色坐标转换色温
色度学、色坐标色温容差显色指数

色坐标,色温,容差,显色指数是什么关系?该如何控制?2700K X:0.463 Y:0.420 4000K X:0.380 Y:0.3805000K X:0.346 Y:0.359 6400K X:0.313 Y:0.337色坐标反映的是被测灯管颜色在色品图中的位置,他是利用数学方法来表示颜色的基本参数。
色温就是说灯管在某一温度T下所呈现出的颜色与黑体在某一温度T0下的颜色相同时,则把黑体此时的温度T0定义为灯管的色温。
容差是表征的是光源色品坐标偏离标准坐标点的差异,是光源颜色一致性性能的体现.显色指数实际上就是显示物体真实颜色的能力,这里的真实颜色指的是在太阳光下照射所反映出的颜色。
显色指数与色温是有关系的,一般而言,色温越低显色指数越高,白炽灯就是100,节能灯通常在75-90之间。
显色指数反映了照明体复现颜色的能力,根据人们的生活习惯,认为日光下看到的颜色为物体的真实颜色.色坐标和容差\色温是有关系的,坐标确定后容差和色温也就确定.但他们和现色指数无关.控制它们主要是要稳定制灯工艺,特别是粉层厚薄和真空度,充氩量.然后用荧光粉进行调配,不要随意更换荧光粉厂家.色坐标与色容差是有关系的,色坐标是根据色标图而算出来的,色差就是实际测出的色坐标与标准的差。
色差大从一方面来说也就是你的灯管的稳定性怎么样,以我的经验,你可以去检查一下氩气是否达到工艺要求(氩气适当多一些可增强灯管的一致性),由于T5是自动圆排机,所以也要检查一下系统的真空度是否良好(真空度差也会使颜色产生较大的差异,最后去测一下,圆排机烘箱的上下端温度差是否在40以内。
白光LED光通量随色坐标增大而增加研究了在蓝光芯片加黄色荧光粉制备白光LED方法中,色坐标位置对光通量的影响。
在同样蓝光功率条件下,我们对标准白光点(色坐标x=0.33±0.05,y=0.33±0.05)附近不同色坐标位置的光通量进行了计算。
假设(0.325,0.332)位置流明效率为100 lm/W,计算得出,最大光通量对应的色坐标位置为(0.35,0.38),光通量为112 lm;最小光通量对应的色坐标位置为(0.29,0.28),光通量为93.5 lm。
色温 (CCT) 和色度坐标 (x, y 值)

一、关于led灯具SSL规范的概述今年 5 月份,LED 灯具的能源之星的规范,美洲已公开草案;估计今年的 8 至9 月份,会上升为最终版本,并于9 个月后,即08 年6 月份,授理ENERGY STAR申请;本规范是由美国能源部DOE 负责组织, Lighting Research Center 技术负责;二、重要流行词1、SSL (Solid-State Lighting 固态照明)vs. Semi-conductor Lighting (半导体照明)vs. LED Lighting (LED 照明)SSL:(在Internet 网络上,SSL 在90 年代即有, 是Internet 传输加密协议缩略词SSL =Secure Socket Layer; )如今,在国外,有关研究 LED 的政府机构,公司和机构,很流行用 SSL 代替LED;然而,目前,SSL 还没有给出正式定义,在美国的LRC 网站上,“What is SSL?”,只是解释为: SSL 是区别于传统的灯丝白帜发光和气体放电发光原理,由半导体的电子发光,包括LED,OLED,Laser Diode (LD),light-emitting polymers.2、半导体照明 (Semi-conductor Lighting),在中国政府机构,沿用过去的称谓“半导体照明”较多;但是,LED 产品,技术和标准,美国领先其他国家许多;中国也会随美国技术潮流使用SSL 称谓,尤其在DOE 公开本规范后;三、我们的目的1、本规范是第一部LED 照明的性能参数标准,指明了LED 照明的基本要求;2、LED 灯具的ENERGY STAR认证,要在08 年6 月前讨论;但是,我们可以提前借鉴此规范化的参数标准,应用到研发品质行销工作中,是有帮助的;3、本规范是如何基于荧光灯,建立 SSL-LED 灯具的光效目标和特性参数要求:四、关于色温 (CCT) 和色度坐标 (x, y 值)CIE 1931 x,y 色度图,表示了以八个标称 CCT 为中心的四边形.1、LED 分Bining 的依据即是:不同的LED 坐标x,y 值,落在四边形方框中,即可认为人眼分辩不出颜色差异,视为同一颜色;2、此图的意义为 LED 颜色争议提供了可执行的标准依据,可指导生产和贸易。
光谱仪器中色度学参数计算算法汇总

光谱仪器中色度学参数计算算法汇总色度学参数是用来描述物体颜色特征的量化指标,常用的参数包括色纯度、色坐标、色温等。
在光谱仪器中,计算这些色度学参数的算法是非常重要的,它们可以用于分析和比较不同物体的颜色。
其中的色度学参数计算算法主要包括以下几个方面:1. 色度坐标计算算法:色度坐标是用来描述色彩信息的一组数值,常见的有CIE xyz色度坐标、CIE LAB色度坐标等。
计算色度坐标的算法需要通过光谱数据来计算不同波长的强度,然后根据一定的数学公式转换为色度坐标数值。
2. 色温计算算法:色温指的是物体的色彩特性,常见的有CCT (Correlated Color Temperature)色温。
计算色温的算法需要先通过光谱数据计算光谱能量分布曲线,然后根据数学模型计算出其相关系数,最终根据相关系数得到色温数值。
3.色纯度计算算法:色纯度是指颜色的纯净程度,常用的参数有饱和度、色彩鲜艳度等。
计算色纯度的算法需要通过光谱数据计算出颜色的亮度和色彩信息,然后根据一定的公式计算出色纯度的数值。
4. 显色指数计算算法:显色指数是用来描述光源的发光特性与标准光源的比较,能够反映光源对物体颜色的还原能力。
常见的显色指数有CRI(Color Rendering Index)等。
计算显色指数的算法主要包括计算光谱分布曲线与标准光源的相关系数,然后根据相关系数计算出显色指数的数值。
这些算法主要是基于光谱数据的分析和计算,因此在光谱仪器中,通过采集物体的光谱数据,然后使用上述算法进行处理,即可得到相应的色度学参数。
需要注意的是,不同的光谱仪器可能会有不同的计算算法和参数模型,因此在使用时需要根据实际情况选择适合的算法和参数模型。
总结起来,光谱仪器中色度学参数计算算法涉及到色度坐标、色温、色纯度和显色指数等方面的计算。
这些算法是基于光谱数据进行分析和计算的,是描述物体颜色特征的重要指标。
通过采集物体的光谱数据,并使用相应的算法,可以计算出这些色度学参数,进而用于分析和比较不同物体的颜色。
LED色温图谱详解

NOTE:Δ色温=实测色温-计算色温(根据相对色温线)结论:1.根据实际测试的色标可看出:不在色温线上面的色坐标点,可以通过相对色温线的方式求出该点色温.2.向下延长各个相对色温线,基本交汇在一点(X:0.33 Y:0.20).依此点坐标: 2500K相对色温线与X轴的夹角约为30度.25000K相对色温线与2500K相对色温线之间的夹角约为90度.250000K相对色温线与2000K相对色温线之间的夹角约为100度.具体见上图所示.3.根据上图白光色坐标分布图与相对色温线的关系,现在许多分光参数表是根据色温方式划分各个BIN等级(色标分布图是参照早期日亚白光色标分布图制作).这样分当然具有一定的好处。
4.工厂色标分布图所对应的的色温范围为:4000K~16000K.5.采用白光计算机(T620)测试出的色温值与根据相对色温线所计算出的色温值有一定的差别,机台测试出的色温值只能做一个参考值.根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表Δ色温值.相关色温8000-4000K的白光LED的发射光谱和色品质特性摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。
随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。
由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。
白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。
人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。
从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。
LED封装行业分光分色标准中的色坐标、黑体轨迹、等温线等色度学概念的计算方法

LED封装行业分光分色标准中的色坐标、黑体轨迹、等温线等色度学概念的计算方法摘要在当今全球能源紧缺的环境下,节约能源已成为全人类共同的意识。
同时,国家也在大力倡导节能减排,在刚刚成功举办的2010年上海世博会和2008年的北京奥运会都不约而同的以绿色节能为主题,这就给中国LED照明产业的发展带来了巨大的历史机遇。
发光二极管(LED)作为新一代绿色光源,与传统光源(白炽灯、荧光灯和高强度放电灯等)相比,具有节能、环保、响应时间短,体积小,寿命长、抗震性好等多项优势,因而受到人们的青睐,成为各国半导体照明领域研究的热点。
本文主要是围绕LED的发光原理和LED封装行业的发展状态,重点探讨在LED封装行业分光分色标准制定过程中涉及的色坐标、等色温线、黑体轨迹曲线等色度学概念的计算方法,为LED封装行业的工程师提供非常实用的理论指导。
关键词:LED、等色温线、黑体轨迹。
第一章前言发光二极管(Light Emitting Diode,即LED)于20世纪60年代问世,在20世纪80年代以前,只有红光、橙光、黄光和绿光等几种单色光,主要作为指示灯使用,这一时期属于LED“指示应用阶段”。
20世纪90年代初,LED的亮度有了较大提高,LED的发展和应用进入了“信号和显示阶段”。
1994年,日本科学家中村修二在GaN基片上研制出了第一只蓝光LED,在1997年诞生了InGaN蓝光芯片+YAG荧光粉的白光LED,使LED的发展和应用进入了“全彩显示和普通照明阶段”。
LED作为一种固态冷光源,是一种典型的节能、环保型绿色照明光源,必将成为继白炽灯、荧光灯和高强度放电灯(HID)之后的第四代新光源。
LED芯片通常用III-V族化合物半导体材料(如GaAs、GaP、GaN)通过外延生产工艺制造而成,其发光核心是PN结,具有一般PN结的特性,即正向导通,反向截止、击穿特性等。
LED发光原理是LED在正向电压下,电子由N区注入P区,空穴由P区注入N区,电子和空穴在PN结复合,其中部分复合能转换成辐射发光,另一部分转换成热辐射,后者不产生可见光。
色温色坐标互算公式

色温色坐标互算公式色温和色坐标是描述光源颜色的两种不同的参数。
色温是指光源的观察者感知表面的颜色的相对温度,而色坐标则是一种将光源的颜色表示为坐标的方法。
在实际应用中,常常需要将色温和色坐标进行互相转换。
本文将介绍色温和色坐标之间的互相转换公式。
首先,我们来讨论色温和色坐标之间的转换公式。
将色温转换为色坐标的公式如下:色坐标=(x,y)= ColorTemperatureToXY(色温)其中,ColorTemperatureToXY(是色温转换为色坐标的函数。
将色坐标转换为色温的公式如下:色温= ColorXYToTemperature(色坐标)其中,ColorXYToTemperature(是色坐标转换为色温的函数。
下面是这两个函数的详细解释。
1.色温转换为色坐标的函数:要将色温转换为色坐标,可以使用Planckian Locus模型。
该模型基于黑体辐射的性质,通过计算色温对应的x和y坐标。
来自CIE的公式可以用于计算Planckian Locus曲线上的点:u'=(x-x0)/(y-y0)v'=(y-y0)/(x-x0)其中,u'和v'是与x和y相对应的坐标。
x0和y0是D65照明的标准白点的坐标。
使用u'和v'坐标,可以计算xy坐标:x=9u'/(u'+15v'+3)y=4v'/(u'+15v'+3)因此,色温转换为色坐标的公式可以表示为:ColorTemperatureToXY(色温) = (x, y)2.色坐标转换为色温的函数:要将色坐标转换为色温,可以使用逆向计算的方法。
首先,计算u'和v'坐标:u'=4x/(-2x+12y+3)v'=9y/(-2x+12y+3)然后,使用公式计算色温:因此,色坐标转换为色温的公式可以表示为:ColorXYToTemperature(色坐标) = 色温通过上述公式,就可以实现色温和色坐标之间的互相转换。
色坐标转换色温
首先,你要有一“黑体轨迹等温线的色品坐标”表。
此表“色度学”书中有。
然后,运用内插法和三角形垂足法计算色温在“黑体轨迹等温线的色品坐标”表中,每一行(每一色温)有“黑体轨迹上”x、y,设为x1、y1,“黑体轨迹外” x、y,设为x2、y2。
用仪器测得色度坐标x、y设为x0、y0。
从最低色温起,取其x1、y1,x2、y2;代入D1 =(x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D1 = 0则(相关)色温得到。
如果D1不等于0,取上一行x1、y1,x2、y2;代入D2 =(x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D2 = 0则(相关)色温得到。
如果D2不等于0,判断D1*D2是否小于0。
如果D1*D2大于0,使D1 = D2,再取上一行x1、y1,x2、y2;代入D2 = (x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D2 = 0则(相关)色温得到。
如果D2不等于0,判断D1*D2是否小于0。
如果D1*D2小于0,则找到“测得坐标在这两条等温线之间”。
D1、D2取绝对值,相对应色温为T1、T2。
那么CCT ≈ T1 + D1 * (T1+T2) / (D1+D2)如果一直找不到D1*D2小于0,那是测得坐标在∞(无穷大)等温线左下方,那片区域是没有(相关)色温的。
按理说,离开黑体轨迹一定距离,就没有(相关)色温概念了,可是现在给搞混淆了。
或者,你在附图中,把你坐标点上去,看左右两条等温线的色温,估算出。
特征点对应的色坐标值和色温光源点X坐标Y坐标色温(K)A 0.4476 0.4074 2854B 0.3484 0.3516 4800C 0.3101 0.3162 6800D 0.313 0.329 6500E 0.3333 0.3333 5500。
lcd色温和色坐标
lcd色温和色坐标
LCD液晶显示屏的色温和色坐标决定了它们的颜色表现。
色温是指光源的颜色的主观感受,以绝对温度(K)为单位。
一般情况下,高色温的光有蓝色色调,低色温的光有黄色色调。
LCD屏幕一般使用的是6500K的色温,这是接近自然光的一种色温。
色坐标是指色彩在三维坐标系中的位置,即一个色彩在红、绿、蓝三原色中的比例关系。
在lcd屏幕中,色坐标的标准为sRGB色域,这是一种由Microsoft和HP开发的标准色域,其红、绿、蓝三个分量的比例为R:G:B= 2.4:1:1.8。
当我们需要进行色彩校准时,可以通过调节LCD屏幕的色温和色坐标来达到准确的色彩表现。
比如,当我们需要显示出准确的白色时,可以通过调节色温和色坐标来达到真实的白色表现。
同时,在图像处理中,我们也需要了解LCD屏幕的色温和色坐标,以便更好地进行图像调整和处理。
总之,LCD屏幕的色温和色坐标决定了它们的颜色表现,了解和掌握这些知识可以帮助我们更好地进行色彩校准和图像处理。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先,你要有一“黑体轨迹等温线的色品坐标”表。
此表“色度学”书中有。
然后,运用内插法和三角形垂足法计算色温
在“黑体轨迹等温线的色品坐标”表中,每一行(每一色温)有“黑体轨迹上”x、y,设为x1、y1,“黑体轨迹外” x、y,设为x2、y2。
用仪器测得色度坐标x、y设为x0、y0。
从最低色温起,取其x1、y1,x2、y2;代入D1 =
(x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D1 = 0则(相关)色温得到。
如果D1不等于0,取上一行x1、y1,x2、y2;代入D2 =
(x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D2 = 0则(相关)色温得到。
如果D2不等于0,判断D1*D2是否小于0。
如果D1*D2大于0,使D1 = D2,再取上一行x1、y1,x2、y2;代入D2 = (x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D2 = 0则(相关)色温得到。
如果D2不等于0,判断D1*D2是否小于0。
如果D1*D2小于0,则找到“测得坐标在这两条等温线之间”。
D1、D2取绝对值,相对应色温为T1、T2。
那么CCT ≈ T1 + D1 * (T1+T2) / (D1+D2)
如果一直找不到D1*D2小于0,那是测得坐标在∞(无穷大)等温线左下方,那片区域是没有(相关)色温的。
按理说,离开黑体轨迹一定距离,就没有(相关)色温概念了,可是现在给搞混淆了。
或者,你在附图中,把你坐标点上去,看左右两条等温线的色温,估算出。
特征点对应的色坐标值和色温
光源点X坐标Y坐标色温(K)
A 0.4476 0.4074 2854
B 0.3484 0.3516 4800
C 0.3101 0.3162 6800
D 0.313 0.329 6500
E 0.3333 0.3333 5500。