高等数学答案(第七版上册)同济大学版 习题5-5反常积分的审敛法答案
D5_5反常积分审敛法

的敛散性 .
解:
根据极限审敛法 1 , 该积分收敛 .
例3. 判别反常积分
的敛散性 .
解:
根据极限审敛法 1 , 该积分发散 .
知坐驮惩昨惟触畴邢哈碎枚枪滚肤依铰卡滚宅瓮山若帧虱零遭背晴客疾华D5_5反常积分审敛法D5_5反常积分审敛法
定理5.
证:
则
而
远锭愁扼恿景赁琴础惊斧中惨羽肪盛芭乱辩挂铭撅关拿禾攀颗侦哼罢湛陶D5_5反常积分审敛法D5_5反常积分审敛法
说明: 已知
得下列比较审敛法.
极限存在 ,
音蟹赶庄役娃傅坠陌筒懂颁凸苛渴酸驴傻泄咨畜荷最翟痈毋虱匿萤您齿紊D5_5反常积分审敛法D5_5反常积分审敛法
定理3. (比较审敛法 1)
歼辟帐譬又馒拜缎揣攫兼声永贰向狄掸渺贤箩川访五月嘱舅嗽险蔼腾拐迹D5_5反常积分审敛法D5_5反常积分审敛法
例1. 判别反常积分
二、无界函数反常积分的审敛法
由定义
例如
因此无穷限反常积分的审敛法完全可平移到无界函数
的反常积分中来 .
掠蛛蛋壤钳淫裹若拘臼松耶滋垄锌绑拳浅惜炊机赚携氨敏桐脆郑隧熊腾藕D5_5反常积分审敛法D5_5反常积分审敛法
定理6. (比较审敛法 2)
瑕点 ,
有
有
利用
有类似定理 3 与定理 4 的如下审敛法.
解:
的敛散性 .
由比较审敛法 1 可知原积分收敛 .
思考题: 讨论反常积分
的敛散性 .
提示: 当 x≥1 时, 利用
可知原积分发散 .
咋肤情赂坊考又婉叼庐它崩续间韦警搭明烁肢涎拍蔚锌巨迅汾嘻别厕凌卯D5_5反常积分审敛法D5_5反常积分审敛法
定理4. (极限审敛法1)
高等数学同济大学数学系 第七版上册第五章课后答案

高等数学(同济大学数学系-第七版)上册第五章课后答案高等数学(同济大学数学系第七版)上册第五章:定积分课后习题答案39/ 1.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 2.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 3.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 4.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 5.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 6.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 7.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 8.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 9.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 10.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 11.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 12.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 13.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 14.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 15.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 16.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 17.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 18.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 19.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 20.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 21.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 22.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 23.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 24.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 25.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 26.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 27.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 28.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 29.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 30.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 31.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 32.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 33.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 34.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 35.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 36.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 37.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 38.高等数学(同济大学数学系-第七版)上册第五章课后答案39/ 39.。
高等数学同济第七版上册课后习题答案

习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。
同济大学《高等数学》第七版上、下册答案(详解),DOC

解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.
高数第七版习题答案

高数第七版习题答案高等数学第七版的习题答案涵盖了微积分、线性代数、常微分方程等多个数学领域,下面是一些常见习题的解答示例,以供参考:# 第一章:极限与连续性习题1:求函数 \( f(x) = x^2 - 1 \) 在 \( x = 1 \) 处的左极限和右极限。
解答:左极限 \( \lim_{x \to 1^-} (x^2 - 1) = 0 \)右极限 \( \lim_{x \to 1^+} (x^2 - 1) = 0 \)由于左极限和右极限相等,函数 \( f(x) \) 在 \( x = 1 \) 处的极限存在,且等于0。
# 第二章:导数与微分习题3:求函数 \( g(x) = \sin(x) + x^3 \) 的导数。
解答:\( g'(x) = \frac{d}{dx}(\sin(x) + x^3) = \cos(x) + 3x^2 \)# 第三章:积分学习题5:计算定积分 \( \int_{0}^{1} 2x \, dx \)。
解答:\( \int_{0}^{1} 2x \, dx = \left[ x^2 \right]_{0}^{1} = 1^2 -0^2 = 1 \)# 第四章:级数习题7:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。
解答:该级数是交错级数,可以使用比较判别法。
由于 \( \frac{1}{n^2} \) 随着 \( n \) 的增大而减小,且 \( \frac{1}{n^2} \leq\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n} \),而\( \sum_{n=2}^{\infty} \left( \frac{1}{n-1} - \frac{1}{n}\right) \) 是收敛的,因此原级数也收敛。
# 第五章:多元函数微分学习题9:求函数 \( h(x, y) = xy^2 + \ln(x) \) 的偏导数。
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】

5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
同济大学高等数学第七版上下册答案详解

练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点
↗
极大值
↘
拐点
↘
x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)
↗
拐点
↗
1
极大值
↘
拐点
↘
x
( 1)
-1
高等数学(同济第七版)课后答案解析

当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.
放
/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;