业及生活用电,系新建变电站。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气主接线设计论文第一章设计要求及任务1.1目的要求通过本设计,进一步熟悉变电站的相关知识。

并且,随着国内经济的发展和相关科学技术的进步,国家电网的规划日渐成熟,与此同时带来一个关键性问题:越来越多的相关工作人员对变电站,尤其是对输电技术低端110/35/10Kv 降压变电站电气设计部分概念模糊,难以掌握其设计步骤。

本次设计依据110kv 变电站设计要求,针对主电路部分给出较为详细的设计步骤,以填补现阶段该方面的知识空白。

1.2课程设计使用的原始资料(数据)及设计要求1.2.1原始资料(二)变电站环境条件气象条件:(1)最热月平均最高温度35℃;(2)土壤中0.7~1 米深处一年中最热月平均温度为20℃;(3)年雷暴日为31天;(4)土壤冻结深度为0.75米;(5)夏季主导风向为南风。

地质及水文条件:根据工程地质勘探资料获悉,厂区地质为耕地,地势平坦,地层为砂质粘土为主,地质条件较好,地下水位为2.8~5.3 米,抵制压力为20吨/平方米。

(三)变电站负荷情况负荷分布如下表:工业和民业用户同时系数均取0.75。

1.2.2设计要求该110 kV 变电站地处城市郊区,通过两条110 kV 架空线与系统相连,其中一回距离本站50km ,另一回距离变电站35km ,线路阻抗为0.4Ω/km 。

变电站分别用35kV 和10kV 向工业和民用负荷供电,35kV 和10kV 线路的功率因数都为cos =0.8。

站用电为160kVA 。

供电系统在最大运行方式下三相短路容量为2200 MVA ,最小运行方式下三相短路容量为1750MVA 。

电业部门要求110kV 配出线路定时限过流保护装置的整定时间为2秒,变电站不应大于1.5秒。

1.2.3成果形式(1)设计说明书一份。

(2)电气主接线图一张。

(A3图样)负荷类别与变电站的距离(km )负荷(MW )工业负荷预制板厂5 8.8 纺织厂 9 11.7 拖拉机厂 7 9.2 电缆厂6 20.6 民用负荷民用1 5 2.2 民用2 4 1.1 民用3 5 1.2 民用43 3.1 民用5 2 5.1 民用6 3 3.2 民用74 0.6 民用85 1.5 民用920.8第二章主回路电气设计2.1 110kv变电站的技术背景近年来,我国的电力工业在持续迅速的发展,而电力工业是我国国民经济的一个重要组成部分,其使命包括发电、输电及向用户的配电的全部过程。

完成这些任务的实体是电力系统,电力系统相应的有发电厂、输电系统、配电系统及电力用户组成。

110KV变电所一次部分的设计,是主要研究一个地方降压变电所是如何保证运行的可靠性、灵活性、经济性。

而变电所是作为电力系统的一部分,在连接输电系统和配点系统中起着重要作用。

2.2 负荷计算和分析要选择主变压器和站用变压器的容量,确定变压器各出线侧的最大持续工作流。

首先必须要计算各侧的负荷,包括站用电负荷(动力负荷和照明负荷)、10 kV 负荷、35 kV 负荷和110 kV 侧负荷。

n由公式SC =Kt∑p/ϕcos(1+a%)i=1式中SC:某电压等级的计算负荷Kt:同时系数(35 kV 取0.9、10 kV 取0.85、35 kV 各负荷与10 kV 各负荷之间取0.9、站负荷取0.85);а%——该电压等级电网的线损率,一般取5%;P、ϕcos:各用户的负荷和功率因数。

站用负荷的计算:Sn=0.85*0.16/0.85*(1+5%)=0.168MVA10KV负荷计算:民用总负荷为18.8MVA则10KV负荷为:S10KV=0.75*18.8/0.8*(1+5%)=18.506MVA35KV负荷计算:工用总负荷为50.3MVA则35KV负荷为:S=0.75*50.3/0.8*(1+5%)=49.514MVA35KV110KV负荷计算:S=0.9*(18.506+49.514)*(1+5%)+0.168=64.4469MVA110KV2.3 主变压器的选择主变压器选择的要求主变台数确定的要求:(1)对大城市郊区的一次变电站,在中、低压侧已构成环网的情况下,变电站以装设两台主变压器为宜。

(2)对地区性孤立的一次变电站或大型专用变电站,在设计时应考虑装设三台主变压器的可能性。

考虑到该变电站为一重要中间变电站,与系统联系紧密,且在一次主接线中已考虑采用旁路呆主变的方式。

故选用两台主变压器,并列运行且容量相等。

主变压器容量的确定要求:(1)主变压器容量一般按变电站建成后5~10年的规划负荷选择,并适当考虑到远期10~20年的负荷发展。

(2)根据变电站所带负荷的性质和电网结构来确定主变压器的容量。

对于有重要负荷的变电站,应考虑当一台主变压器停运时,其余变压器容量在设计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷:对一般性变电站停运时,其余变压器容量在设计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷:对一般性变电站停运时,其余变压器变压器容量就能保证全部负荷的60~70%。

总容量为64.4469MVA,由于上述条件所限制,所以,两台主变压器应各自承担32.223MVA。

当一台停运时,另一台则承担70%为45.113 MVA。

故选两台63MVA 的普通三相三绕组主变压器就可满足负荷需求。

变压器型号选择要求本次设计的变电所的三个电压等级分别为110 kV、35 kV 和10 kV,如通过主变压器各侧绕组的功率均达到该变压器容量的15%以上或低压侧虽无负荷,但在变电站内需装设无功补偿设备时,主变压器采用三饶组。

同时考虑到限制短路电流,所以选用“降压型”,并且选用阻抗较大,损耗较小的变压器;根据原始资料计算可知,35 kV 和10 kV 侧负荷容量都比较大,所以容量比选择为100/100/100,且调压方式为有载调压,采用强迫油循环风冷却方式综上所述,故选择主变压器型号SFSZ10-50000/110,其具体参数如下表:变压器型号SFS-50000/110 额定容量(KV A)50000额定电压110±2×2.5%连接组标号YN,yno,d11空载损耗(KW)39.6 负载损耗(KW)212.5空载电流0.1 短路阻抗(%)高~中10.5 高~低17.5 中~低6.52.4 站用变压器的选择站用变压器容量选择的要求站用变压器的容量应满足经常的负荷需要和留有10%左右的裕度,以备加接临时负荷之用。

考虑到两台站用变压器为采用暗备用方式,正常情况下为单台变压器运行。

每台工作变压器在不满载状态下运行,当任意一台变压器因故障被断开后,其站用负荷则由完好的站用变压器承担。

S=0.168/(1-10%)=0.1867MV A站用变压器型式选择要求:考虑到目前我国配电变压器生产厂家的情况和实现电力设备逐步向无油化过渡的目标,可选用干式变压器。

故选择的站用变压器型号为S9-200/10,变压器参数如下:型号电压组合连接组标号空载损耗负载损耗空载电流阻抗电压高压高压分接范围低压S9-200/10 10;6.3;6 ±5% 0.4 Y,yn0 0.48 2.6 1.3 42.5 主接线的选择与设计2.5.1 主接线的设计原则在进行主接线方式设计时,应考虑以下几点:(1)变电所在系统中的地位和作用(2)近期和远期的发展规模(3)负荷的重要性分级和出线回数多少对主接线的影响(4)主变压器台数对主接线的影响(5)备用容量的有无和大小对主接线的影响2.5.2 主接线设计的基本要求主接线应满足可靠性、灵活性和经济性三项基本要素。

可靠性:所谓可靠性是指主接线能可靠的工作,以保证对用户不间断的供电,衡量可靠性的客观标准是运行实践。

灵活性:主接线的灵活性有以下几方面的要求:(1)调度灵活,操作方便;(2)检修安全;(3)扩建方便。

经济性: 可靠性和灵活性是主接线设计中在技术方面的要求,它与经济性之间往往发生矛盾,即欲使主接线可靠、灵活,将可能导致投资增加。

所以,两者必须综合考虑,在满足技术要求前提下,做到经济合理,要满足这些要求:(1)投资省;(2)年运行费小;(3)占地面积小;(4)在可能的情况下,应采取一次设计,分期投资、投产,尽快发挥经济效益。

考虑该变电站以后的发展,使变电站能扩建方便,同时考虑经济性和可靠性,本次设计110 kV 侧采用单母线分段接线,35 kV 出线共4 回,所以决定采用单母线分段接线,10 kV出线共13 回,故选择单母线分段接线。

2.6各级电压中性点运行方式选择中性点接地一般有三种方式:中性点直接接地,中性点高阻抗或经消弧线圈接地,中性点不接地。

110KV采用中性点直接接地,35KV采用中性点经消弧线圈接地,由于10 kV 侧为三角形接线,所以不需要消弧线圈接地。

第三章短路电流计算3.1 短路简介短路是电力系统中最常见和最严重的的一种故障,所谓短路,是指电力系统正常情况以外的一切相与相之间或相与地之间发生通路的情况。

引起短路的主要原因是电气设备载流部分绝缘损坏。

引起绝缘顺坏的原因有:过电压、绝缘材料的自然老化、机械损伤及设备运行维护不良等。

此外,运行人员的误操作、鸟兽跨接在裸露的载流部分以及风、雪、雨、雹等自然现象均会引起短路故障。

在三相系统中,可能发生的短路有:三相短路、两相短路、单相接地短路和两相接地短路。

运行经验表明,在电力系统各种故障中,单相接地短路占大多数,两相短路较少,而三相短路的机会最少,但三相短路的短路电流最大,故障产生的后果也最为严重,必须给予足够的重视。

因此采用三相短路来计算短路电流,并检验电气设备的稳定性。

3.1.1短路计算的目的短路电流计算的目的是为了选择导体和电器,并进行有关的校验。

按三相短路进行短路电流计算。

3.2 短路计算的一般规定(1)验算导体和电器的动、热稳定及电器开断电流所用的短路电流、应按工程的设计手册规划的容量计算、并考虑电力系统5-10年的发展。

(2)接线方式应按可能发生最大短路电流和正常接线方式,而不能按切换中可能出现的运行方式。

(3)选择导体和电器中的短路电流,在电气连接的电网中,应考虑电容补偿装置的充放电电流的影响。

(4)选择导体和电器时,对不带电抗器回路的计算短路点应选择在正常接线方式时,I d最大的点,对带电抗器的6-10kV出线应计算两点,电抗器前和电抗器后的I d。

短路时,导体和电器的动稳定、热稳定及电器开断电流一般按三相电流验算,若有更严重的按更严重的条件计算。

3.3 短路计算的方法对应系统最大运行方式,按无限大容量系统,进行相关短路点的三相短路电流计算,求得I 〞、i sh 、I sh 值。

I 〞──三相短路电流。

i sh ──三相短路冲击电流,用来校验电器和母线的动稳定。

I sh ──三相短路全电流最大有效值,用来校验电器和载流导体的的热稳定。

相关文档
最新文档