一种基于MSP430单片机的交流频率检测系统
基于MSP430单片机的电机智能转速监测系统设计

21 0 2年 3月 Fra bibliotek苏 州 市 职业 大 学 学 报
J u n lo u h u Vo ai n lUn v r i o r a fS z o c t a i e s y o t
Vo . 3. . 1 2 No 1 Ma ., 01 r 2 2
基 于 MS 4 0单 片机 的 电机 智 能 转 速 监 测 系统 设 计 P3
淮文 军 , 石贵 江 , 汝彪 於
( 州 市职 业 大 学 电 子 信 息 工 程 系 ,江 苏 苏 州 2 5 0 ) 苏 1 14
摘
要 :设计 一种 由 MS 4 0单 片机 构成 的智 能转速 监 测 系统. 系统 由与 电机 同轴 的齿 轮信 号 P3 该
盘和 霍 尔转速 传感 器组 成 , 对霍 尔转速 传 感 器输 出的信 号 进 行 滤波 和 整 形 , 处理 后 的信 号 转换 使 成标 准 的方波 信号 , 离后 由单 片机计 数 , 隔 通过 L D显 示 实 时转速 值 . E 与传 统 的 测速仪 相 比 , 可设 定转 速监 测 范围 、 存储 设 定参数 , 当电机 超 速 时 , 可发 出报 警 信 号. 试验 证 明 , 系统 测速 精度 高 , 该
Ke y wor ds:M S 43 ir c n r le s;Ha ls e d s n o s s lto P 0 m c o o to lr l p e e s r ;io ai n;m o io n ntr g i
Absr c t a t:An i t l g n p e o io n y tm si to c d.Ta ng sn l — l SP 3 n el e ts e d m n t r g s se wa n r du e i i ki i g e c i M p 4 0F1 9 a 6 s c e, te p r fS e ee to o sss o e r sg a ae Coa i lwi h oo n als e or h a to pe d d t ci n c n it fg a i n lplt x a t t e m tr a d H l pe d h s ns r F h u pu i n lfo h e s rfle i g a d s a n e o . ort e o t tsg a r m t e s n o trn n h pi g,S h tt e p o e s d sg a n o a i O t a h r c s e i n li t sa d r q a e wa e sg a n h p c u ta e h s ai n,t e v l e o e ltm e s e d i ip a tn a d s u r v i n la d c i o n f rt e iolto t h au fr a —i p e sd s ly t o ht hr ug he LED ic i. Co p r d crut m a e wih t e rdi o a s e d m e s rn n tu e t t e c p o t h ta t n l p e i a u g i sr m n , h s o e f i s e o io i g o o o a e s t h a a ee a e so e pe d m n t rn n m t rc n b e ,t e p r m trc n b t r d. Th q i m e tc n s n n a a m ee up n a e da l r sg lwh n t e s e d o o o x e d he s ts e d r ng . A e tp o d ta h n el n p e i na e p e f m t r e c e s t e p e a e h ts r ve h tt e i tli ts e d ge
基于MSP430的低频频率测量计

0 . 1 8 0 . 0 0 4 6 l 9 0 . 1 9 0 . 0 0 4 7 7 7 0 . 2 0 0 . 0 0 4 8 8 6 O 1 9 0 . 0 0 4 6 1 9 O . 1 9 0 . 0 0 4 4 6
4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4
工 l 堡 功 能・ 要 I 上升沿捕获 J
,
3实验结果及结论 ‘ 、 ‘ 。
实验采用信号发生器输 出 相应频率到I / 0 口 P 1 . 2 , 高 … … … … ’
电平为+ 3 v , 低 电平为0 V 。
———T——一
疆 百雨丽
从实 验 结果可 以看 出,
3 7. 82
0 . 1 7 0 . 0 0 4 7 3 7 O . 1 8 0 . 0 0 4 8 9 6
0.1 8 0. 00 4 69 8
3 9 4 0
£ 篓当寓 盅葛 霜寄是 MS P 4 3 0 F 1 4 9
2 5 . 7 6 2 5 . 1 2 2 4 . 5 1 2 3 . 9 2 2 3 . 3 6 2 2 . 8 4 2 2 . 3 3 2 1 . 8 4 2 1 . 3 8 2 O . 9 4 2 O . 5 1 2 0 . 0 9 l 9 . 6 9 1 9 . 3 2 1 8 . 9 7 l 8 . 6 1
是否再 次有上 升沿?~ 二= = = — 率 , 则应选用其它方法。
— —
— —\
土
工 一
"
一 l 的测量。 若要测量更高的频
否 r …一 … …一 ~ …… ’
[ 参考文献] [ 1 ] 沈建华, 杨艳琴・ M s P 4 3 0 系列
430实现频率的检测

1 引言由于频率信号具有抗干扰性强、易于传输、测量准确度较高等优点,因此许多非频率量的传感信号都转换为频率量来进行测量和处理。
因此频率测量方法愈来愈引起关注和研究。
频率测量是测量和控制系统领域的最基本测量之一。
当今用的最多的测量信号频率的仪器是频率计,由于频率计在测量过程中需要一个时基信号作为测量信号频率的时基。
时基信号一般是由本机振荡电路发生的,尽管现在多用石英晶体振荡器,但是仍然不能保证时基信号的精度,因此频率计的测量精度也就成了问题。
传统的频率测量方法有两种[1]:一种是测频法,在一定时间间隔T内测出待测信号重复变化次数N,频率即为;另一种方法是测周法,在被测信号的一个周期内测出标准高频信号f的个数N,则被测频率。
本文介绍了一种测宽法[2],借助光电耦合原理,将交流信号转变成周期脉冲信号,通过捕获脉冲信号的下降沿,由定时器计数,通过二次计数的差值便能得到脉冲信号的周期,进而可以计算出所测交流信号的频率。
2 硬件电路设计硬件电路完成的任务是:(1)模拟电路部分的设计,其功能是进行信号的转化。
交流信号通过整流桥、光电耦合器等模拟器件便能得到周期脉冲信号。
(2)数字电路部分的设计,其功能是进行信号的检测。
MSP430单片机内部的16位定时器A具有脉冲捕获功能,能将脉冲信号的占空比检测出来。
图1为它的基本结构图。
图1 系统的基本结构2.1 模拟电路部分的设计图2为模拟部分原理。
下面主要阐述该电路的工作原理:图2模拟部分原理图考虑到交流信号中可能含有一定的直流信号,而直流信号会引起交流波形的上移或下移,这可能会导致原有交流信号没有零点,这就谈不上过零检测、周期脉冲了,因此要根据交流信号的实际情况,在交流信号的出口处用设个适当的电容,起到隔直的作用。
R1和R2是限流电阻,保护后面的稳压管、二极管、光电耦合器在额定功耗范围内。
由于这里的交流信号源选取的是220V市电正弦信号,所以R1和R2的阻值要比较大而且功率要比较大,该系统使用的是、1W的电阻。
基于MSP430单片机的无线环境监测系统的设计

出数据 , 最后 再向终端 回传环境信息 。
终 端
节 点
图 1 系统 整 体 方 案 框 图
系 统 以 MS 4 0 5 3 P 3 F 4 8单 片 机 作 为终 端 和 节 点 的 主 控 芯 片 , 照 探 测 由光 敏 电 阻 来 实 现 , 度 可 由 单 片 机 内 部 自带 光 温
司的产品 2 C 35做功放 管。最后确定通 信协议 方案选择 , S35 设计思想是 由检测终端 发起 一次信息 同步传输 , 所有 的节 点 根据 自己的编号在不 同的时隙发送信息 , 中继节 点 自行搜 索
判 断 。通 过 一 系列 的选 择 和 设 计 , 个 系 统 的结 构 设 计 如 图 整
2 系统 的理论分 析与计算
2 1 发 射 机 的 电 路分 析 与 设 计 .
的 温度 传感 器 得 到 。 数 据 的 调 制 、 收 采 用 串 口通 信 , 用 接 使
IO 口来 控 制 天 线 的 收 发 模 式 。 /
本 地 振 荡 采 用 l. 谐 振 器 以及 7 H 0 0 7M 4 C 0构 成 的皮 尔 斯 振 荡 器 , 时通 过 门 级 电路 还 可 以 增 大 对 后 级 丙 放 的 驱 动 同
实 际测 量 5 圈 , 径 为 34c 的 线 圈 , l. z 直 . m 在 0 7MH 下 测 量 得 到 电感 量 为 15 3u Q值 为 16 .5 H, 5 。在 1. z 的 0 7MH 时
损耗电阻为 r = =
一
1 总 体 方 案设 计
在整个系统 的设计 过程 中, 终点 和节点都需 要一个 主控
芯 片 进 行 处 理 。 主 芯 片 选 用 MS 40 5 3 P 3 F 4 8系 列 单 片 机 。 在 信 号 调 制 方 面 采 用 了 O K( nO eig 调 制 方 案 。在 高 O O —f K y ) n 频 功 放 方 面 , 用 了 分 立 元 件 自制 戊 类 放 大 器 使 用 N C 公 采 E
一种基于MSP430单片机的交流频率检测系统

一种基于MSP430单片机的交流频率检测系统
韩正伟;邵如平;林锦国
【期刊名称】《微计算机信息》
【年(卷),期】2006(022)029
【摘要】本文提出了一种交流信号过零检测的电路,即捕获交流信号的零点,并借助MSP430单片机内部的16位定时器A(Timer A)的脉冲捕获功能便能得到该交流信号的周期进而能得到它的频率.系统的硬件部分主要由MSP430单片机以及整流桥、光电耦合器、三级管等器件构成;而软件部分主要是基于MSP430单片机的C 语言程序,包括系统的初始化、定时器的设置等.该系统的实验结果和电路仿真吻合较好,具有一定的应用价值.
【总页数】3页(P247-249)
【作者】韩正伟;邵如平;林锦国
【作者单位】211816,江苏南京工业大学自动化学院;211816,江苏南京工业大学自动化学院;211816,江苏南京工业大学自动化学院
【正文语种】中文
【中图分类】TP211.5
【相关文献】
1.基于MSP430单片机的海洋多参数检测系统设计及实现 [J], 田勇;于怡萱;谢威威;林文浩;丁学君
2.基于MSP430单片机的环境参数检测系统设计 [J], 陈中;沈翠凤
3.一种基于MSP430单片机的交流频率检测系统 [J], 韩正伟;邵如平;林锦国
4.一种基于MSP430F149单片机的频率测量模块设计 [J], 雷宇;任文静;焦新程;
5.基于MSP430G2553单片机的简易水情检测系统设计 [J], 王珏敏
因版权原因,仅展示原文概要,查看原文内容请购买。
基于MSP430单片机的交流电压测量设计

基于MSP430单片机的交流电压测量设计 东南大学仪器科学与工程学院许欢 摘要:在单片机的一些测量中,有时候需要我们直接测量交流信号,现介绍一种基于msp430单片机实现的交流电压的测量方法。
关键字:MSP430单片机,交流电压,测量,中断日常生活及学习中, 我们一般需要之间测量交流信号, 测量交流信号的方法有很多, 而在 应用单片机的测量中,我们常常用来测量直流电压,现在将介绍一种基于 msp430单片机实 现的交流电压的测量方法。
系统的构成主要分硬件设计和软件设计两块来介绍。
硬件设计:为了保证硬件电路设计的通用性, 采用单级性电压测量的方法,将输入的双极性电压转换成单级性电压进行测量。
整个电路主要包括极性转换电路和输入处理电路。
其中,极性转换电路主要由放大电路实现,在此我采用MCP 601放大芯片。
MCP601芯片:(Microchip 公司的一款高性能的放大芯片)Vcc 管脚:电源管脚 GND 管脚:接地管脚 VIN-管脚:负输入端管脚 VIN+管脚:正输入端管脚 OUT 管脚:输出管脚 极性转换电路设计:在进行A/D 转换时,我们一般会采用芯片的工作电压作为 A/D 转换的参考电压。
由于一般 芯片的工作电压都为正电压, 而我们在这里要测量交流电压, 所以要对输入的交流信号进行 极性转换,将双极性变成单级性。
下图为极性转换电路:如图所示,该芯片共有 8个管脚,在极性转换电路中,ADOUT 为输出信号。
输出信号是在输入信号 ADIN 的基础上叠加了一个直流分量,调节上面的Vref 的值就可以改变直流分量的值。
如果调节Vref 使直流分量的值为1.5V ,并且此时输入信号是幅值为 1.5V 的交流正弦信号,那么输出信号就为最大值为3V ,最小值为0V 的单级性正弦信号。
在极性转换电路基础上我们将很容易设计出我们要的 输入电路。
输入处理电路:在极性转换电路基础上,输入处理电路需要将 220V 的交流电压信号变为幅值为1.5V 左右的交流信号,此外,还需要为MCP 601提供适当的参考电压信号。
基于MSP430单片机的无线温度检测系统设计
机 需
,
其 突 出 的 特 点 是 可 以 实现 极 低 的 功 耗
的工
。
它有 5
1
种可编程
作 模 式 其 中活 动 模 式 下
,
工
作电流仅
IJ A
。
280 p A
L PM 4 ,
模 式 下 仅 需
4 8K B + 2 56B
以 及
口
0
.
M S P 4 3 0 F 16 1 1
内部 具 有
,
的
F la s h
s o gc aa tr t so w o t, ih rl bl , i l tu tr , tbep ro ma c n r ciai , n y t n h rce i i fl c s hg ei i t smpe s cu e sa l ef r n ea dp a t l a d ma r sc o a i y r c t y
序 列 号 是 出厂 前 被
,
0 0 62 5 ℃
.
,
可 实现 高 精 度 测 温
.
。
适 应 电压 范 围
,
:
光 刻 好 的 其 排 列 是 : 品 类 型 标 号 接 着的 4 8 位 是 产
该 D S l 8 B Z O 环 冗 余 校 验 码 (C R C 码 ) 光 刻 R O M 的
。
3 0
E E PR OM 性 质的上
.
再 由 复 制 R A M 命令 写 入
。
(4 ) 成 本 低 廉
1) S 18 8 2 0
。
、
下 限 报 警寄存 器 中
6 内部 结 构 主 要 由 四 部 分 组 成 : 4 位 光
基于MSP430单片机的温度测控装置的设计与开发
基于MSP430单片机的温度测控装置的设计与开发设计与开发基于MSP430单片机的温度测控装置一、引言随着科技的不断进步,温度测控装置在生活和工业中扮演着重要的角色。
本文将介绍基于MSP430单片机的温度测控装置的设计与开发。
该装置可以用于实时监测环境温度,并根据设定的阈值控制温度。
二、硬件设计1.传感器选择:本设计采用温度传感器DS18B20。
它是一种数字式温度传感器,通过一根串行线来与单片机通信。
2.电路连接:将传感器与MSP430单片机连接。
传感器的VCC引脚接单片机的3.3V电源,GND引脚接地,DQ引脚接到单片机的GPIO引脚。
3.LCD模块:为了显示当前温度和控制参数,我们需要一个LCD模块。
将LCD模块的数据引脚接到单片机的GPIO引脚。
4.电源:设计一个适当的电源电路,以提供所需的电压和电流。
三、软件设计1.硬件初始化:在程序开始时,初始化MSP430单片机的GPIO引脚,配置传感器引脚为输入模式和LCD数据引脚为输出模式。
2.温度采集:通过传感器的引脚与单片机通信,获取当前温度数据。
传感器采用一线式通信协议,在读取温度数据之前,先向传感器发送读取命令,然后从传感器接收数据。
单片机通过GPIO引脚进行数据的收发。
3.温度显示:将获取到的当前温度数据通过LCD模块显示出来。
4.温度控制:设定一个温度阈值,当实际温度超过阈值时,单片机控制继电器等设备进行温度调节。
可以采用PID控制算法,根据当前温度与设定温度的差异,调整控制设备的输出。
5.程序循环:通过一个无限循环来保持程序运行。
四、测试与验证1.硬件测试:对硬件电路进行测试,确保传感器和LCD模块的接线正确,电源电压稳定。
2.软件测试:通过模拟不同温度值,确认温度采集、显示和控制功能正常。
3.综合测试:将温度测控装置放置在实际环境中,观察温度采集和控制性能,根据需要进行调整。
五、结论本文设计与开发了基于MSP430单片机的温度测控装置。
基于MSP430单片机的工程机械故障诊断系统
示 。主程 序 首先对 单 片机状 态 量和程 序 自定义 的状 态
有硬件串V的优点…。D l i I e h 作为 Wi o s p n w 环境下的 d
一
种完全可视化的开发平 台, 具有简单高效 的特点。
它采用 可视 化 的集 成 开 发 环 境 , 有 高 可 视化 界 面编 具 辑, 用来 实现 嵌入 式 单 片 机 串 口通 信 较 方 便 。上 位 机 的诊 断系统 是基 于 D lh . e i 0的组 件 编程 技 术 及 D l p7 e—
线标 准设有 2 信号线 , 括一个 主通 道和 一个 辅助 5条 包 通道 , 在多数 情况 下主要 使用 主通 道 . 于一 般双 工通 对
上位 机主 要通 信流 程如 图 4所 示 。
信, 仅需几条信号线就可实现 。一般微机提供标准的 R- 2 S2 C接口, 3 该接 口采用负逻辑, C O 、 L电路 与 M ST T
中图分 类号 :P 7 T 27
0 弓 言 I
本 文介绍 了在 工程 机械故 障诊 断系统 中的故 障 诊 断仪 、 口通信 系 统 及 上位 机 故 障 诊 断 软件 系统 。其 串 中故 障诊 断仪 是基 于低 功耗 的 M P3 F4 S 40 19嵌 入 式 单 片机 开发 的 , 单 片机具 有低 电源 电压 、 该 超低 功耗 且 带
匦垂
定 义接 收数据 及控 制字
豳
图 3 通信 接 口 电路 原 理
J
图 4 上 位 机 通 信 流 程
3 数据通信模块的软件实现
数据通信的主要功能是将数据采集传来的信号经 过 故 障诊 断仪 的信 号 采 集 及 简 单 数 据 处 理 、分 析 判 断, 传至上位机 , 程序的工作环境为 X 2 由标准 晶体 T( 或陶瓷振荡器产生的信号源 ) 8M z 接 H 晶振 。M L CK
MSP430系列单片机介绍
MSP430系列单片机介绍MSP430系列单片机是德州仪器(TI)公司推出的一种低功耗、高集成度、高性能的16位超低功耗单片机。
它采用精确的调度技术和先进的低功耗架构设计,拥有出色的性能、高功耗效率、广泛的外设集成以及丰富的工具和软件支持。
MSP430系列单片机的内核基于RISC架构,拥有16位数据总线和16位地址总线。
它可以工作在多种工作频率下,从几kHz到几十MHz不等,以满足不同的应用需求。
此外,MSP430系列单片机还具有多种睡眠模式,可以进一步降低功耗。
MSP430系列单片机内置了丰富的外设,包括模拟接口、数字接口和通信接口。
模拟接口包括模数转换器(ADC)、数字模拟转换器(DAC)和比较器等,可以实现各种传感器接口和模拟信号处理。
数字接口包括通用输入输出(GPIO)、定时器/计数器、串行通信接口等,可以实现数字信号处理和通信功能。
通信接口包括UART、SPI和I2C等,可以实现与外部设备的数据交换。
MSP430系列单片机广泛应用于各种电子设备中,如便携式设备、智能家居、医疗器械、工业自动化等。
由于其低功耗和高性能的特点,它可以满足不同应用场景下对功耗和性能的需求。
例如,在便携式设备中,MSP430系列单片机可以实现长时间的电池寿命;在智能家居中,它可以实现低功耗的远程控制和数据传输;在医疗器械中,它可以实现高精度的信号处理和通信。
总之,MSP430系列单片机是一种低功耗、高集成度、高性能的16位超低功耗单片机。
通过其先进的架构设计和丰富的外设集成,它可以满足各种应用的需求。
同时,它还提供了丰富的工具和软件支持,方便开发者进行开发和调试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文提出了一种交流信号过零检测的电路,即捕获交流信号的零点,并借助MSP430单片机内部的16位定时器A(Timer A)的脉冲捕获功能便能得到该交流信号的周期进而能得到它的频率。
系统的硬件部分主要由MSP430单片机以及整流桥、光电耦合器、三级管等器件构成;而软件部分主要是基于MSP430单片机的C语言程序,包括系统的初始化、定时器的设置等。
该系统的实验结果和电路仿真吻合较好,具有一定的应用价值。
1 引言
由于频率信号具有抗干扰性强、易于传输、测量准确度较高等优点,因此许多非频率量的传感信号都转换为频率量来进行测量和处理。
因此频率测量方法愈来愈引起关注和研究。
频率测量是测量和控制系统领域的最基本测量之一。
当今用的最多的测量信号频率的仪器是频率计,由于频率计在测量过程中需要一个时基信号作为测量信号频率的时基。
时基信号一般是由本机振荡电路发生的,尽管现在多用石英晶体振荡器,但是仍然不能保证时基信号的精度,因此频率计的测量精度也就成了问题。
传统的频率测量方法有两种[1]:一种是测频法,在一定时间间隔T内测出待测信号重复变化次数N,
频率即为;另一种方法是测周法,在被测信号的一个周期内测出标准高频信号f的个数N,则被测频率。
本文介绍了一种测宽法[2],借助光电耦合原理,将交流信号转变成周期脉冲信号,通过捕获脉冲信号的下降沿,由定时器计数,通过二次计数的差值便能得到脉冲信号的周期,进而可以计算出所测交流信号的频率。
2 硬件电路设计
硬件电路完成的任务是:
(1)模拟电路部分的设计,其功能是进行信号的转化。
交流信号通过整流桥、光电耦合器等模拟器件便能得到周期脉冲信号。
(2)数字电路部分的设计,其功能是进行信号的检测。
MSP430单片机内部的16位定时器A具有脉冲捕获功能,能将脉冲信号的占空比检测出来。
图1为它的基本结构图。
图1 系统的基本结构
2.1 模拟电路部分的设计
图2为模拟部分原理。
下面主要阐述该电路的工作原理:
图2 模拟部分原理图
考虑到交流信号中可能含有一定的直流信号,而直流信号会引起交流波形的上移或下移,这可能会导致原有交流信号没有零点,这就谈不上过零检测、周期脉冲了,因此要根据交流信号的实际情况,在交流信号的出口处用设个适当的电容,起到隔直的作用。
R1和R2是限流电阻,保护后面的稳压管、二极管、光电耦合器在额定功耗范围内。
由于这里的交流信号源选取的是220V市电正弦信号,所以R1和R2的阻值要比较大而且功率要比较大,该系统使用的是、1W的电阻。
D1和D2是齐纳稳压管,主要作用是限压,保护整流桥的整流二极管使其反向电压在范围之内。
该系统选用的稳压管型号是1N4736其稳压范围是,远远小于整流二极管的反向耐压。
图3为稳压管的端电压(即图1中的Vi1-Vi2)波形。
图3 稳压管的端电压波形
D3是整流桥,将交流电进行全波整流,使电流方向恒定。
图4为整流桥两端的电压(即图中的V1-V3)波形。
图4 整流桥的端电压波形
U2是光电耦合器,其作用有二:信号转变功能,将整流后的交流信号转变为脉冲信号;强弱电隔离功能,使强电部分和弱电部分在电气上处于隔离状态,在强电部分发生故障时不会损坏后面的弱电电路包括单片机系统。
该系统使用的型号是4N25,有良好的开关特性,而且它的开关时间可以通过基级电阻进行调
节,图5为其基级电阻在给定环境下的开关特性[3]。
由图5可以看出基级电阻R be取左右时其综合时间指标最好,即开关特性较优,所以本系统中基级电阻(R5)取。
图5 光电耦合器(4N25)基级电阻的开关特性
其集电极—发射级的电压(V5)波形,见图6。
图6 光电耦合器(4N25)的集电极—发射级的电压波形
Q1为三级管,作用是将V5的脉冲信号转化为单片机所能识别的高低电平(0-3.3V)。
因此Q1必须工作开关状态,即工作在饱和状态和截至状态不断切换的过程中。
系统中的电阻R6和R7阻值的选取主要使三级管工作在开关状态。
图7为Q1工作在开关状态的几个指标R6上的电流r6[i]=Ib,R7上的电流r7[i]=I c,V5=Vbe,V6=Vce。
图7 三级管的开关特性
由图7可以看出三级管工作在饱和状态下,而工作在截至状态下,起到了良好的开关特性。
TA0就直接进入单片机,R8是限流电阻防止进入单片机的电流过大。
2.2 数字电路部分的设计
系统使用的主芯片采用德州仪器公司的低功耗单片机MSP430F449。
MSP430F449是MSP430系列中一个功能很强的单片机,内部采用冯.诺依曼体系,RISC指令结构,运算器宽度16位。
片内集成了60KB的FLASH程序存储器,2KB的SRAM数据存储器,多个16位定时/捕获/比较器,2个串行口,12位模数转换器,JTAG程序下载、在线调试接口,看门狗定时器等。
48个I/O多功能端口,其中P1口和P2口具有位中断功能。
因此该款单片机具有指令执行速度快、功能强大、外部电路简单、功耗低、节电管理方式完善、定位于嵌入式系统应用等特点[4] [5]。
在该系统中,使用到的单片机的主要功能模块是16位定时器A(Timer A)。
其内部的脉冲捕获器具有以下几个特点[6]:
(1)16位计数器,4种工作模式;
(2)多种可选的计数器时钟源,可是是慢时钟、快时钟以及外部时钟;
(3)具有多个可配置输入端的捕获/比较寄存器,并且8种输出模式的多个可配置的输出单元;
(4)不仅能捕获外部时间发生的时间,还可锁定外部时间发生时的高低电平,给我们的设计带来很大的方便;
(5)可以以硬件方式支持串行通信。
3 软件设计[7] [8] [9]
软件设计的任务主要是Timer A的初始化的设定,其软件采用C语言编程。
Timer A工作在捕获方式时,当满足捕获条件(触发方式)时,硬件自动将计数器TAR中的数据写入捕获/比较寄存器CCR0。
图8是系统软件流程图。
图8 系统软件流程图
在本系统中,定时器采用连续计数模式,捕获方式采用下降沿捕获。
系统初始化包括系统频率fs的选择(1MHz)、TimerA的控制寄存器的设置,需要设置的寄存器为控制寄存器TACTL和捕获/比较控制寄存器CCTL0。
TimerA中断函数在发生捕获时被触发,首先计算CCR0中的值与变量LastCCR0的差值,L astCCR0是上次捕获时记录的寄存器CCR0的值,CCR0的初始值为0。
循环五次即被触发五次,五次的差值被保存在数组Timervalue[]中。
考虑到计数器刚开始计数时信号不一定从零点开始,所以真正的计算应该从第二次触发开始,这样就能计算出四个脉冲周期,接着计算出平均脉冲周期,该平均周期便是所测交流信号的半周期,进而可以得出其频率。
用公式表示为:
(为系统频率)
4 结论
文中提出了一种过零检测电路,并按实际需要选取了相应参数的电子元件,同时利用MSP430单片机的脉冲捕获功能实现了交流信号频率的检测。
该系统对低频交流信号频率的检测精度高、实时性强,具有一定的实际应用价值。
同时本文介绍的过零检测电路其应用更加广泛,再利用MSP430单片机Timer A内部的捕获/比较器的多路PWM输出单元,便能实现一定的控制功能。
本文创新点:文中提出了一种测宽法的交流频率检测系统。
该系统利用过零检测、MSP430单片机的脉冲捕获功能,较以往的频率检测系统直观、精度高、实时性强。
参考文献:
[1]马献果,频率测量方法的改进,仪器仪表学报,2004.8,25(4)增刊:120-122
[2]赵战克,单片机在移频信号频率检测中的应用,微计算机信息,2004,20(2):76-77
[3] Toshiba Corporation, Semiconductor Technical Data (4N25)
[4]胡大可,MSP430系列超低功耗16位单片机原理与应用,北京航空航天大学出社,2000.6
[5]魏小龙,MSP430系列单片机接口技术及系统设计实例,北京航空航天大学出社,2002.11
[6] 梁源,MSP430单片机TIMER_A在产品设计中的应用,2001嵌入式系统及单片机国际学术交流会论文集
[7]张晞,MSP430系列单片机实用C语言程序设计,人民邮电出版社,2005.9
[8] 刘立群,基于MSP430单片机的超低功耗数据采集器设计,自动化仪表,2005.4,26(4):30-31
[9] 刘玉宏,MSP430单片机C语言和汇编语言混合编程,微计算机信息,2003,19(10):56-57。