高中数学8.6.1直线与直线垂直8.6.2直线与平面垂直第1课时学案新人教A版必修第二册
8.6.2直线与平面垂直(1)教学设计—必修第二册

8.6.2 直线与平面垂直(第1课时)教学设计课题8.6.2直线与平面垂直(第1课时)教学目标 1.通过实例感知、操作,抽象归纳出线面垂直的定义;了解点到平面的距离概念2.通过感知、确认发现线面垂直的判定定理,能够利用判定定理证明直线与平面垂直.教材分析直线与平面垂直是直线与平面相交中一种特殊情况,它是空间直线与直线位置关系的拓展,又是平面与平面垂直的基础,是空间垂直关系转化的核心.直线与平面垂直也是定义点到平面的距离、直线与平面所成角、直线到平面的距离与两个平行平面之间的距离等内容的基础,具有承上启下的作用.直线与平面垂直是通过直线和平面内的任意一条直线都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法.直线与平面垂直的判定定理把定义中要求的与任意一条直线转化成只要求与两条相交直线垂直,其中蕴含了由复杂向简单,无限问题向有限问题,直线与平面垂直向直线与直线垂直的转化.基于以上分析,确定本节课的教学重点:①直线与平面垂直定义的抽象②直线与平面垂直判定定理的发现与验证.教学手段借助生活中大量实物图片,直观想象,动手操作抽象概括直线与平面垂直的定义,对于直线与平面垂直的判定定理,让学生通过探究和动手实践,初步认识到当直线与平面内两条相交直线垂直时,直线与这个平面垂直.但在缺少逻辑推证的情况下,如果马上把这个猜想作为定理来对待,学生可能会怀疑解困的正确性.教学时需要引导学生通过亲身反复验证并结合直线与平面垂直的定义进行思辨来解决以上问题,也可以结合平面向量基本定理,从向量的角度让学生体会利用“两条相交直线”来判断的合理性.本节课的教学难点:发现并验证直线与平面垂直的判定定理.(一)创设情境感知,抽象出直线与平面垂直的定义问题1:在日常生活中,我们对直线与平面垂直有很多感性认识,比如,图片中旗杆与地面的位置关系,给我们以直线与平面垂直的形象.那么怎么去定义直线与平面垂直呢?预设学生的可能回答。
人教A版高中数学必修第二册学案:8.6.1 8.6.2 第1课时 直线与直线垂直、直线与平面垂直的定义及判定

8.6 空间直线、平面的垂直 8.6.1 直线与直线垂直 8.6.2 直线与平面垂直第1课时 直线与直线垂直、直线与平面垂直的定义及判定问题导学预习教材P146-P150的内容,思考以下问题: 1.异面直线所成的角的定义是什么? 2.异面直线所成的角的范围是什么? 3.异面直线垂直的定理是什么? 4.直线与平面垂直的定义是什么? 5.直线与平面垂直的判定定理是什么?1.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a 与直线b 垂直,记作a ⊥b .(3)范围:设θ为异面直线a 与b 所成的角,则0°<θ≤90°.■[名师点拨] 当两条直线a ,b 相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直画直线与平面垂直时,通常把直线画成与表示平面的平行四边形(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.判断(正确的打“√”,错误的打“×”)(1)异面直线a,b所成角的范围为[0°,90°].()(2)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.()(3)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.()答案:(1)×(2)×(3)√直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是()A.平行.垂直C.在平面α内.无法确定答案:D已知直线a∥直线b,b⊥平面α,则()A.a∥α.a⊂αC.a⊥α.a是α的斜线答案:CB1C1D1中,AC与BD相交于点O,则直线OB1与A1C1所成角的度在正方体ABCD-A数为________.解析:连接AB1,B1C,因为AC∥A1C1,所以∠B1OC(或其补角)是异面直线OB1与A1C1所成的角.又因为AB1=B1C,O为AC的中点,所以B1O⊥AC,故∠B1OC=90°,所以OB1与A1C1所成的角的大小为90°.答案:90°异面直线所成的角如图,在正方体ABCD-EFGH中,O为侧面ADHE的中心.求:(1)BE与CG所成的角;(2)FO与BD所成的角.【解】(1)如图,因为CG∥BF.所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD 为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点,所以∠HFO=30°,即FO与BD所成的角为30°.1.[变条件]在本例正方体中,若P是平面EFGH的中心,其他条件不变,求OP和CD 所成的角.解:连接EG,HF,则P为HF的中点,连接AF,AH,OP∥AF,又CD∥AB,所以∠BAF(或其补角)为异面直线OP与CD所成的角,由于△ABF是等腰直角三角形,所以∠BAF=45°,故OP与CD所成的角为45°.2.[变条件]在本例正方体中,若M,N分别是BF,CG的中点,且AG和BN所成的角为39.2°,求AM和BN所成的角.∥CG,因为M,N分解:连接MG,因为BCGF是正方形,所以BF别是BF,CG的中点,所以BM═∥NG,所以四边形BNGM是平行四边形,所以BN∥MG,所以∠AGM(或其补角)是异面直线AG和BN所成的角,∠AMG(或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒]求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.如图所示,在三棱锥A-BCD中,AB=CD,AB⊥CD,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成的角.解:如图所示,取BD 的中点G ,连接EG ,FG .因为E ,F 分别为BC ,AD 的中点,AB =CD , 所以EG ∥CD ,GF ∥AB , 且EG =12CD ,GF =12AB .所以∠GFE (或其补角)就是异面直线EF 与AB 所成的角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF . 所以∠EGF =90°.所以△EFG 为等腰直角三角形. 所以∠GFE =45°, 即EF 与AB 所成的角为45°.直线与平面垂直的定义(1)直线l ⊥平面α,直线m ⊂α,则l 与m 不可能( ) A .平行 .相交 C .异面.垂直(2)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 【解析】 (1)因为直线l ⊥平面α,所以l 与α相交. 又因为m ⊂α,所以l 与m 相交或异面. 由直线与平面垂直的定义,可知l ⊥m . 故l 与m 不可能平行.(2)对于A ,直线l ⊥m ,m 并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B ,因为l ⊥α,则l 垂直于α内任意一条直线,又l ∥m ,由异面直线所成角的定义知,m 与平面α内任意一条直线所成的角都是90°,即m ⊥α,故B 正确;对于C ,也有可能是l ,m 异面;对于D ,l ,m 还可能相交或异面.【答案】 (1)A (2)B对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.解析:当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α,则l与α内的所有直线都垂直,所以④正确.答案:③④直线与平面垂直的判定如图,P A⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为P A⊥平面ABCD,BC⊂平面ABCD,所以P A⊥BC.又AB⊥BC,P A∩AB=A,所以BC⊥平面P AB,AE⊂平面P AB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面P AD,AG⊂平面P AD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD 是菱形,所以BD ⊥AC ,又P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥P A , 因为P A ∩AC =A ,所以BD ⊥平面P AC ,又FH ⊂平面P AC , 所以BD ⊥FH .2.[变条件]若本例中P A =AD ,G 是PD 的中点,其他条件不变,求证:PC ⊥平面AFG . 证明:因为P A ⊥平面ABCD ,DC ⊂平面ABCD ,所以DC ⊥P A , 又因为ABCD 是矩形,所以DC ⊥AD ,又P A ∩AD =A , 所以DC ⊥平面P AD ,又AG ⊂平面P AD , 所以AG ⊥DC ,因为P A =AD ,G 是PD 的中点, 所以AG ⊥PD ,又DC ∩PD =D , 所以AG ⊥平面PCD ,所以PC ⊥AG , 又因为PC ⊥AF ,AG ∩AF =A , 所以PC ⊥平面AFG .3.[变条件]本例中的条件“AE ⊥PB 于点E ,AF ⊥PC 于点F ”,改为“E ,F 分别是AB ,PC 的中点,P A =AD ”,其他条件不变,求证:EF ⊥平面PCD .证明:取PD 的中点G ,连接AG ,FG . 因为G ,F 分别是PD ,PC 的中点,所以GF ═∥12CD ,又AE ═∥12CD ,所以GF ═∥AE , 所以四边形AEFG 是平行四边形,所以AG ∥EF . 因为P A =AD ,G 是PD 的中点, 所以AG ⊥PD ,所以EF ⊥PD , 易知CD ⊥平面P AD ,AG ⊂平面P AD , 所以CD ⊥AG ,所以EF ⊥CD .因为PD ∩CD =D ,所以EF ⊥平面PCD .(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒]要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明:(1)因为AB为⊙O的直径,所以AM⊥BM.又P A⊥平面ABM,所以P A⊥BM.又因为P A∩AM=A,所以BM⊥平面P AM.又AN⊂平面P AM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以NQ⊥PB.1.若直线a⊥平面α,b∥α,则a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C.平面A1DB1C.平面A1B1C1D1.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线()A.相交且垂直.不相交也不垂直C.相交不垂直.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b平行于边AC 所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC的补角,所以直线a,b所成的角为60°.答案:60°[A基础达标]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂α.m∥n,且n⊥βC.m⊥n,且n⊂β.m⊥n,且n∥β解析:选B.A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是()A.b⊥β.b∥βC.b⊂β.b⊂β或b∥β解析:选A.因为a⊥α,a∥b,所以b⊥α.又α∥β,所以b⊥β.3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q分别为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是()解析:选D.对于A,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于B,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于C,易证AB⊥NQ,AB⊥MQ,即可得直线AB⊥平面MNQ;对于D,由图可得MN与直线AB相交且不垂直,故直线AB与平面MNQ不垂直.故选D.4.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B.由PB⊥α,AC⊂α得PB⊥AC,又AC⊥PC,PC∩PB=P,所以AC⊥平面PBC,AC⊥BC.故选B.5.在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是()A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段解析:选A.如图,由于BD1⊥平面AB1C,故点P一定位于线段B1C上.6.如图,在正方形ABCD-A1B1C1D1中,AC与BC1所成角的大小是______.解析:连接AD1,则AD1∥BC1.所以∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD-A1B1C1D1中,AC=AD1=CD1,所以∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中:(1)与PC垂直的直线有__________________;(2)与AP垂直的直线有__________________.解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC.所以PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面P AC,因为AP⊂平面P AC,所以BC⊥AP.答案:(1)AB,AC,BC(2)BC8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),P A⊥平面ABCD,且P A=1,若BC边上存在点Q,使得PQ⊥QD,则a的最小值为________.解析:因为P A⊥平面ABCD,所以P A⊥QD.若BC边上存在一点Q,使得QD⊥PQ,P A∩PQ=P,则有QD⊥平面P AQ,从而QD⊥AQ.在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.答案:2B1C1中,∠BAC=90°,AB=AC,D是9.如图,在直三棱柱ABC-ABC的中点,点E在棱BB1上运动.证明:AD⊥C1E.证明:因为AB=AC,D是BC的中点,所以AD⊥BC.①又在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,而AD⊂平面ABC,所以AD⊥BB1.②由①②得AD⊥平面BB1C1C.由点E 在棱BB 1上运动,得C 1E ⊂平面BB 1C 1C , 所以AD ⊥C 1E .10.如图所示,等腰直角三角形ABC 中,∠BAC =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点,求异面直线BE 与CD 所成角的余弦值.解:取AC 的中点F ,连接EF ,BF , 在△ACD 中,E ,F 分别是AD ,AC 的中点,所以EF ∥CD ,所以∠BEF (或其补角)即为所求的异面直线BE 与CD 所成的角. 在Rt △ABC 中,BC =2,AB =AC , 所以AB =AC =1,在Rt △EAB 中,AB =1,AE =12AD =12,所以BE =52. 在Rt △AEF 中,AF =12AC =12,AE =12,所以EF =22. 在Rt △ABF 中,AB =1,AF =12,所以BF =52.在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010,所以异面直线BE 与CD 所成角的余弦值为1010. [B 能力提升]11.已知异面直线a 与b 所成的角为50°,P 为空间一定点,则过点P 且与a ,b 所成的角都是30°的直线有且仅有( )A .1条B .2条C .3条D .4条解析:选B.过空间一点P ,作a ′∥a ,b ′∥b .由a ′、b ′两交线确定平面α,a ′与b ′的夹角为50°,则过角的平分线与直线a ′、b ′所在的平面α垂直的平面上,角平分线的两侧各有一条直线与a ′、b ′成30°的角,即与a 、b 成30°的角且过点P 的直线有两条.在a ′、b ′相交另一个130°的角部分内不存在与a ′、b ′成30°角的直线.故应选B. 12.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22解析:选C.如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD2+DD 21=2,DM =AD 2+⎝⎛⎭⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得 cos ∠MOD =12+⎝⎛⎭⎫522-⎝⎛⎭⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C.13.如图,在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点,沿AE 将△ADE 折起,在折起过程中,下列结论正确的有( )①ED ⊥平面ACD ;②CD ⊥平面BED ;③BD ⊥平面ACD ;④AD ⊥平面BED . A .1个 B .2个 C .3个D .4个解析:选A.因为在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点, 所以在折起过程中,D 点在平面ABCE 上的投影如图.因为DE与AC所成角不能为直角,所以DE不会垂直于平面ACD,故①错误;只有D点投影位于Q2位置时,即平面AED与平面AEB重合时,才有BE⊥CD,此时CD不垂直于平面AECB,故CD与平面BED不垂直,故②错误;BD与AC所成角不能为直角,所以BD不能垂直于平面ACD,故③错误;因为AD⊥ED,并且在折起过程中,有AD⊥BD,所以存在一个位置使AD⊥BE,所以在折起过程中有AD⊥平面BED,故④正确.故选A.14.如图,在多面体ABCDEF中,已知四边形ABCD是边长为2的正方形,△BCF为正三角形,G,H分别为BC,EF的中点,EF=4且EF∥AB,EF⊥FB.(1)求证:GH∥平面EAD;(2)求证:FG⊥平面ABCD.证明:(1)如图,取AD的中点M,连接EM,GM.因为EF∥AB,M,G分别为AD,BC的中点,所以MG∥EF.因为H为EF的中点,EF=4,AB=2,所以EH=AB=MG,所以四边形EMGH为平行四边形,所以GH∥EM,又因为GH⊄平面EAD,EM⊂平面EAD,所以GH∥平面EAD.(2)因为EF⊥FB,EF∥AB,所以AB⊥FB.在正方形ABCD中,AB⊥BC,所以AB⊥平面FBC.又FG⊂平面FBC,所以AB⊥FG.在正三角形FBC中,FG⊥BC,所以FG⊥平面ABCD.[C拓展探究]15.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD 上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.因为DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.所以A1F⊥BE.B上存在点Q,使A1C⊥平面DEQ.理由如下:(3)线段A如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.即A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。
直线与平面垂直(第1课时)(人教A版2019必修二)

D.垂直
(二)直线与平面垂直
知识点二 直线与平面垂直的判定
【探究3】如图,一块三角形纸片ABC,过△ABC的顶点A翻折纸
片.得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、
(1)文字语言:如果一条直线与一个平
DC与桌面接触)
面内的两条 相交 直线垂直,那么该直
(1)折痕AD与桌面垂直吗?
线与此平面垂直。
(二)直线与平面垂直
【思考1】若把定理中“两条相交直线”改为“两条直线”,直线与平面一定垂直吗?
【提示】当这两条直线平行时,直线可与平面平行或相交,不一定垂直.
【思考2】如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面吗?
【提示】垂直.
【辩一辩】 判断(正确的打“√”,错误的打“×”)
O
=
=
.
1 1
4
1 1 3
(四)操作演练 素养提升
1.垂直于梯形两腰的直线与梯形所在平面的位置关系是(
A.垂直
B.相交但不垂直
C.平行
)
D.不确定
2.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是(
A.60°
B.45°
l,m是两条不同的直线,α是一个平面,则下列命题正确的是(
(1)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.(
(2)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.(
【做一做】若三条直线OA,OB,OC两两垂直,则直线OA垂直于( C
A.平面OAB
B.平面OAC
C.平面OBC
D.平面ABC
)
)
)
答案:(1)× (2)√
2019-2020学年高中数学新教材人教版A必修第二册学案:8.6.1直线与直线垂直

8.6.1 直线与直线垂直学习目标1. 掌握异面直线所成角的定义,会求两异面直线所成的角。
2. 掌握直线与直线垂直的定义。
基础梳理1. 空间两条直线的位置关系有三种:平行直线、相交直线和异面直线。
2. 已知两条异面直线a ,b ,经过空间任一点O 分别作直线,我们把直线与所成的角叫做异面直线a 与b 所成的角(或夹角)。
3. 如果两条异面直线所成的角是直角,那么我们就说这两条异面直线互相垂直。
直线a 与直线b 垂直,记作。
4. 当两条直线a ,b 相互平行时,我们规定它们所成的角为0。
所以空间两条直线所成角α的取值范围是0<a<90。
随堂训练1、垂直于同一条直线的两条直线一定( ) A.平行 B.相交C.异面D.以上都有可能2、如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面( ) A. 只有一个 B. 恰有两个 C. 没有或只有一个D. 有无数个3、如图,在直三棱柱111ABC A B C 的棱所在的直线中,与直线1BC 异面的直线条数为( )A .1B .2C .3D .44、已知两异面直线,a b 所成的角为80o ,过空间一点P 作直线,使得l 与,a b 的夹角均为50o ,那么这样的直线有( )条 A .1B .2C .3D .45、将图1中的等腰直角三角形ABC 沿斜边BC 上的中线折起得到空间四面体ABCD (如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直6、在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ) A. 11A E DC ⊥B. 1A E BD ⊥C. 11A E BC ⊥D. 1A E AC ⊥ 7、在三棱锥P ABC -中,已知PA AB AC ==,BAC PAC ∠=∠,点,D E 分别为棱,BC PC 的中点,则下列结论正确的是( ) A.直线DE ⊥直线AD B.直线DE ⊥直线PA C.直线DE ⊥直线ABD.直线DE ⊥直线AC8、如图,正方体1111ABCD-A B C D 中, M 、N 分别为棱11C D 、1C C 的中点,有以下四个结论: ①直线AM 与1CC 是相交直线; ②直线BN 与1MB 是异面直线; ③直线AM 与BN 是平行直线; ④直线AM 与1DD 是异面直线.其中正确的结论为__________.9、如图,在正方体1111ABCD A B C D -中, ,,,E F G H 分别为1111,,,AA AB BB B C 的中点,则异面直线EF 与GH 所成的角等于__________.10、设,a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在的直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60o 角时, AB 与b 成30o 角; ②当直线AB 与a 成60o 角时, AB 与b 成60o 角; ③直线AB 与a 所成角的最小值为45o ; ④直线AB 与a 所成角的最大值为60o .其中正确的是__________(填写所有正确结论的编号)11、如图,在正三棱锥P ABC -中,2,3PA PB PC AB BC AC ======.若PB 的中点为,M BC 的中点为,N 求AC 与MN 的夹角答案 随堂训练 1答案及解析: 答案:D解析:在空间,垂直于同一条直线的两条直线可能平行,相交,异面. 2答案及解析: 答案:C解析:当过点M 与两条异面直线中的一条的平面与另一条直线平行时,此时找不到一个过M 的平面与两条异面直线都平行;当过点M 与两条异面直线中的一条的平面与另一条直线不平行时,利用线面平行的判断定理,可得1个平面与a ,b 都平行.故选C . 3答案及解析: 答案:C解析:在直三棱柱111ABC A B C -的棱所在的直线中,与直线1BC 异面的直线有:11A B ,AC ,1AA ,共3条.4答案及解析: 答案:C解析:过P 作与,a b 平行的直线','a b 如图,80CPD ∠=o直线AG 过点P 且50APC APD ∠=∠=o ,这样的直线有两条又100FPC ∠=o ,直线PE 为FPC ∠的平分线,则50FPC EPC ∠=∠=o综上,满足条件的直线的条数为3 5答案及解析: 答案:C解析: 对于原图:∵AD 是等腰直角三角形ABC 斜边BC 上的中线,∴AD BC ⊥.在四面体ABCD 中,∵AD BD ⊥,AD DC ⊥,AD DC D =I ,∴AD ⊥平面BCD .∴AD BC ⊥.又AD与BC 是异面直线.综上可知:在四面体ABCD 中,AD 与BC 的位置关系是异面垂直.所以C 选项是正确的. 6答案及解析: 答案:C解析:∵1A E 在平面ABCD 上的投影为AE ,而AE 不与,AC BD 垂直,∴,B D 错误; ∵1A E 在平面11BCC B 上的投影为111,B C B C BC ⊥,∴11A E BC ⊥,故 C 正确; ∵1A E 在平面11DCC D 上的投影为1 D E ,而1 D E 不与1DC 垂直,故A 错误.故选C. 7答案及解析: 答案:D 解析:如图,,,,得,取PB 中点G ,连接AG ,CG ,则,,又,,则, D 、E 分别为棱BC 、PC 的中点,,则。
新人教A版 必修第二本 8.6.2《直线与平面垂直》第一节课 教案

8.6.2《直线与平面垂直》教案一、教学目标1.理解直线与平面垂直的定义。
2.理解直线与平面垂直的判定定理。
3.理解直线与平面垂直的性质定理,并能够证明。
4.能运用判定定理证明直线与平面垂直的简单命题。
5.能运用性质定理证明一些空间位置关系的简单命题。
二、教学重难点1.教学重点直观感知、操作确认,概括出直线与平面垂直的判定定理、性质定理。
2.教学难点直线与平面垂直的判定定理的应用、性质定理的证明。
黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!三、教学准备1.《直线与平面垂直》PPT2.每人发一张三角形纸片四、教学过程黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!【提问】有同学认识它吗?(手指着日晷)(学生:认识)(学生:不认识)可能有同学不认识,它叫日晷。
【PPT演示】日晷日晷是中国古代用来测定时间的仪器,日晷通常由晷针指到和晷盘组成(手指着部位)。
如果我们把晷针看成一条直线,晷面看成一个平面,这里就体现了直线与平面的一种非常特殊的位置关系。
同学们知道是什么位置关吗?(学生:垂直)对,直线与平面重直,这就是我们今天所要学习的内容——《直线与平面垂直》【PPT演示图片】课题《8.6.2直线与平面垂直》【板书】8.6.2直线与平面垂直在我们的实际生活中,有许多场景都能给我们以直线与平面重直的直观形象。
同学们你能举出几个例子吗?(让学生多举几个)如:①把老师我看成一条直线,把讲台看成一个平面;②教室里相邻墙面的交线与地面的位置关系【PPT演示图片】③旗杆所在直线与地面的位置关系④港珠澳大桥雄伟壮观,桥墩所在直线与海面所在平面的位置关系⑤美丽的上海东方明珠塔,如果把塔身看成一条直线,海面看成一个平面。
这些都能给我们以直线与平面重直的形象。
⑥意大利萨斜塔,它能体现直线与平面垂直的形象吗?(学生:不能)对,不能,塔身所在直线与地面所在平面是不重直的。
8.6.2直线与平面垂直说课稿(第1课时)高一下学期数学人教A版(2019)必修第二册

《8.6.2直线与平面垂直》说课稿大家好!今天我说课的课题是《直线与平面垂直(第一课时)》。
下面我将从以下几个方面对本课题进行阐述:一、说教材《直线与平面垂直》是人教A版必修二教材第8章第6.2节的课题,属于空间与图形邻域的知识。
在此之前,学生们已经学习了直线与平面位置关系,直线与直线垂直的定义与判定,这为过渡到本课题的学习起到了铺垫的作用。
其中,直线与平面垂直是直线与平面相交中的一种特殊情况,它既是线线垂直的拓展,也是学习面面垂直的基础,同时它也为研究线面角、二面角、点到平面的距离、直线到平面的距离、两个平行平面间的距离等内容进行了必要的知识准备。
因此它不仅是连接线线垂直和面面垂直的纽带,也是空间中点、线、面位置关系的核心内容。
线面垂直是空间垂直关系间转化的重心,它在整个教材中起着承上启下的作用。
本课中,重点是直线与平面垂直的判定定理,难点是理解线面垂直及其相关概念、判定定理的猜想与归纳和定理的发现,关键点是理解任意的含义,无限到有限的转化以及两条直线相交垂直的判定。
二、说学情本节课主要学习线面垂直的定义、判定定理及其初步运用。
学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象。
同时,学生已经学习了空间点、直线、平面之间的位置关系、直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构,这为学习者学习直线与平面垂直定义和判定定理等新知识奠定基础。
并且,在前面学习立体几何的基本内容后,已经有了“通过观察、操作等数学活动抽象概括出数学结论”的体会,参与意识、自主探究能力有所提高,对空间概念建立有一定基础。
三、说目标《数学课程标准》指出本节课学习目标是:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题.。
考虑到学生的接受能力和课容量,本节课只要求学生在构建线面垂直定义的基础上探究线面垂直的判定定理,并进行定理的初步运用。
故而确立以下教学目标:1.理解直线与平面垂直的定义及其相关概念,以及判定定理。
新人教版高中数学必修第二册 第8章 8.6.1 第1课时 直线与直线垂直、直线与平面垂直的定义及判定

8.6空间直线、平面的垂直8.6.1直线与直线垂直8.6.2直线与平面垂直第1课时直线与直线垂直、直线与平面垂直的定义及判定考点学习目标核心素养异面直线所成的角会用两条异面直线所成角的定义,找出或作出异面直线所成的角,会在三角形中求简单的异面直线所成的角直观想象、逻辑推理、数学运算直线与平面垂直的定义理解并掌握直线与平面垂直的定义,明确定义中“任意”两字的重要性直观想象直线与平面垂直的判定定理掌握直线与平面垂直的判定定理,并能解决有关线面垂直的问题直观想象、逻辑推理问题导学预习教材P146-P150的内容,思考以下问题:1.异面直线所成的角的定义是什么?2.异面直线所成的角的范围是什么?3.异面直线垂直的定理是什么?4.直线与平面垂直的定义是什么?5.直线与平面垂直的判定定理是什么?1.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a 与直线b垂直,记作a⊥b.(3)范围:设θ为异面直线a与b所成的角,则0°<θ≤90°.■[名师点拨]当两条直线a,b相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直定义一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足图示及画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直■名师点拨(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理文字语言如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直图形语言符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α■名师点拨判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.判断(正确的打“√”,错误的打“×”)(1)异面直线a,b所成角的范围为[0°,90°].()(2)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.()(3)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.()答案:(1)×(2)×(3)√直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是() A.平行.垂直C.在平面α内.无法确定答案:D已知直线a∥直线b,b⊥平面α,则()A.a∥α.a⊂αC.a⊥α.a是α的斜线答案:C在正方体ABCD-A1B1C1D1中,AC与BD相交于点O,则直线OB1与A1C1所成角的度数为________.解析:连接AB1,B1C,因为AC∥A1C1,所以∠B1OC(或其补角)是异面直线OB1与A1C1所成的角.又因为AB1=B1C,O为AC的中点,所以B1O⊥AC,故∠B1OC=90°,所以OB1与A1C1所成的角的大小为90°.答案:90°异面直线所成的角如图,在正方体ABCD-EFGH中,O为侧面ADHE的中心.求:(1)BE与CG所成的角;(2)FO与BD所成的角.【解】(1)如图,因为CG∥BF.所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD 为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点,所以∠HFO=30°,即FO与BD所成的角为30°.1.[变条件]在本例正方体中,若P是平面EFGH的中心,其他条件不变,求OP和CD 所成的角.解:连接EG,HF,则P为HF的中点,连接AF,AH,OP∥AF,又CD∥AB,所以∠BAF(或其补角)为异面直线OP与CD所成的角,由于△ABF是等腰直角三角形,所以∠BAF=45°,故OP与CD所成的角为45°.2.[变条件]在本例正方体中,若M,N分别是BF,CG的中点,且AG和BN所成的角为39.2°,求AM和BN所成的角.解:连接MG,因为BCGF是正方形,所以BF═∥CG,因为M,N分别是BF,CG的中点,所以BM═∥NG,所以四边形BNGM是平行四边形,所以BN∥MG,所以∠AGM(或其补角)是异面直线AG和BN所成的角,∠AMG(或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒] 求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.如图所示,在三棱锥A -BCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成的角.解:如图所示,取BD 的中点G ,连接EG ,FG . 因为E ,F 分别为BC ,AD 的中点,AB =CD , 所以EG ∥CD ,GF ∥AB , 且EG =12CD ,GF =12AB .所以∠GFE (或其补角)就是异面直线EF 与AB 所成的角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF . 所以∠EGF =90°.所以△EFG 为等腰直角三角形. 所以∠GFE =45°, 即EF 与AB 所成的角为45°.直线与平面垂直的定义(1)直线l ⊥平面α,直线m ⊂α,则l 与m 不可能( ) A .平行 .相交 C .异面.垂直(2)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 【解析】 (1)因为直线l ⊥平面α,所以l 与α相交.又因为m⊂α,所以l与m相交或异面.由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.(2)对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因为l⊥α,则l垂直于α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.【答案】(1)A(2)B对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.解析:当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l 与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α,则l与α内的所有直线都垂直,所以④正确.答案:③④直线与平面垂直的判定如图,P A⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为P A⊥平面ABCD,BC⊂平面ABCD,所以P A⊥BC.又AB⊥BC,P A∩AB=A,所以BC⊥平面P AB,AE⊂平面P AB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面P AD,AG⊂平面P AD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD是菱形,所以BD⊥AC,又P A⊥平面ABCD,BD⊂平面ABCD,所以BD⊥P A,因为P A∩AC=A,所以BD⊥平面P AC,又FH⊂平面P AC,所以BD⊥FH.2.[变条件]若本例中P A=AD,G是PD的中点,其他条件不变,求证:PC⊥平面AFG.证明:因为P A⊥平面ABCD,DC⊂平面ABCD,所以DC⊥P A,又因为ABCD 是矩形,所以DC ⊥AD ,又P A ∩AD =A , 所以DC ⊥平面P AD ,又AG ⊂平面P AD , 所以AG ⊥DC ,因为P A =AD ,G 是PD 的中点, 所以AG ⊥PD ,又DC ∩PD =D , 所以AG ⊥平面PCD ,所以PC ⊥AG , 又因为PC ⊥AF ,AG ∩AF =A , 所以PC ⊥平面AFG .3.[变条件]本例中的条件“AE ⊥PB 于点E ,AF ⊥PC 于点F ”,改为“E ,F 分别是AB ,PC 的中点,P A =AD ”,其他条件不变,求证:EF ⊥平面PCD .证明:取PD 的中点G ,连接AG ,FG . 因为G ,F 分别是PD ,PC 的中点,所以GF ═∥12CD ,又AE ═∥12CD ,所以GF ═∥AE , 所以四边形AEFG 是平行四边形,所以AG ∥EF . 因为P A =AD ,G 是PD 的中点, 所以AG ⊥PD ,所以EF ⊥PD , 易知CD ⊥平面P AD ,AG ⊂平面P AD , 所以CD ⊥AG ,所以EF ⊥CD .因为PD ∩CD =D ,所以EF ⊥平面PCD .(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒]要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明:(1)因为AB为⊙O的直径,所以AM⊥BM.又P A⊥平面ABM,所以P A⊥BM.又因为P A∩AM=A,所以BM⊥平面P AM.又AN⊂平面P AM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以NQ⊥PB.1.若直线a⊥平面α,b∥α,则a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCD-A1B1C1D1中,与AD1垂直的平面是()A.平面DD1C1C.平面A1DB1C.平面A1B1C1D1.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线()A.相交且垂直.不相交也不垂直C.相交不垂直.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b平行于边AC所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC的补角,所以直线a,b所成的角为60°.答案:60°[A基础达标]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂α.m∥n,且n⊥βC.m⊥n,且n⊂β.m⊥n,且n∥β解析:选B.A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D 中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是()A.b⊥β.b∥βC.b⊂β.b⊂β或b∥β解析:选A.因为a⊥α,a∥b,所以b⊥α.又α∥β,所以b⊥β.3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q分别为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是()解析:选D.对于A,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于B,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于C,易证AB⊥NQ,AB⊥MQ,即可得直线AB⊥平面MNQ;对于D,由图可得MN与直线AB相交且不垂直,故直线AB 与平面MNQ不垂直.故选D.4.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B.由PB⊥α,AC⊂α得PB⊥AC,又AC⊥PC,PC∩PB=P,所以AC⊥平面PBC,AC⊥BC.故选B.5.在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是()A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段解析:选A.如图,由于BD1⊥平面AB1C,故点P一定位于线段B1C上.6.如图,在正方形ABCD-A1B1C1D1中,AC与BC1所成角的大小是______.解析:连接AD1,则AD1∥BC1.所以∠CAD 1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD-A1B1C1D1中,AC=AD1=CD1,所以∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中:(1)与PC垂直的直线有__________________;(2)与AP垂直的直线有__________________.解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC.所以PC⊥AB,PC⊥AC,PC ⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面P AC,因为AP⊂平面P AC,所以BC⊥AP.答案:(1)AB,AC,BC(2)BC8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),P A⊥平面ABCD,且P A=1,若BC边上存在点Q,使得PQ⊥QD,则a的最小值为________.解析:因为P A⊥平面ABCD,所以P A⊥QD.若BC边上存在一点Q,使得QD⊥PQ,P A∩PQ=P,则有QD⊥平面P AQ,从而QD⊥AQ.在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.答案:29.如图,在直三棱柱ABC-A 1B1C1中,∠BAC=90°,AB=AC,D是BC的中点,点E在棱BB1上运动.证明:AD⊥C1E.证明:因为AB=AC,D是BC的中点,所以AD⊥BC.①又在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,而AD⊂平面ABC,所以AD⊥BB1.②由①②得AD⊥平面BB1C1C.由点E在棱BB1上运动,得C1E⊂平面BB1C1C,所以AD⊥C1E.10.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=2,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.解:取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD,所以∠BEF(或其补角)即为所求的异面直线BE与CD所成的角.在Rt△ABC中,BC=2,AB=AC,所以AB=AC=1,在Rt△EAB中,AB=1,AE=12AD=12,所以BE=52.在Rt△AEF中,AF=12AC=12,AE=12,所以EF=22.在Rt△ABF中,AB=1,AF=12,所以BF=52.在等腰三角形EBF中,cos∠FEB=12EFBE=2452=1010,所以异面直线BE与CD所成角的余弦值为1010.[B 能力提升]11.已知异面直线a 与b 所成的角为50°,P 为空间一定点,则过点P 且与a ,b 所成的角都是30°的直线有且仅有( )A .1条B .2条C .3条D .4条解析:选B.过空间一点P ,作a ′∥a ,b ′∥b .由a ′、b ′两交线确定平面α,a ′与b ′的夹角为50°,则过角的平分线与直线a ′、b ′所在的平面α垂直的平面上,角平分线的两侧各有一条直线与a ′、b ′成30°的角,即与a 、b 成30°的角且过点P 的直线有两条.在a ′、b ′相交另一个130°的角部分内不存在与a ′、b ′成30°角的直线.故应选B. 12.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22解析:选C.如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝⎛⎭⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝⎛⎭⎫522-⎝⎛⎭⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C.13.如图,在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点,沿AE 将△ADE 折起,在折起过程中,下列结论正确的有( )①ED ⊥平面ACD ;②CD ⊥平面BED ;③BD ⊥平面ACD ;④AD ⊥平面BED .A.1个B.2个C.3个D.4个解析:选A.因为在矩形ABCD中,AB=8,BC=4,E为DC边的中点,所以在折起过程中,D点在平面ABCE上的投影如图.因为DE与AC所成角不能为直角,所以DE不会垂直于平面ACD,故①错误;只有D点投影位于Q2位置时,即平面AED与平面AEB重合时,才有BE⊥CD,此时CD不垂直于平面AECB,故CD与平面BED不垂直,故②错误;BD与AC所成角不能为直角,所以BD不能垂直于平面ACD,故③错误;因为AD⊥ED,并且在折起过程中,有AD⊥BD,所以存在一个位置使AD⊥BE,所以在折起过程中有AD⊥平面BED,故④正确.故选A.14.如图,在多面体ABCDEF中,已知四边形ABCD是边长为2的正方形,△BCF为正三角形,G,H分别为BC,EF的中点,EF=4且EF∥AB,EF⊥FB.(1)求证:GH∥平面EAD;(2)求证:FG⊥平面ABCD.证明:(1)如图,取AD的中点M,连接EM,GM.因为EF∥AB,M,G分别为AD,BC的中点,所以MG∥EF.因为H为EF的中点,EF=4,AB=2,所以EH=AB=MG,所以四边形EMGH为平行四边形,所以GH∥EM,又因为GH⊄平面EAD,EM⊂平面EAD,所以GH∥平面EAD.(2)因为EF⊥FB,EF∥AB,所以AB⊥FB.在正方形ABCD中,AB⊥BC,所以AB⊥平面FBC.又FG⊂平面FBC,所以AB⊥FG.在正三角形FBC中,FG⊥BC,所以FG⊥平面ABCD.[C拓展探究]15.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.因为DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.即A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。
《直线与直线垂直》教案、导学案、课后作业

《8.6.1 直线与直线垂直》教案【教材分析】直线与直线垂直是所有垂直关系的基础,在初中已经学过矩形,直角三角形等垂直关系,本节教材重点介绍了异面直线所成角,对平面中直线与直线的垂直关系进一步深化.也为后续线面垂直、面面垂直打下基础.【教学目标与核心素养】课程目标1. 理解两异面直线的定义,会求两异面直线所成的角;2. 进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.数学学科素养1. 逻辑推理:找两异面直线所成角,证明两直线垂直.2.数学运算:求两异面直线所成角【教学重点和难点】重点:求两异面直线所成角.难点:求两异面直线所成角.【教学过程】一、情景导入观察长方体,你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本146-148页,思考并完成以下问题1、什么是异面直线所成角?2、异面直线所成角的范围是多少?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O 作直线a′∥a,b′∥b,则a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成的角θ的取值范围:0°<θ≤90°.(3)如果两条异面直线a,b 所成的角是直角,就说这两条直线互相垂直,记作a ⊥b.四、典例分析、举一反三 题型一 证明两直线垂直例1如图,在正方体中,为底面的中心.求证【答案】见解析【解析】如图所示:连接,是正方体.∴四边形是平行四边形.∴直线与所成的角即为直线与所成的角. 连接,易证.又为底面的中心,1111ABCD A B C D -1O 1111D C B A 1AO BD⊥11B D 111,,AD AB AO 1111ABCD A B C D -11//BB DD∴11BB D D 11//B D BD ∴1AO 11B D 1AO BD 11,AB AD 11AB AD =1O 1111D C B A为的中点解题技巧(证明两直线垂直的常用方法)(1)利用平面几何的结论,如矩形,等腰三角形的三线合一,勾股定理;(2)定义法:即证明两条直线夹角是90°;(3)利用一些事实:两条平行直线,若其中一条直线垂直另一条直线,则其平行线也垂直此直线.跟踪训练一1.如图,在直三棱柱中,,P为的中点,Q为棱的中点,求证:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时直线与直线垂直、直线与平面垂直的定义及判定问题导学预习教材P146-P150的内容,思考以下问题:1.异面直线所成的角的定义是什么?2.异面直线所成的角的范围是什么?3.异面直线垂直的定理是什么?4.直线与平面垂直的定义是什么?5.直线与平面垂直的判定定理是什么?1.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a与直线b垂直,记作a⊥b.(3)范围:设θ为异面直线a与b所成的角,则0°<θ≤90°.■[名师点拨]当两条直线a,b相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.判断(正确的打“√”,错误的打“×”)(1)异面直线a,b所成角的范围为[0°,90°].( )(2)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.( )(3)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.( )答案:(1)×(2)×(3)√直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是( )A.平行.垂直C.在平面α内.无法确定答案:D已知直线a∥直线b,b⊥平面α,则( )A.a∥α.a⊂αC.a⊥α.a是α的斜线答案:C在正方体ABCDA1B1C1D1中,AC与BD相交于点O,则直线OB1与A1C1所成角的度数为________.解析:连接AB1,B1C,因为AC∥A1C1,所以∠B1OC(或其补角)是异面直线OB1与A1C1所成的角.又因为AB1=B1C,O为AC的中点,所以B1O⊥AC,故∠B1OC=90°,所以OB1与A1C1所成的角的大小为90°.答案:90°异面直线所成的角如图,在正方体ABCDEFGH中,O为侧面ADHE的中心.求:(1)BE与CG所成的角;(2)FO与BD所成的角.【解】(1)如图,因为CG∥BF.所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点,所以∠HFO=30°,即FO与BD所成的角为30°.1.[变条件]在本例正方体中,若P是平面EFGH的中心,其他条件不变,求OP和CD所成的角.解:连接EG,HF,则P为HF的中点,连接AF,AH,OP∥AF,又CD∥AB,所以∠BAF (或其补角)为异面直线OP 与CD 所成的角,由于△ABF 是等腰直角三角形,所以∠BAF =45°,故OP 与CD 所成的角为45°.2.[变条件]在本例正方体中,若M ,N 分别是BF ,CG 的中点,且AG 和BN 所成的角为39.2°,求AM 和BN 所成的角.解:连接MG ,因为BCGF 是正方形,所以BF═∥CG ,因为M ,N 分别是BF ,CG 的中点,所以BM ═∥NG ,所以四边形BNGM 是平行四边形,所以BN ∥MG ,所以∠AGM (或其补角)是异面直线AG 和BN 所成的角,∠AMG (或其补角)是异面直线AM 和BN 所成的角,因为AM =MG ,所以∠AGM =∠MAG =39.2°,所以∠AMG =101.6°,所以AM 和BN 所成的角为78.4°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒] 求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.如图所示,在三棱锥A BCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成的角.解:如图所示,取BD 的中点G ,连接EG ,FG . 因为E ,F 分别为BC ,AD 的中点,AB =CD , 所以EG ∥CD ,GF ∥AB , 且EG =12CD ,GF =12AB .所以∠GFE (或其补角)就是异面直线EF 与AB 所成的角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF . 所以∠EGF =90°.所以△EFG 为等腰直角三角形. 所以∠GFE =45°,即EF 与AB 所成的角为45°.直线与平面垂直的定义(1)直线l⊥平面α,直线m⊂α,则l与m不可能( )A.平行.相交C.异面.垂直(2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【解析】(1)因为直线l⊥平面α,所以l与α相交.又因为m⊂α,所以l与m相交或异面.由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.(2)对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因为l⊥α,则l垂直于α内任意一条直线,又l∥m,由异面直线所成角的定义知,m 与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.【答案】(1)A (2)B对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.解析:当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l 与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α,则l与α内的所有直线都垂直,所以④正确.答案:③④直线与平面垂直的判定如图,PA⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.又AB⊥BC,PA∩AB=A,所以BC⊥平面PAB,AE⊂平面PAB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面PAD,AG⊂平面PAD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD是菱形,所以BD⊥AC,又PA⊥平面ABCD,BD⊂平面ABCD,所以BD⊥PA,因为PA∩AC=A,所以BD⊥平面PAC,又FH⊂平面PAC,所以BD⊥FH.2.[变条件]若本例中PA=AD,G是PD的中点,其他条件不变,求证:PC⊥平面AFG.证明:因为PA⊥平面ABCD,DC⊂平面ABCD,所以DC⊥PA,又因为ABCD是矩形,所以DC⊥AD,又PA∩AD=A,所以DC⊥平面PAD,又AG⊂平面PAD,所以AG⊥DC,因为PA=AD,G是PD的中点,所以AG⊥PD,又DC∩PD=D,所以AG⊥平面PCD,所以PC⊥AG,又因为PC⊥AF,AG∩AF=A,所以PC⊥平面AFG.3.[变条件]本例中的条件“AE⊥PB于点E,AF⊥PC于点F”,改为“E,F分别是AB,PC的中点,PA=AD”,其他条件不变,求证:EF⊥平面PCD.证明:取PD的中点G,连接AG,FG.因为G,F分别是PD,PC的中点,所以GF═∥12CD,又AE═∥12CD,所以GF═∥AE,所以四边形AEFG是平行四边形,所以AG∥EF.因为PA=AD,G是PD的中点,所以AG⊥PD,所以EF⊥PD,易知CD⊥平面PAD,AG⊂平面PAD,所以CD⊥AG,所以EF⊥CD.因为PD∩CD=D,所以EF⊥平面PCD.(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒] 要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N 为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明:(1)因为AB为⊙O的直径,所以AM⊥BM.又PA⊥平面ABM,所以PA⊥BM.又因为PA∩AM=A,所以BM⊥平面PAM.又AN⊂平面PAM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以NQ⊥PB.1.若直线a⊥平面α,b∥α,则a与b的关系是( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCDA1B1C1D1中,与AD1垂直的平面是( )A.平面DD1C1C.平面A1DB1C.平面A1B1C1D1.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线( )A.相交且垂直.不相交也不垂直C.相交不垂直.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b平行于边AC 所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC的补角,所以直线a,b所成的角为60°.答案:60°[A 基础达标]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂α.m∥n,且n⊥βC.m⊥n,且n⊂β.m⊥n,且n∥β解析:选B.A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D 中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是( )A.b⊥β.b∥βC.b⊂β.b⊂β或b∥β解析:选A.因为a⊥α,a∥b,所以b⊥α.又α∥β,所以b⊥β.3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q分别为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是( )解析:选D.对于A,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于B,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于C,易证AB⊥NQ,AB⊥MQ,即可得直线AB⊥平面MNQ;对于D,由图可得MN与直线AB相交且不垂直,故直线AB与平面MNQ不垂直.故选D.4.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B.由PB⊥α,AC⊂α得PB⊥AC,又AC⊥PC,PC∩PB=P,所以AC⊥平面PBC,AC⊥BC.故选B.5.在正方体ABCDA1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是( )A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段解析:选A.如图,由于BD1⊥平面AB1C,故点P一定位于线段B1C上.6.如图,在正方形ABCDA1B1C1D1中,AC与BC1所成角的大小是______.解析:连接AD1,则AD1∥BC1.所以∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCDA1B1C1D1中,AC =AD1=CD1,所以∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:(1)与PC垂直的直线有__________________;(2)与AP垂直的直线有__________________.解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC.所以PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面PAC,因为AP⊂平面PAC,所以BC⊥AP.答案:(1)AB,AC,BC(2)BC8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1,若BC 边上存在点Q,使得PQ⊥QD,则a的最小值为________.解析:因为PA⊥平面ABCD,所以PA⊥QD.若BC边上存在一点Q,使得QD⊥PQ,PA∩PQ=P,则有QD⊥平面PAQ,从而QD⊥AQ.在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.答案:29.如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC,D是BC的中点,点E在棱BB1上运动.证明:AD⊥C1E.证明:因为AB=AC,D是BC的中点,所以AD⊥BC.①又在直三棱柱ABCA1B1C1中,BB1⊥平面ABC,而AD⊂平面ABC,所以AD⊥BB1.②由①②得AD⊥平面BB1C1C.由点E在棱BB1上运动,得C1E⊂平面BB1C1C,所以AD⊥C1E.10.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=2,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.解:取AC 的中点F ,连接EF ,BF , 在△ACD 中,E ,F 分别是AD ,AC 的中点,所以EF ∥CD ,所以∠BEF (或其补角)即为所求的异面直线BE 与CD 所成的角. 在Rt △ABC 中,BC =2,AB =AC , 所以AB =AC =1,在Rt △EAB 中,AB =1,AE =12AD =12,所以BE =52. 在Rt △AEF 中,AF =12AC =12,AE =12,所以EF =22. 在Rt △ABF 中,AB =1,AF =12,所以BF =52.在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010,所以异面直线BE 与CD 所成角的余弦值为1010. [B 能力提升]11.已知异面直线a 与b 所成的角为50°,P 为空间一定点,则过点P 且与a ,b 所成的角都是30°的直线有且仅有( )A .1条B .2条C .3条D .4条解析:选B.过空间一点P ,作a ′∥a ,b ′∥b .由a ′、b ′两交线确定平面α,a ′与b ′的夹角为50°,则过角的平分线与直线a ′、b ′所在的平面α垂直的平面上,角平分线的两侧各有一条直线与a ′、b ′成30°的角,即与a 、b 成30°的角且过点P 的直线有两条.在a ′、b ′相交另一个130°的角部分内不存在与a ′、b ′成30°角的直线.故应选B. 12.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56 C.55D.22解析:选C.如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C.13.如图,在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点,沿AE 将△ADE 折起,在折起过程中,下列结论正确的有( )①ED ⊥平面ACD ;②CD ⊥平面BED ;③BD ⊥平面ACD ;④AD ⊥平面BED . A .1个 B .2个 C .3个D .4个解析:选A.因为在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点, 所以在折起过程中,D 点在平面ABCE 上的投影如图.因为DE 与AC 所成角不能为直角, 所以DE 不会垂直于平面ACD ,故①错误;只有D 点投影位于Q 2位置时,即平面AED 与平面AEB 重合时, 才有BE ⊥CD ,此时CD 不垂直于平面AECB , 故CD 与平面BED 不垂直,故②错误;BD 与AC 所成角不能为直角,所以BD 不能垂直于平面ACD ,故③错误; 因为AD ⊥ED ,并且在折起过程中,有AD ⊥BD , 所以存在一个位置使AD ⊥BE ,所以在折起过程中有AD ⊥平面BED ,故④正确.故选A.14.如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为2的正方形,△BCF 为正三角形,G,H分别为BC,EF的中点,EF=4且EF∥AB,EF⊥FB.(1)求证:GH∥平面EAD;(2)求证:FG⊥平面ABCD.证明:(1)如图,取AD的中点M,连接EM,GM.因为EF∥AB,M,G分别为AD,BC的中点,所以MG∥EF.因为H为EF的中点,EF=4,AB=2,所以EH=AB=MG,所以四边形EMGH为平行四边形,所以GH∥EM,又因为GH⊄平面EAD,EM⊂平面EAD,所以GH∥平面EAD.(2)因为EF⊥FB,EF∥AB,所以AB⊥FB.在正方形ABCD中,AB⊥BC,所以AB⊥平面FBC.又FG⊂平面FBC,所以AB⊥FG.在正三角形FBC中,FG⊥BC,所以FG⊥平面ABCD.[C 拓展探究]15.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.因为DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.即A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。