两种常见的MOSFET驱动电路设计

合集下载

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全MOSFET是一种常用的功率开关器件,能够在低电压和高电流下工作。

为了实现最佳性能和保护MOSFET,经典的MOSFET驱动电路设计起着至关重要的作用。

下面将介绍几种常见的MOSFET管经典驱动电路设计。

1.单极性驱动电路单极性驱动电路是一种简单而可靠的MOSFET驱动电路。

这种电路使用一个单极性电源,通过电阻将电流限制在安全范围内,然后将电流输入至MOSFET的栅极。

这种电路简单易于实现,但存在驱动能力有限的问题。

在高功率应用中,单极性驱动电路可能无法提供足够的电流和电压来驱动MOSFET。

2.双极性驱动电路双极性驱动电路通过使用正、负两种极性的信号来驱动MOSFET,提供更可靠和高效的驱动。

正极性信号应用于MOSFET的栅极,而负极性信号应用于MOSFET的源极。

这种驱动电路能够提供更大的电流和电压来控制MOSFET,提高了MOSFET的响应速度和驱动能力。

3.共射极驱动电路共射极驱动电路是一种常用的MOSFET驱动电路,通过极高的驱动能力和电流增益来改善MOSFET的驱动性能。

共射极驱动电路将输入信号应用于普通信号变压器的一个绕组上,输出从第二个绕组采集。

这种电路能够提供很高的电流和电压,能够有效地驱动大功率MOSFET。

4.双极性驱动共射极电路双极性驱动共射极电路结合了双极性驱动和共射极驱动的特点,提供了高效和可靠的MOSFET驱动。

这种电路使用正、负两种极性的输入信号,通过普通信号变压器来转换信号,并且从第二个绕组采集信号。

双极性驱动共射极电路能够提供高电流和电压,驱动能力强,响应速度快,适用于高功率应用。

5.驱动IC和芯片驱动电路除了上述的基本电路设计,还有一些专用的MOSFET驱动IC和芯片驱动电路可供选择。

这些驱动器通常具有保护功能,可以保护MOSFET免受过电流、过温和短路等问题的损坏。

驱动IC和芯片驱动电路通常需要外部电源供电,并且能够根据需要提供不同的驱动能力和控制功能。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

—、MOS管驱动电踣综述在便用MOS管设计开关电源或者马达驱动电路的时候’大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

1、MOS管种类和结构MOSFET管是圧T的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和増强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种増强型MOSg,比较常用的是NMOS。

原因是导通电阻小‘ 且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS o下面的介绍中,也多以NMOS 为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOSW中存在,在集成电路芯片内部通常是没有的。

2、MOS营导通特性导谨的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或T0V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是便用NM0S o3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

选择导通电阻小的MOS管会减小导通损耗。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET驱动电路是一种常用的电路设计,用于控制和驱动MOSFET器件的开关动作。

在本文中,将介绍两种常见的MOSFET驱动电路设计。

第一种常见的MOSFET驱动电路设计是单极性供电电路。

单极性供电电路使用只有正电压供应的电源,可以通过三种不同的方法来实现MOSFET的驱动。

第一种方法是电阻分压驱动,即使用电阻分压将输入信号转换为MOSFET所需的电压范围。

这种方法简单易行,但是由于使用了电阻分压,会导致功耗增加和响应时间变长。

第二种方法是金属-氧化物-半导体场效应管(MOSFET)驱动器,它使用开关电路和功率MOSFET来产生所需的电位差。

这种方法可以提供更好的性能和响应时间,但同时复杂度也较高。

第三种方法是放大器驱动器,它使用了放大器电路来驱动MOSFET,可以提供更高的驱动能力和更好的响应时间,但是也增加了电路的复杂度和成本。

第二种常见的MOSFET驱动电路设计是双极性供电电路。

双极性供电电路使用正、负电压供应的电源,可以更好地控制和驱动MOSFET器件。

双极性供电电路通常使用驱动电路芯片来实现,这些芯片集成了多种功能,如过压保护、过流保护和短路保护等。

双极性供电电路可以提供更好的性能和稳定性,但是也增加了设计和成本方面的挑战。

除了上述的两种常见MOSFET驱动电路设计,还有其他一些特殊的驱动电路,如全桥驱动电路和半桥驱动电路等。

全桥驱动电路可以用于控制两个MOSFET,实现双向电流的控制。

半桥驱动电路则可以用于控制一个MOSFET,实现单向电流的控制。

总结起来,MOSFET驱动电路设计有多种方法和技术。

选择适合的驱动电路设计取决于具体的应用需求和性能要求。

无论选择哪种设计,都需要考虑功耗、响应时间、效率和安全性等因素,并合理设计电路来满足这些要求。

MOSFET的驱动保护电路设计

MOSFET的驱动保护电路设计

摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。

分析了二极管器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。

该电路具有结构简单,实用性强,响应速度快等特点。

在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。

功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。

但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。

如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET 功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。

文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。

该设计使系统功率驱动部分的可靠性大大的提高。

1 功率MOSFET保护电路设计功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。

功率MOSFET保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt 而引起误导通。

为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。

常见的MOSFET驱动方式驱动电路的参数计算

常见的MOSFET驱动方式驱动电路的参数计算

常见的MOSFET驱动方式,驱动电路的参数计算在简单的了解MOS管的基本原理以及相关参数后,如何在实际的电路中运用是我们努力的方向。

比如在实际的MOS驱动电路设计中,如何去根据需求搭建电路,计算参数,根据特性完善电路,根据实际需求留余量等等,在这些约束条件下搭建一个相对完善的电路。

参考了一些资料后,就我目前的需求和自身的理解力分享相关的一些笔记和理解。

1.常见的MOSFET驱动方式直接驱动:最简单的驱动方式,比如用单片机输出PWM信号来驱动较小的MOS。

使用这种驱动方式,应注意几点;一是实际PWM和MOS的走线距离必定导致寄生电感引起震荡噪声,二是芯片的驱动峰值电流,因为不同芯片对外驱动能力不一样。

三是MOS的寄生电容Cgs、Cgd如果比较大,导通就需要大的能量,没有足够的峰值电流,导通的速度就会比较慢。

图腾柱/推拉式驱动电路由两个三极管构成,上管是NPN型,下管是PNP型三极管,两对管共射联接处为输出端,结构类似于乙类推挽功率放大器。

利用这种拓扑放大驱动信号,增强电流能力。

(驱动IC内部也是集成了类似的结构)隔离式驱动电路为了满足安全隔离也会用变压器驱动。

如图其中R1抑制振荡,C1隔直流通交流同时防止磁芯饱和。

隔离式的驱动电路不太常见,就不做过多的了解。

小结:当然除以上驱动电路之外,还有很多其它形式的驱动电路。

对于各种各样的驱动电路并没有一种是最好的,只能结合具体应用,选择最合适的拓扑。

2.驱动电路的参数计算我的实际工作中碰到最多的驱动电路是以下这种能够控制开关速度的驱动电路,我就以它举例做进一步的分析。

如图,在驱动电阻Rg2上并联一个二极管。

其中D1常用快恢复二极管,使关断时间减小同时减小关断损耗,Rg1可以限制关断电流,R1为mos管栅源极的下拉电阻,给mos管栅极积累的电荷提供泄放回路。

(根据MOSFET栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以R1也起降低输入阻抗作用,一般取值在10k~几十k)Lp为驱动走线的杂散寄生电感,包括驱动IC引脚、MOS引脚、PCB走线的感抗,精确的数值很难确定,通常取几十nH。

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计

两种常见的MOSFET驱动电路设计MOSFET是一种常见的功率开关器件,用于控制电流。

在驱动MOSFET 时,需要设计适当的电路来提供必要的电压和电流,确保MOSFET能够正确开关。

下面介绍两种常见的MOSFET驱动电路设计。

1.单极性MOSFET驱动电路:单极性MOSFET驱动电路使用一个单一的电源来驱动MOSFET。

这种电路的设计较为简单,适用于低功率或低频率应用。

一个常见的单极性MOSFET驱动电路是基于功率MOSFET的开关电源设计。

该设计使用一个辅助开关器件和一个变压器来提供所需的电压和电流。

首先,辅助开关器件通过周期性的开关操作驱动变压器的初级侧。

变压器的次级侧连接到MOSFET的门极,通过变压器来提供所需的驱动电压和电流。

辅助开关器件可以是一个负责的晶体管或MOSFET,通过控制辅助开关器件的开关操作,可以控制MOSFET的导通和截止。

另一个常见的单极性MOSFET驱动电路是基于MOSFET驱动芯片的设计。

这种电路使用专门的驱动芯片来提供所需的电压和电流。

驱动芯片通常具有输入和输出引脚,以及内置的保护电路和反馈回路。

驱动芯片通过控制输入信号,实现对MOSFET的驱动。

常见的驱动芯片有IR2110、TC4420等,它们能够提供合适的功率和速度,使MOSFET能够快速开关。

2.双极性MOSFET驱动电路:双极性MOSFET驱动电路使用两个对称的电源来驱动MOSFET。

这种电路设计适用于高功率或高频率应用。

一个常见的双极性MOSFET驱动电路是基于H桥拓扑结构的设计。

H 桥电路由四个开关器件组成,包括两个N型MOSFET和两个P型MOSFET。

这些开关器件交替开关,通过控制开关操作和输入信号,实现对MOSFET 的驱动。

H桥电路可以提供正负两种极性的电源,使MOSFET能够正常开关。

常见的H桥电路有L298N、L293D等,它们能够提供较高的功率和速度,适用于高功率驱动应用。

另一个常见的双极性MOSFET驱动电路是基于推挽结构的设计。

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计

MOSFET管驱动电路的设计MOSFET(金属氧化物半导体场效应晶体管)是一种常用的功率开关器件,广泛应用于电子设备中。

为了实现对MOSFET管的正常工作和控制,需要设计一个合适的驱动电路。

本文将详细介绍MOSFET管驱动电路的设计步骤。

设计MOSFET管驱动电路的第一步是确定所需的功率和电压级别。

根据具体应用场景,可以确定所需的驱动电流和电压。

这些参数将决定所选用的驱动电路的设计。

其次,确定并选择所需的驱动器。

驱动器是将信号转换为所需的电流和电压级别的关键组件。

常见的驱动器有普通开关电路和能够提供逻辑电平的驱动器。

在选择驱动器时,需要考虑MOSFET管的输入容量和开关速度等因素。

接下来,确定驱动电路的输入信号。

输入信号通常来自于控制电路或微处理器。

确定输入信号的电平和频率将有助于后续驱动电路的设计与调试。

在设计驱动电路时,需要特别关注MOSFET的输入电容和输入电阻。

输入电容决定了驱动电路的开关速度,输入电阻则影响驱动电路的响应能力。

根据MOSFET管的参数手册,选择合适的驱动电路设计来匹配MOSFET 的输入容量和输入电阻。

在电路设计中,还需要考虑到保护电路的设计。

保护电路主要是为了防止MOSFET管在过电流、过温度或其他异常情况下受损。

常见的保护电路包括过电流保护、过温度保护和电压保护等。

在完成驱动电路的设计后,需要进行电路模拟和验证。

使用电路仿真软件,例如PSpice或LTSpice等,可以对驱动电路进行仿真,并通过调整电路参数和元件选型来优化电路的性能。

最后,进行实际的电路搭建和测试。

根据设计图纸,选择合适的元件进行电路的布局和焊接。

在测试过程中,需要注意输入信号的稳定性和驱动电路输出的准确性。

总结起来,设计MOSFET管驱动电路的步骤包括确定功率和电压级别、选择驱动器、确定输入信号、考虑MOSFET参数、设计保护电路、电路仿真和验证,以及实际电路搭建和测试。

通过这些步骤,设计出稳定可靠的MOSFET管驱动电路,可以满足各种应用场景的需求。

MOSFET驱动电路设计

MOSFET驱动电路设计

MOSFET驱动电路设计MOSFET驱动电路设计是用于驱动MOSFET的电路,其主要目的是提供足够的电流和电压来控制MOSFET的开关动作。

在设计MOSFET驱动电路时,需要考虑许多因素,例如驱动电流和电压的要求、响应时间、功耗以及电路的可靠性等。

首先,我们需要确定驱动电路所需的最大电流。

这可以通过MOSFET的输入电容和开关时间来确定。

一般来说,驱动电流应大于输入电容电流的峰值,以确保快速开关。

其次,我们需要确定驱动电压的要求。

MOSFET需要满足开启电压和关闭电压的要求,同时还要考虑电压过驱动带来的损伤。

因此,驱动电压应高于MOSFET的开启电压和闭合电压,以确保可靠的开关操作。

在设计电路时,我们可以选择使用恒流源或功率放大器来提供高电流驱动。

恒流源是一种提供恒定电流的电路,可以保持恒定的电流输出并提供稳定的驱动。

功率放大器则会将输入信号放大到足够的驱动电压。

此外,为了提高驱动电路的响应时间,可以采用互补驱动电路。

互补驱动电路使用两个MOSFET来控制MOSFET的开关,以提高电路的开关速度和效率。

驱动电路中还需要考虑保护电路的设计,以防止过电流、过温度和过压等问题。

过电流保护可以通过设计过电流保护装置来实现,例如使用电流传感器和比较器等。

过温度保护可以通过温度传感器来实现,一旦温度超过设定值,就会触发保护机制。

过压保护可以通过电压传感器和比较器来实现。

最后,为确保电路的可靠性和稳定性,驱动电路还应考虑到功耗的问题。

在设计中,应尽量降低功率损耗,以提高系统的效率和稳定性。

综上所述,MOSFET驱动电路设计需要考虑诸多因素,包括驱动电流和电压的要求、响应时间、功耗和保护电路等。

在设计过程中,需要充分考虑这些因素,并选择合适的电路结构和元器件来实现高效、稳定和可靠的驱动电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两种常见的MOSFET驱动电路设计
由分立器件组成的驱动电路((),驱动电路工作原理如下:
A.当HS为高电平时,Q7、Q4导通,Q6关闭,电容C4上的电压(约14V)经过Q4、D3、R6加到Q5的栅极,使Q5导通。

在导通期间,Q5的源极电压(Phase)接近电源电压Vdc,所以电容两端的电压随着Phase电压一起浮动,电容C4亦称为自举电容。

Q5靠C4两端的电压来维持导通。

B. 当HS为低电平时,Q7、Q4关闭,Q6导通,为Q5的栅极提供放电回路,从而使Q5很快关闭。

当Q5关闭后,由于下管的开通或负载的作用,使得Phase电压下降接近0V,从而使C4经过+15V→D2→C4→GND回路充电,为下一次导通做好准备。

C. 当LS为低电平时,Q8、Q11导通,Q10关闭,驱动电路通过R11为下管Q9的栅极充电,使Q9导通。

D. 当LS为高电平时,Q8、Q11关闭,Q10导通,为Q9的栅极提供放电回路,使Q9关断。

E. 当HS和LS同时为高电平时,上管开通下管关闭。

当HS和LS同时为低电平时,上管关闭下管开通。

在实际应用中,为了避免上下管同时开通,HS和LS的逻辑要靠MCU或逻辑电路来保证。

半桥驱半桥驱动芯片组成的驱动电路
半桥驱动芯片组成的驱动电路,工作原理如下:
A.当HS和LS同时为高电平时,HO有驱动电压输出,使Q1开通。

当HS和LS同时为低电平时,LO有驱动电压输出,使Q2开通。

B.电容C2与分立器件驱动电路里的C4作用相同,同样为自举电容。

C.电容C1为去藕电容,为抑制功率MOSFETMOSFET开关时对驱动电路浮动电源部分的干扰,一般应加上此电容。

相关文档
最新文档