1在0-9这10个数字中

合集下载

10的十进制

10的十进制

10的十进制1、十进制数10:十进制数是指使用10个数字(0~9)来表示数值的一种数据格式,用符号“0-9”表示的计数体系叫做“十进制”。

在十进制计数体系中,每一个数字的价值取决于它的位置,而每一个位置的价值相加的总和就是我们想要的数据。

例如十进制数10可以表示成:10=1×10^1+0×10^0,也就是数字1在十位,数字0在个位,当十位数字1乘以1^10(10的一次方),个位数字0乘以1^0(1的0次方),这样就表示出来数字10了。

2、十进制数10的二进制:十进制数10的二进制为1010,即1×2^3+0×2^2+1×2^1+0×2^0,其中1表示“开启”,0表示“关闭”。

二进制即是大家最常用的电脑数据表示形式,由二个数字(0和1)组成,并且总是以双倍的系数增长,每一位数字的范围都位于0到1之间,且只能是0或者1。

在计算机中,比特(bit)用来表示二进制数的每一位,当比特的数量增加时,它可以用来表示不同的数据,例如:十进制数10的二进制为1010。

3、十进制数10的八进制:十进制数10的八进制为12,即1×8^1+2×8^0,八进制是由3位0~7数字组成,它和十六进制一样都是一种通用的数据格式。

它也对应着电脑文件的目录以及技术程序的控制。

而且八进制比二进制更有用,比如一个字节能够用三位八进制数来表示它所携带的信息,而用二进制只需要用到8位信息就够了。

因此,二进制数10在八进制就表示为12,用三位八进制数就可以表示出来。

4、十进制数10的十六进制:十进制数10的十六进制为A,即1×16^1+0×16^0,它是把十进制中数据换算成十六进制,可以把原始数据分成小的段,每一段都针对当前的计算体系来计算,只需要把每一段的数据转换为十六进制就可以了。

例如十进制数10被分成1和0两段,在十六进制体系中1对应A,0对应0,因此十进制数10对应十六进制A。

例1用0到9这个个数字

例1用0到9这个个数字

典型例题一例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个). ∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:)(283914A A A -⋅个 ∴ 没有重复数字的四位偶数有22961792504)(28391439=+=-⋅+A A A A 个.解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有281515A A A ⋅⋅个干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在),百位,十位从余下的八个数字中任意选两个作排列,有281414A A A ⋅⋅个∴ 没有重复数字的四位偶数有2296281414281515=⋅⋅+⋅⋅A A A A A A 个.解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.没有重复数字的四位数有39410A A -个.其中四位奇数有)(283915A A A -个∴ 没有重复数字的四位偶数有28393939283915394105510)(A A A A A A A A A +--⨯=---283954A A +=2828536A A +=2841A =2296=个说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=⋅A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=⋅A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有144006625=⋅A A 种不同的排法. 解法2:(间接法)3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的7713A A ⋅种排法和女生排在末位的7713A A ⋅种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有6623A A ⋅种不同的排法,所以共有1440026623771388=+-A A A A A 种不同的排法.解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排活,其余5个位置又都有55A 种不同的排法,所以共有144005536=⋅A A 种不同的排法, (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有7715A A ⋅种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有661513A A A ⋅⋅种不同排法.因此共有360006615137715=⋅⋅+⋅A A A A A 种不同的排法.解法2:3个女生和5个男生排成一排有88A 种排法,从中扣去两端都是女生排法6623A A ⋅种,就能得到两端不都是女生的排法种数.因此共有36000662388=⋅-A A A 种不同的排法.说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.若以元素为主,需先满足特殊元素要求再处理其它的元素.间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快. 捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.典型例题三例3 排一有5个歌唱节目和4个舞蹈节目的演出节目单。

10个(含10)以内字母或字母数字的正则表达式

10个(含10)以内字母或字母数字的正则表达式

正则表达式是一种用来描述字符模式的工具,它可以帮助我们在文本中搜索、替换和匹配特定的内容。

在实际应用中,常常会遇到需要匹配特定字母或字母数字组合的情况。

本文将介绍10个以内字母或字母数字的正则表达式,帮助读者更好地理解和运用这一强大的工具。

1. 匹配单个小写字母:正则表达式:[a-z]解释:这个正则表达式可以匹配任意一个小写字母,包括a、b、c等。

2. 匹配单个大写字母:正则表达式:[A-Z]解释:这个正则表达式可以匹配任意一个大写字母,包括A、B、C等。

3. 匹配单个数字:正则表达式:[0-9]解释:这个正则表达式可以匹配任意一个数字,包括0、1、2等。

4. 匹配字母数字组合:正则表达式:[a-zA-Z0-9]解释:这个正则表达式可以匹配任意一个字母或数字,包括大小写字母和数字。

5. 匹配特定数量的字母或数字:正则表达式:[a-zA-Z0-9]{n}解释:这个正则表达式可以匹配包含n个字母或数字的字符。

6. 匹配至少一个字母或数字:正则表达式:[a-zA-Z0-9]+解释:这个正则表达式可以匹配至少一个字母或数字的字符,包括单个字母或数字、字母数字组合等。

7. 匹配不超过m个字母或数字:正则表达式:[a-zA-Z0-9]{,m}解释:这个正则表达式可以匹配不超过m个字母或数字的字符。

8. 匹配字母开头的字母数字组合:正则表达式:[a-zA-Z][a-zA-Z0-9]*解释:这个正则表达式可以匹配以字母开头的任意字母数字组合,包括单个字母、字母数字组合等。

9. 匹配以字母或数字结尾的字母数字组合:正则表达式:[a-zA-Z0-9]*[a-zA-Z0-9]解释:这个正则表达式可以匹配以字母或数字结尾的任意字母数字组合,包括单个字母、字母数字组合等。

10. 匹配不包含特定字符的字母或数字组合:正则表达式:[^特定字符]解释:这个正则表达式可以匹配不包含特定字符的任意字母或数字组合,可以根据实际需求替换"特定字符"。

用0到9这10个数字

用0到9这10个数字

小结: 小结: 1、排列的应用:直接法:元素分析,位置分析,间接法:去 排列的应用:直接法:元素分析,位置分析,间接法: 杂法 2、特殊位置,特殊元素优先安排 特殊位置, 3、看问题中的元素能否重复取,如果能重复,不能用排列公 看问题中的元素能否重复取,如果能重复, 式,只能用分步计数原理解决 4、正确区分分类和分步,分类时,每类中的任一种方法都能 正确区分分类和分步,分类时, 独立完成事件,而分步时, 独立完成事件,而分步时,每步中的任一种方法不能独立完成 事件而必须依次连续地完成各步才能将事件做完, 事件而必须依次连续地完成各步才能将事件做完,无论是分步 分类都不能重复不能遗漏

列(三)
例1、用0到9这10个数字 10个数字 (1)可以组成多少个没有重复数字的三位数? 可以组成多少个没有重复数字的三位数? (2)允许有重复的三位数? 允许有重复的三位数? (3)无重复数字的三位偶数? 无重复数字的三位偶数? (4)无重复数字的个位小于10位的数? 无重复数字的个位小于10位的数? 10位的数
解排列问题的基本方法: 解排列问题的基本方法: 1、元素分析法、位置分析法、去杂法 、元素分析法、位置分析法、 2、当对某一位置有特殊规定时,应优先考虑特殊位置,再考 、当对某一位置有特殊规定时,应优先考虑特殊位置, 虑一般位置,比如,首位数字不可为0,偶数的末尾是偶数等 虑一般位置,比如,首位数字不可为 , 3、看问题中的元素能否重复取,如果能重复,不能用排列数 、看问题中的元素能否重复取,如果能重复, 公式,只能用分步计数原理解决 公式,
注:紧抓问题特点,按照从小到大的顺序分为首位是1,首位是2, 紧抓问题特点,按照从小到大的顺序分为首位是1 首位是2 首位是3 首位是 首位是5 首位是3…首位是5共5类解决问题

【高中数学】排列 排列数课件 高二下学期数学人教A版(2019)选择性必修第三册

【高中数学】排列 排列数课件 高二下学期数学人教A版(2019)选择性必修第三册

解:根据排列数公式可得
(1) =7 x 6 x 5 = 210
(2) =7 x 6 x 5 x 4 = 840
!
(3) =!=7 x 6 x 5 = 210

(4) × =6 x 5 x 4 x 3 x 2 x 1 = 6! = 720
A66
A77 7!
x2 y2
(2)第一问不是排列问题,第二问是排列问题.若方程 2+ 2=1 表示焦点在
a b
x2 y2
x 轴上的椭圆,则必有 a>b,a,b 的大小关系一定;在双曲线 2- 2=1 中,不管
a b
x2 y2
a>b 还是 a<b,方程 2- 2=1 均表示焦点在 x 轴上的双曲线,且是不同的双曲线,
a b
有 种取法;
第二类:个位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在
十位和百位,有 种取法;
第三类:十位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在
个位和百位,有 种取法;
根据分类加法计数原理,所求三位数的个数为:
+ + = × × + × + × =
5 4 3 60 .
m
*
A

n
(
n

1)(
n

2)



(
n

m

1).
(
m
,
n

N
且m n )
排列数公式: n
排列数公式的特点:
1. 公式中是m个连续正整数的连乘积;
2. 连乘积中最大因数为n,后面依次减1,最小因数是(n-m+1).

二年级上册数学趣味试题「题库」

二年级上册数学趣味试题「题库」

二年级上册数学趣味试题「题库」二年级上册数学趣味试题「题库」二年级的数学是有趣的,同学们在平时多练题,考试才能取得高分,那么二年级的趣味试题你做了吗?下面跟店铺一起来看看吧!二年级趣味数学试题(一)一、我与数字(30分)1、在0、1、2、3、4、5、6、7、8、9这10个数字中,你最喜欢的数字是( )。

2、你今年( )岁,2008年,你就( )岁。

3、8的一半不是4,请你猜出两个数字,这两个数字是( )和( )。

二、生活中的数学(30分)1、一个星期你在学校上学( )天,在家( )天。

2、 5只小鸟和4只小白兔共有( )只脚。

3、小明、小亮和小刚3个小朋友进行乒乓球比赛,小明比赛了5场,小亮比赛了4场,小刚比赛了3场,这三名小朋友一共比赛了( )场比赛。

三、趣味数学(40分)2、先找出下面图形排列的规律,再填上适当的图形。

3、在括号里填上合适的数。

比一比,看谁的填法多。

( )÷6=5······( )3、下面算式中相同的汉字代表相同的数字,请你将算式中的“数”、“学”换成恰当的数字,那么,这个算式是( )和( )。

学×学=数学4、长方形有四个角,剪掉一个角,还剩( )个角,你能想出( )种情况。

二年级趣味数学试题(二)一、生活中的数学.(每空3分)1、你今年( )岁,2008年,你就( )岁。

2、一个星期你在学校上学( )天,在家( )天。

3、 5只小鸟和4只小白兔共有()只脚。

4.一根铁丝用去一半后,再用去剩下的一半,这时剩下6米,原来这根铁丝长( )米。

5、有12个小朋友一起玩“猫捉老鼠”的游戏,已经捉住了7人,还要捉( )人。

6 教室里的10盏日光灯都亮着,现在关掉2盏日光灯,教室里还剩( )盏日光灯。

7、○+△=12,△+△+○=15△=( )、○=( )。

8. 已知:○+□=15,○-□=1。

那么○=(),□=( )。

2012年高考总复习一轮《名师一号-数学》第10章检测题

2012年高考总复习一轮《名师一号-数学》第10章检测题

第十章排列、组合和二项式定理名师检测题时间:120分钟分值:150分第Ⅰ卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360 D.648解析:若个位数是0,从其余9个数中取出两个数排在前两位,有A92种排法;若个位数不是0,先从2、4、6、8中取一个放在个位,在其余的3个数和1、3、5、7、9中取出1个数排在首位,再从其余8个数(包括0)中取出一个数排在十位,有4×8×8=256(种)排法.所以满足条件的三位偶数共有A92+4×8×8=328(个),故选B.答案:B2.某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有4名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有() A.72种B.54种C.36种D.18种解析:依题意,就要求改修数学的4名同学实际到三个班的具体人数分类计数:第一类,其中一个班接收2名、另两个班各接收1名,分配方案共有C31·C42·A22=36(种);第二类,其中一个班不接收、另两个班各接收2名,分配方案共有C31·C42=18(种).因此,满足题意的不同的分配方案有36+18=54(种),选B.答案:B3.数列{a n}共有6项,其中三项是1,两项是2,一项是3,则满足上述条件的数列共有()A.24种B.60种C.72种D.120种解析:∵数列{a n}共有6项,可以找6个位置,先放3个1,相当于从6个位置中选出3个位置放1,由于3个1相同,所以没有顺序,共有C63种方法;类似地,剩下的3个位置2个放2,1个放3,因此一共有C63C32C11=60(种),故选B.答案:B4.为预防和控制甲型流感,某学校医务室欲将22支相同的温度计分发到高三年级10个班级中,要求分发到每个班级的温度计不少于2支,则不同的分发方式共有()C.90种D.100种解析:依题意,先把这22支相同的温度计给每班分配2支,则满足题意的分发方式的种数就取决于余下的2支温度计的分配方法种数,余下的2支温度计的分配方法有两类:第一类,将余下的2支温度计全部分给某一个班,有C101=10(种)方法;第二类,将余下的2支温度计全部分给某两个班,有C102=45(种)方法.因此,满足题意的分发方式共有10+45=55(种),选B.答案:B5.计划在4个候选场馆举办排球、篮球、足球3个项目的比赛,在同一个场馆比赛的项目不超过2项的安排方案共有()A.24种B.36种C.42种D.60种解析:依题意知,满足题意的方案可分为两类:第一类,这3个项目分别安排在某3个场馆,相应的方案数为A43=24;第二类,这3个项目分别安排在某2个场馆,相应的方案数为C42·C21·C32=36.因此,满足题意的方案共有24+36=60(种),选D.答案:D6.从8个不同的数中选出5个数构成函数f(x)(x=1,2,3,4,5)的值域,如果8个不同的数中的A、B两个数不能是x=5对应的函数值,那么不同的选法种数为() A.C82A63B.C71A74C.C61A74D.无法确定解析:依题意,分步确定当x取1、2、3、4、5时相应的函数值,第一步,从除A、B 外的六个数中任选一个作为x=5时相应的函数值,有C61种方法;第二步,再从其余的7个数中任选4个作为x取1、2、3、4时相应的函数值,有A74种方法.因此满足题意的不同的选法种数有C61A74,选C.答案:C7.某学校有教职工100人,其中教师80人,职员20人,现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师的不同选法的种数是() A.C802C208B.A808C202C.A808C202D.C808C202解析:依题意得这10人中恰好有8名教师的不同选法的种数是C808C202,选D.答案:D8.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为()C .39D .48解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C 31=3(个);当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时:有C 31C 41C 31=36(个);故共有:3+9+36=48(个),故选D.答案:D9.(2x +4)2010=a 0+a 1x +a 2x 2+…+a 2010x 2010,则a 0+a 2+a 4+…+a 2010被3除的余数是( )A .0B .1C .2D .不能确定解析:在已知等式中分别取x =1与x =-1得a 0+a 1+a 2+…+a 2010=62010,a 0-a 1+a 2-…+a 2010=22010,两式相加得2(a 0+a 2+…+a 2010)=62010+22010,即a 0+a 2+…+a 2010=12×(62010+22010)=12×62010+22009. 注意到12×62010能被3整除; 22009=2×(22)1004=2×(3+1)1004=2×(31004+C 10041·31003+…+C 10041003·3+1),被3除的余数是2,因此选C.答案:C10.如果f (m )=1+m C n 1+m 2C n 2+…+m n -1C n n -1+m n C n n ,那么log 2f (3)log 2f (1)等于( ) A .2B.12 C .1D .3 解析:∵f (m )=(1+m )n ,∴log 2f (3)log 2f (1)=log 24n log 22n =2n n =2,故选A. 答案:A11.(C 41x +C 42x 2+C 43x 3+C 44x 4)2的展开式的所有项的系数和为( )A .64B .224C .225D .256解析:在已知代数式中取x =1得其展开式的所有项的系数和等于(C 41+C 42+C 43+C 44)2=152=225,选C.答案:C12.设(5x-x)n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中x3的系数为()A.-150 B.150C.-500 D.500解析:依题意得,M=4n=(2n)2,N=2n,于是有(2n)2-2n=240,(2n+15)(2n-16)=0,2n =16=24,n=4,二项式(5x-x)n即(5x-x)4的展开式的通项T r+1=,令4-r2=3,得r=2,因此(5x-x)n的展开式中x3的系数等于C42·54-2·(-1)2=150,选B.答案:B第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上.)13.北京大学今年实施校长实名推荐制,某中学获得推荐4名学生的资格,校长要从7名优秀学生中推荐4名,7名学生中有2人有体育特长,另有2人有艺术特长,其余3人有其他特长,那么至少含有1名有体育特长和1名有艺术特长的学生的推荐方案有________种(用数字作答).解析:依题意,推荐方案分四类:①1名体育特长生,1名艺术特长生,有C21C21C32=12(种)方案;②2名体育特长生,1名艺术特长生,有C22C21C31=6(种)方案;③1名体育特长生,2名艺术特长生,有C21C22C31=6(种)方案;④2名体育特长生,2名艺术特长生,有C22C22=1(种)方案.于是,满足题意的推荐方案共有12+6+6+1=25(种)方案.答案:2514.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析:依题意,本题中的“好数”一定是由三个1与其他一个数或一个1与其他三个相同的数构成,故共有C31C31+C31=12(个).答案:1215.在(x+43y)20的展开式中,系数为有理数的项共有________项.解析:注意到二项式(x+43y)20的展开式的通项是T r+1=C20r·x20-r·(43y)r=C20r·3r4·x20-r·y r.当r=0,4,8,12,16,20时,相应的项的系数是有理数.因此(x+43y)20的展开式中,系数是有理数的项共有6项.答案:616.已知数列{a n }的通项公式为a n =2n -1+1,则a 1C n 0+a 2C n 1+…+a n +1C n n =________. 解析:∵a n =2n -1+1,∴a 1C n 0+a 2C n 1+…+a n +1C n n =C n 0(20+1)+C n 1(21+1)+…+C n n (2n +1)=(C n 020+C n 121+…+C n n 2n )+(C n 0+C n 1+…+C n n )=(2+1)n +2n =3n +2n .答案:2n +3n三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)7个人到7个地方去旅游,甲不去A 地,乙不去B 地,丙不去C 地,丁不去D 地,共有多少种旅游方案?解析:此题可用排除法,7个人分别去7个地方共有A 77种可能.(1)若甲、乙、丙、丁4人同时都去各自不能去的地方旅游,而其余的人可以去余下的地方旅游的不同选法有A 33=6(种).(2)若甲、乙、丙、丁中有3人同时去各自不能去的地方旅游,有C 43种,而4人中剩下1人旅游的地方是C 31种,都选完后,再考虑无条件3人的旅游方法是A 33种,所以共有C 43C 31A 33=72(种).(3)若甲、乙、丙、丁4人中有2人同时去各自不能去的地方旅游,有C 42种,余下的5个人分别去5个不同地方的方案有A 55种,但是其中又包括了有条件的四人中的两人(不妨设甲、乙两人)同时去各自不能去的地方共A 33种,和这两人中有一人去了自己不能去的地方共2A 31A 33种,所以共有C 42(A 55-A 33-2A 31A 33)=468(种).(4)若甲、乙、丙、丁4人中只有1人去了自己不能去的地方旅游,有C 41种方案,而余下的六个人的旅游方案仍与(3)想法一致,共有C 41[A 66-A 33-C 32(A 44-A 33)-C 31(A 55-A 32-2A 31·A 33)]=1704(种).所以满足以上情况的不同旅游方案,共有A 77-(6+72+468+1704)=2790(种).18.(本小题满分12分)设(5x 12-x 13)n 的展开式的各项系数之和为M ,二项式系数之和为N ,M -N =992.(1)判断该展开式中有无x 2项?若有,求出它的系数;若没有,说明理由;(2)求此展开式中有理项的项数.解析:令x =1得M =4n ,而N =2n ,由M -N =992,得4n -2n =992,即(2n -32)(2n +31)=0.故2n =32,n =5.(1) 由题意,5-r 2+r 3=2,r =3.故含x 2项存在,它的系数为-250. (2)由通项可知,必须5-r 2+r 3=15-r 6为整数.分别把r =0,1,2,3,4,5代入,只有r =3成立,故只有一项有理项.19.(本小题满分12分)把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列构成一个数列.(1)43251是这个数列的第几项?(2)求这个数列的第96项是多少?(3)求这个数列的各项和.解析:(1)先考虑大于43251的数有三类:以5开头的有A44个,以45开头的有A33个,以435开头的有A22个,则不大于43251的五位数有:A55-(A44+A33+A22)=88(个),即43251是此数列的第88项.(2)此数列共有120项,即96项以后还有120-96=24项,即比96项所表示的五位数大的五位数有24个,而以5开头的五位数恰好有A44=24个,所以小于以5开头的五位数中最大的一个就是该数列的第96项,即为45321.(3)因为1,2,3,4,5各在万位时都有A44个五位数,所以万位上数字的和为(1+2+3+4+5)×A44×10000;同理,它们在千位、百位、十位、个位上也都有A44个五位数,所以其和为(1+2+3+4+5)×A44×(1+10+100+1000),综上,这个数列的和为:(1+2+3+4+5)×A44×(1+10+100+1000+10000)=3999960.20.(本小题满分12分)(1)求证:k C n k=n C n-1k-1;(2)等比数列{a n}中,a n>0,化简:A=lg a1-C n1lg a2+C n2lg a3-…+(-1)n C n n lg a n+1.解析:(1)证明:∵左式=k·n!k!(n-k)!=n·(n-1)!(k-1)!(n-k)!=n·(n-1)!(k-1)![(n-1)-(k-1)]!=n C n-1k-1=右式,∴k C n k=n C n-1k-1.(2)由已知:a n=a1q n-1,∴A=lg a1-C n1(lg a1+lg q)+C n2(lg a1+2lg q)-C n3(lg a1+3lg q)+…+(-1)n C n n(lg a1+n lg q)=lg a1[1-C n1+C n2-…+(-1)n C n n]-lg q[C n1-2C n2+3C n3-…+(-1)n-1C n n·n]=lg a1·(1-1)n-lg q[n C n-10-n C n-11+n C n-12-…+(-1)n-1·n C n-1n-1]=0-n lg q[C n-10-C n-11+C n-12-…+(-1)n-1·C n-1n-1]=-n lg q(1-1)n-1=0.21.(本小题满分12分)已知⎝⎛⎭⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项系数的比是10∶1.(1)求展开式各项系数的和; (2)求展开式中含x 32的项; (3)求展开式中系数最大的项和系数最小的项.解析:(1)∵⎝⎛⎭⎫x -2x 2n 展开式中的通项为,由题意得24C n 422C n 2=101,∴n 2-5n -24=0, 解得n =8或n =-3(舍).令x =1,则⎝⎛⎭⎫x -2x 28的各项系数和为1. (2)展开式通项为,令8-5r 2=32,得r =1, ∴展开式中含x 32的项为(3)展开式的第r 项,第r +1项,第r +2项的系数绝对值分别为C 8r -1·2r -1,C 8r 2r ,C 8r +1·2r +1. 若第r +1项的系数绝对值最大,则有⎩⎪⎨⎪⎧C 8r -1·2r -1≤C 8r ·2r C 8r ·2r ≥C 8r +1·2r +1 解得5≤r ≤6.即系数绝对值最大的项为第六项或第七项.∴T 6=-1792x x 9,T 7=1792·1x11. 故展开式中系数最大的项为1792·1x 11,系数最小的项为-1792x x9.22.(本小题满分12分)设f (x )是定义在R 上的函数,且g (x )=C n 0·f ⎝⎛⎭⎫0n ·x 0(1-x )n +C n 1·f ⎝⎛⎭⎫1n x ·(1-x )n -1+C n 2·f ⎝⎛⎭⎫2n ·x 2·(1-x )n -2+…+C n n ·f ⎝⎛⎭⎫n n ·x n (1-x )0. (1)若f (x )=1,求g (x );(2)若f (x )=x ,求g (x ).解析:(1)f (x )=1,则g (x )=C n 0(1-x )n +C n 1·x ·(1-x )n -1+…+C n n x n ·(1-x )0=(1-x +x )n =1, ∵式子有意义,则x ≠0且x ≠1,∴g (x )=1(x ≠0且x ≠1).(2)f (x )=x ,则f ⎝⎛⎭⎫k n =k n ,∴g (x )=C n 0·0+C n 1·1n x ·(1-x )n -1+C n 2·2n ·x 2·(1-x )n -2+…+C n k ·k n·x k ·(1-x )n -k +…+C n n ·1·x n (1-x )0,又 ∵C n k ·k n =k n ·n !(n -k )!·k !=(n -1)!(n -k )!·(k -1)!=C n -1k -1, ∴g (x )=C n -10·x ·(1-x )n -1+C n -11x 2·(1-x )n -2+C n -12x 3·(1-x )n -3+…+C n -1k -1·x k ·(1-x )n-k +…+C n -1n -2·x n -1·(1-x )+x n =x ·[C n -10·(1-x )n -1+C n -11·x ·(1-x )n -2+…+C n -1n -2x n -2·(1-x )+C n -1n -1·x n -1] =x (1-x +x )n -1=x , 故g (x )=x ,且x ≠0,x ≠1.。

高斯小学奥数五年级上册含答案_数字谜综合一

高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tan Kah Kee College Probability and Statistics – Chapter 1 Random Events and Probability 1 习题1-2(1) P24,B 组,1
1在0-9这10个数字中,不放回连抽4个数字,试求
1)能组成四位奇数的概率(4位数,相当于千,佰,十,个共4个位置的不可重复的排数问题,实质是排列)
.解:11258841058874109879
C C A P A ⨯⨯⨯===⨯⨯⨯ 说明:410A :样本总数——相当于从10个数中任取4个排成一列
15C :从1,3,5,7,9共5个数中任意取一个,排在个位(或15A ) 18
C :除0,各位所排数字外,从剩下 8个数字任取1个,排在千位(千位是首位,不能排0,或18A ) 28A :当各位和千位数字排定后,剩下的8个数字中,任选2个排在百位和十位这2个位置
先排各位,再排千位,最后分别排百位,十位的每个位置的可能数
)
2)能组成四位偶数的概率
(4
位数,相当于千,佰,十,个共4个位置的不可重复的排数问题,实质是排列)
.
解:
1311
219
4884109874887411098790
C A C C A P A +⨯⨯+⨯⨯⨯===⨯⨯⨯ 说明:410A :样本总数——相当于从10个数中任取4个排成一列 四位偶数分各位是0,不是0两种情形
第1种情形:四位偶数各位是0, 1318C A :选0排在个位,剩下的9个数字任取3个排在千位,百位和十位这3个位置
第2种情形:四位偶数各位不是0, 14
C :从2,4,6,8共4个数中任意取一个,排在个位(或14A ) 18
C :除0,各位所排数字外,从剩下 8个数字任取1个,排在千位(千位是首位,不能排0,或18A ) 28A :当各位和千位数字排定后,剩下的8个数字中,任选2个排在百位和十位这2个位置。

相关文档
最新文档