第二章析取范式与合取范式

合集下载

命题逻辑2

命题逻辑2

q∧r (┐p∨p)∧q∧r (┐p∧q∧r)∨(p∧q∧r) m3∨m7 而简单合取式p∧┐q∧┐r已是极小项m4 于是 (p→q) r m1∨m3∨m4∨m7 极小项与公式的成真赋值、成假赋值的关系:
若公式A中含n个命题变项,A的主析取范式含s(0≤s≤2n) 个极小项,则A有s个成真赋值,它们是所含极小项角 标的二进制表示,其余2n-s个赋值都是成假赋值。
三、主析取范式和主合取范式
定义
设有命题变元P1,P2,…,Pn
n
形如 Pi * , i 1
n
的命题公式称为是由命题变元P 1,P2,…,Pn所产生
的极小项。而形如 Pi * 的命题公式称为是由命题变元 i 1
P1,P2,…,Pn所产生的极大项 。其中Pi*为Pi或为
Pi(i=1,2,…n).
极小项,故F不是重言式和矛盾式,只是可满足式。
例 某科研所要从3名科研骨干A,B,C中挑 选1~2名出国进修。由于工作原因,选派时 要满足以下条件: (1)若A去,则C同去。 (2)若B去,则C不能去。 (3)若C不去,则A或B可以去。 问应如何选派他们去?
解 设 p:派A去 q:派B去 r:派C去 由已知条件可得公式 (p→r)∧(q→┐r)∧(┐r→(p∨q) 经过演算可得 (p→r)∧(q→┐r)∧(┐r→(p∨q)) m1∨m2∨m5 由于 m1 = ┐p∧┐q∧r m2 =┐p∧q∧┐r m5 = p∧┐q∧r 可知,选派方案有3种: (a)C去,而A,B都不去。 (b)B去,而A,C都不去。 (c)A,C去,而B不去。
因此利用真值表也可以求公式的主析取范式
练 求公式 F1 = p(p(qp))的主析取范式

F1p∨(p∧(q∨p)) p∨(p∧q)∨(p∧p)

主要内容公式类型等值演算与置换规则析取范式与合取范式,主析取.

主要内容公式类型等值演算与置换规则析取范式与合取范式,主析取.
p, q, pq, pqr, … (3) 简单合取式——有限个文字构成的合取式
p, q, pq, pqr, … (4) 析取范式——由有限个简单合取式组成的析取式
p, pq, pq, (pq)(pqr)(qr) (5) 合取范式——由有限个简单析取式组成的合取式
例. 对任何公式A,A∨┐A是重言式,A∧┐A是矛盾式.
这两个事实揭示人们通常的思维所遵循的逻辑排中律和矛 盾律. 对任何原子命题 p,p与┐p都是可满足式. 可以用真值表 验证重言式.
3
例. 用真值表证明(p∨q)∧┐p→q为重言式.
证 建立待证公式的真值表,由表的最后一列可以看出,原式 为重言式.
11
基本等值式
双重否定律 AA 幂等律 AAA, AAA 交换律 ABBA, ABBA 结合律 (AB)CA(BC), (AB)CA(BC) 分配律 A(BC)(AB)(AC),
A(BC)(AB)(AC) 德摩根律 (AB)AB
(p ∧ q ∧ s) ∨(p ∧ r ∧ s) ((p ∧ s) ∧ q) ∨((p ∧ s) ∧ r) (p ∧ s) ∧(q ∨ r) 所以其开关设计图可简化
21
作业 1、习题一:19(1)(3)(5)(7),
20,21,23,25. 2、习题二:3,4(1)(2).
22
由于同一个命题公式可以有不同的表达形式,而不同的表达 式可以显示很不同的特征。但同一个命题公式的不同表达形 式对我们研究命题演算带来了一定的困难。对众多的命题公 式,可依它们之间的等值关系进行分类,使相互等值的公式 为一类. 现在的问题是,是否可以在各类公式中分别选出一个 公式作为各类的“代表”,而且使它们具有统一的规范形式 呢?回答是肯定的.
AB(AB)(AB)

简单析取式和简单合取式

简单析取式和简单合取式
0
0 由∏小到大用∏表示 1 1
1
1 0 0
展开成极大项 1 1 1 0 1 1 1 0 1
0
0
0
1
1 0 1
∏表示合取
1
1
1
1
0
1
1
1
1
1
1
1
一个简单合取式是矛盾
p∧┐p∧q是矛盾式
式,当且仅当它同时含一 个命题变项及其否定。
上页
范 式 ---- 析取范式和合取范式
析取范式: 仅由有限个简单合取式构成的析取式 A=(p∧┐q∧r)∨(┐p∧q)∨(q∧┐q)
析取范式的对偶
合取范式: 仅由有限个简单析取式构成的合取式 A*=(p∨┐q∨r)∧(┐p∨q)Байду номын сангаас(q∨┐q)
极大项 在n个变元的简单析 取式中,若每个变元与其否 定不同时存在,而二者之一 必出现且仅出现一次,这种 析取式就叫做极大项 ┐p∨q∨┐r
0 0 0 0 1 1
1
1
1
1
0
1
M6
M7
范 式 ---- 求主析取范式
求p∧q ∨r的主合取范式 解 (p∧q)∨r 求出合取范式
(P∨r)∧(q∨r) (P∨(q∧┐q)∨r)∧((p∧┐p)∨q∨r) (P∨q∨r)∧(P∨┐q∨r)∧(p∨q∨r)∧(┐p∨q∨r) 000 ∧010 ∧ 000 ∧ 011 (p∨r)∧(q∨r) p q r M 0 ∧ M2 ∧ M3 0 0 0 0 0 0 ∏(0,2,3) 0 0 1 1 1 1
p∨(q∧┐r)
(交换律和吸收律)
上页
范 式 ---- 主范式
主析取范式概念

2.2 析取范式与合取范式ppt课件

2.2 析取范式与合取范式ppt课件
3
如,p, ┐q 等为一个文字构成简单析取式, p∨┐p,┐p∨q 等为2个文字构成的简单析取式, ┐p∨┐q∨r, p∨┐q∨r 等为3个文字构成的简单析取
式.
注意
① 一个文字既是简单析取式,又是简单合取式. ② 为方便起见,有时用 A1, A2 ,L As 表示 s 个简单
析取式或 s 个简单合取式.
(p→q) r ((p∧┐q)∨r)∧(┐p∨q∨┐r) (p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)
∨(r∧┐p)∨(r∧q)∨(r∧┐r)
(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)
15
在以上演算中,从第二步到第三步是利用矛盾律 和同一律。另外,第二步和第三步结果都是析取范式, 这正说明命题公式的析取范式是不唯一的。同样,合 取范式也是不唯一的。
37
2.重言式与矛盾式的主合取范式 ① 矛盾式无成真赋值,因而矛盾式的主合取范
式含2n 个极大项. (n为公式中命题变项个数) ② 重言式无成假赋值,因而主合取范式不含任
设 Ai (i 1,2,L , s) 为简单的析取式,则 A A1 A2 L As 为合取范式.
9
2 、范式的性质 定理2.2
(1)一个析取范式是矛盾式当且仅当它的每个简单 合取式都是矛盾式.
(2)一个合取范式是重言式当且仅当它的每个简单 析取式都是重言式.
10
定理2.3 (范式存在定理)任一命题公式都存在 着与之等值的析取范式与合取范式。
例2.8 求公式 (p→q) ↔ r主析取范式和主合取范式.
解:(1)求主析取范式. 在例2.7中已给出的公式的析取范式,即
(p→q)r (p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)
在此析取范式中,简单合取式┐p∧r,q∧r都 不是极小项。下面分别求出它们派生的极小项。

析取范式与合取范式

析取范式与合取范式

1析取范式与合取范式这是命题公式的两种特殊的简明形式。

一个重要的结论是,任何命题公式都可以等价地转化为这两种形式。

我们将学习这种转化方法及其应用。

1. 析取范式定义1.1 命题变元及其否定统称为文字(literal )。

由有限个文字组成的合取式称为简单合取式。

由有限个简单合取式组成的析取式称为析取范式(disjunction normal form ),简称DNF 。

例1.2 求下列公式的析取范式。

(1) ()(2) () ()p q pp q p q →∧⌝∨∧⌝∧方法小结:(1) 将蕴含联结词→与等价联结词↔都转化为析取与合取联结词。

(2) 用德摩根律将所有否定词转移到括号内,并用双重否定律消除双重否定词。

(3) 用分配律将析取联结词移到括号之外。

(4) 最后化简,即消除简单合取式中重复出现的变元(用幂等律、矛盾律、零律)练习1.3定理1.4 任何命题公式都有等值的析取范式。

2. 合取范式定义2.1由有限个文字组成的析取式称为简单析取式,也称为子句(clause )。

由有限个简单析取式组成的合取式称为合取范式(conjunction normal form ),简称CNF 。

例2.2 求下列公式的合取范式。

(1) ()(2) () ()p q pp q p q ⌝→∨∧∨⌝∨方法小结:(1)将蕴含联结词→与等价联结词↔都转化为析取与合取联结词。

(2)用德摩根律将所有否定词转移到括号内,并用双重否定律消除双重否定词。

(3)用分配律将合取联结词移到括号之外。

(4)最后化简,即消除简单析取式中重复出现的变元(用幂等律、排中律、同一律)练习2.3定理2.4 任何命题公式都有等值的合取范式。

3.极小项为了进一步规范析取范式与合取范式,我们引入极小项与极大项这一对概念。

符号的次序:在符号表中,符号是有先后次序的。

在一个命题逻辑语言中,所有的命题变元来自于一个符号表,称为命题变元符号表。

我们约定:命题公式中所使用的英文字母在命题变元符号表中的次序与其在英文字母表中的次序相同。

析取范式与合取范式

析取范式与合取范式

析取范式与合取范式析取范式与合取范式合同协议书合同基本信息合同名称:析取范式与合取范式合同协议书合同编号:____________________________签署日期:____________________________合同生效日期:____________________________合同标的:析取范式与合取范式应用及其相关服务合同方信息合同方甲(服务提供方):名称:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________合同方乙(服务接受方):姓名:____________________________地址:____________________________联系电话:____________________________电子邮箱:____________________________服务内容服务项目1:析取范式的理论讲解与应用服务项目2:合取范式的理论讲解与应用服务项目3:相关案例分析与实际应用服务项目4:提供相关资料及文献支持服务标准服务标准1:服务内容应涵盖析取范式与合取范式的基本概念、计算方法及应用实例。

服务标准2:提供的材料应为最新的研究成果及学术资料,确保准确性与前瞻性。

服务标准3:服务应包括理论讲解、问题解答及案例分析,确保服务效果。

服务时间与地点服务开始日期:____________________________服务结束日期:____________________________服务地点:____________________________服务时间安排:____________________________费用及支付方式服务费用总额:____________________________费用明细:明细1:____________________________明细2:____________________________支付方式:____________________________支付时间安排:____________________________第一次支付:____________________________第二次支付:____________________________双方责任合同方甲(服务提供方)负责按合同约定提供服务,确保服务质量,并在规定时间内完成服务内容。

利用等值演算求公式的主析取范式和主合取范式

利用等值演算求公式的主析取范式和主合取范式

等值演算是一种逻辑代数的方法,可用于简化布尔代数的表达式。

在逻辑电路设计和计算机科学领域,利用等值演算可以帮助我们求解复杂的布尔函数的主析取范式和主合取范式。

在布尔代数中,一个布尔函数可以表示为一系列输入变量和输出变量的逻辑关系式。

通过布尔代数的运算规则,我们可以对这些逻辑关系式进行等值变换,将其简化为更加简洁的形式。

其中,最重要的简化形式包括主析取范式和主合取范式。

主析取范式是指一个布尔函数的各项按照与或关系相连的形式,其中每一项都是不可简化的极小项。

主析取范式的求解可以帮助我们理解布尔函数的逻辑结构,并为电路的设计提供参考。

主合取范式则是指一个布尔函数的各项按照或与关系相连的形式,其中每一项都是不可简化的极大项。

主合取范式的求解同样可以帮助我们理解布尔函数的逻辑结构,并为电路的设计提供参考。

接下来,我们将通过等值演算的方法,来求解一个布尔函数的主析取范式和主合取范式。

1. 我们需要将布尔函数转换为真值表的形式。

真值表可以清晰地展现出布尔函数在各个输入变量组合下的输出取值情况。

通过真值表的分析,我们可以对布尔函数进行等值变换和化简。

2. 我们利用等值演算的定理和法则,对布尔函数进行等值变换。

其中,包括重要的等值演算定理,如恒等律、吸收律、对偶律等。

通过运用这些定理和法则,我们可以将布尔函数逐步化简为主析取范式和主合取范式的形式。

3. 我们将化简后的布尔函数表示为主析取范式和主合取范式的形式。

主析取范式和主合取范式的求解过程中,需要格外注意每一步等值变换的正确性和合理性,以确保最终得到的主析取范式和主合取范式是布尔函数的最简形式。

通过以上等值演算的步骤和方法,我们可以成功地求解出一个复杂布尔函数的主析取范式和主合取范式。

这些简化后的形式将极大地方便我们对布尔函数的理解和分析,为逻辑电路的设计和优化提供重要的参考依据。

等值演算作为一种重要的逻辑代数方法,在计算机科学和信息技术领域也有着广泛的应用和意义。

析取范式与合取范式

析取范式与合取范式
极小项有下列的性质: ⑴ 每个极小项只有一个成真赋值,且各极小项的成真赋值互
不相同。极小项和它的成真赋值构成了一一对应的关系。 可用成真赋值为极小项进行编码,并把编码作为m的下标来 表示该极小项,叫做该极小项的名称。 两个命题变元的极小项、成真赋值和名称如表1-7.2所示。 三个命题变元的极小项,成真赋值和名称如表1-7.3所示。 从表1-7.2和表1-7.3中可以看出,极小项与其成真赋值的 对应关系为:变元对应1,而变元的否定对应0。
从表1-7.5和表1-7.6中可以看出,极大项与成假赋值的对应 关系为:变元对应0,而变元的否定对应1。
极大项的性质
极大项 p∨q p∨¬q ¬p∨q ¬p∨¬q
极大项 p∨q∨r p∨q∨¬r p∨¬q∨r p∨¬q∨¬r ¬p∨q∨r p∨q∨¬r ¬p∨¬q∨r ¬p∨¬q∨¬r
表1-7.5
主析取和主合取范式的关系
在前面例中,求出(p→q)→r的主析取范式为: m7∨m5∨m4∨m3∨m1⇔∑1,3,4,5,7
求出该公式的主合取范式为: M0∧M2∧M6⇔∏0,2,6
¾ 比较这两个结果,得出以下的结论:同一公式的主析取 范式中m的下标和主合取范式中M的下标是互补的。因 此,知道了主析(合)取范式就可以写出主合(析)取范 式。
i=0
主析取范式
定义1-7.7 对于给定的命题公式,如果有一个它的 等价公式,仅由极小项的析取组成,称该公式 为原公式的主析取范式。
¾ 任何命题公式都存在着与之等价的主析取范 式。
主析取范式
一个命题公式的主析取范式可以由以下两种方法求得: ⑴ 等价演算法:即用基本等价公式推出。
用等价演算法求主析取范式的步骤如下: ① 化归为析取范式。 ② 除去析取范式中所有永假的基本积。 ③ 在基本积中,将重复出现的合取项和相同变元合并。 ④ 在基本积中补入没有出现的命题变元,即添加
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11. 主析取范式的用途
➢ 求公式的成真与成假赋值 ➢ 判断公式的类型 ➢ 判断两个命题公式是否等值 ➢ 应用主析取范式分析和解决实际问题
A m1∨m2∨…∨ms 例1: 求 (p→q)→ (q∨p) 的成真赋值
(p→q)→ (q p) (p q) (q p) (p q) (q p) (p q) (p q) (pq) m0 m2 m3 即成真赋值为:0 0,1 0,1 1
p ∧ q ∧ r; p ∧ ┐q ∧ r; ┐ p ∧ ┐q ∧ ┐ r
思考: (1) n个命题变项共可产生多少个不同的极小项? 2n (2)每个极小项有多少个成真赋值? 一个
规定:成真赋值所对应的二进制数转换为十进制数i,就将所对应 极小项记作mi
7. 极小项与极大项的定义
➢极大项:在含有n个命题变项的简单析取式中,若每个命题变项 和它的否定式不同时出现,而二者之一必出现且仅出现一次,且 第i个命题变项或它的否定式出现在从左算起的第i位上(若命题 变项无角标,就按字典顺序排列),称这样的简单析取式为极大 项。 例:p ∨ r ∨ q; p ∨ ┐ p ∨ r; p ∨ ┐ q ∨ p;
方法1:真值表法
p q p →q 00 1 01 1 10 0 11 1
p→q m0 m1 m4 ( p q) ( p q) ( p q) M2 p q
方法2:公式法
p→q p q [ p (q q)] [q (p p)] ( p q) ( p q) ( p q) m0 m1 m4
历史遗留问题: (1)我只给村里所有那些不给自己理发的人理发 (2)只要别人有困难,他就帮忙,除非困难解决. (3) a:别人有困难, b: 他帮忙
(4) a b
作业 P38 5题(1 、3) 注意总结规律
6题(2)
作业问题: • 整体较好,都交了. • 个别书写不认真,应付私事。 • 注意“” 的书写 P14 14题
第二章析取范式与合 取范式
2. 定理2.1
➢ 一个简单析取式是重言式当且仅当它同时含某个命题变项及它 的否定式。 如:p∨┐p,p∨┐p∨r都是重言式; ┐p∨q,┐p∨┐q∨r都不是重言 式。 ➢ 一个简单合取式是矛盾式当且仅当它同时含有某个命题变项及 它的否定式。 如:p∧ ┐p,p∧ ┐p∧ r都是矛盾式; p∧ ┐ q,┐p∧ q∧ ┐ r都不是矛盾 式。
(┐(┐p∨q)∨r)∧(┐r∨┐p∨q) (消去→)
((p∧┐q)∨r)∧(┐p∨q∨┐r) (否定号内移)
(p∧┐q∧┐p)∨(p∧┐q∧q)∨(p∧┐q∧┐r)
∨(r∧┐p)∨(r∧q)∨(r∧┐r)
(∨对∧分配律)

(p∧┐q∧┐r)∨(┐p∧r)∨(q∧r)
7. 极小项与极大项的定义
➢极小项:在含有n个命题变项的简单合取式中,若每个命题变项 和它的否定式不同时出现,而二者之一必出现且仅出现一次,且 第i个命题变项或它的否定式出现在从左算起的第i位上(若命题 变项无角标,就按字典顺序排列),称这样的简单合取式为极小 项。 例:p ∧ r ∧ q; p ∧ ┐ p ∧ r; p ∧ ┐ q ∧ p;
p ∨ q ∨ r; p ∨ ┐q ∨ r; ┐ p ∨ ┐q ∨ ┐ r
思考: (1) n个命题变项共可产生多少个不同的极大项? 2n (2)每个极大项有多少个成假赋值? 一个
规定:成假赋值所对应的二进制数转换为十进制数i,就将所对应 极大项记作Mi
p, q, r 形成的极小项与极大项 极小项 解释 记法 极大项
的析取范式与合取范式。
• 研究范式的目的是将给定公式化成与之等值的析取范式或合 取范式,进而将公式化成与之等值的主析取范式或主合取范式。
思考:怎样将公式转化为范式?
➢例2.7 求下面公式的析取范式与合取范式: (p→q) r
先求合取范式
(p→q) r
(┐p∨q) r
(消去→)
((┐p∨q)→r)∧(r→(┐p∨q)) (消去 )
例如A=(p∨q∨r)∧(┐p∨┐q)∧r
• 思考:┐p∧q∧r 与p∨┐q∨r属于什么范式?
4. 定理2.2
➢ 一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛 盾式。 ➢ 一个合取范式是重言式当且仅当它的每个简单析取式都是重 言式。
5. 定理2.3 (范式存在定理)任一命题公式都存在着与之等值
结论: 公式的所有成假赋值对应主合取范式的所有极大项.
例2: 求A=(p→q) r的主析取范式
(p→q) r (p∧┐q∧┐r)∨(┐p∧r)∨(q∧r) (p∧┐q∧┐r) ∨ (┐p∧┐q∧r)∨(┐p∧q∧r) ∨(┐p∧q∧r)∨(p∧q∧r) (p∧┐q∧┐r) ∨ (┐p∧┐q∧r)∨(┐p∧q∧r) ∨(p∧q∧r) m4 ∨ m1 ∨ m3 ∨ m7 求A=(p→q) r的主合取范式
3. 范式的定义
➢ 由有限个简单合取式构成的析取式称为析取范式。 ➢ 由有限个简单析取式构成的合取式称为合取范式。 ➢ 析取范式与合取范式统称为范式。 • 设 Ai(i=1,2,…,s)为简单合取式,则析取范式的形式:
A=A1∨A2∨…∨As 例如A=(p∧┐q)∨(┐q∧┐r)∨p
• 设 Ai(i=1,2,…,s)为简单析取式,则合取范式的形式: A=A1∧A2∧…∧As
例1: 求A=(rp)(q(pr))的主析取范式 解: (rp)(q(pr))
(rp)(qp)(qr) (pr)(qp)(qr) [(pr)(qq)][(qp)(rr)][(qr)(pp)] (pqr)(pqr)(pqr)(pqr) m1 m3m6m7
A A ∧ (P ∨ ┐P) (A ∧ P) ∨ ( A ∧ ┐P )
(10)除非天下大雨,否则他不乘车上班。 p:天下大雨 q:他乘车上班
q→p
(14) 2和4是素数,这是不对的。 (15) p: 2是素数 q: 4是素数
(16) (p q)
P38 4题(4) (p q) (pq) (p q) (p q)
(p q) (pq) [(p q) p] [(p q) q] (p p) (q p) (p q) (q q) (q p) (p q) (p q) (p q)
┐┐A A ┐(A∧B) ┐A∨┐B ┐(A∨B) ┐A∧┐B ③ 利用分配率,转化为析取(合取)范式
A∧(B∨C) A∨(B∧C)
(A∧B)∨(A∧C) (A∨B)∧(A∨C)
➢例2.7 求下面公式的析取范式与合取范式:
(p→q) r
求析取范式
(p→q) r
(┐p∨q) r
(消去→)
((┐p∨q)→r)∧(r→(┐p∨q)) (消去 )
p q p p→q q qp (p→q)→ (qp)
0 01 0
11
1
0 11 1
00
0
1 00 1
11
1
1 10 1
01
1
A m1∨m2∨…∨ms (1)A为重言式当且仅当其主析取范式包含2n个极小项
(2) A为矛盾式当且仅当其主析取范式包不含极小项
(3) A为可满足式当且仅当其主析取范式包至少含一个极小项
(┐(┐p∨q)∨r)∧(┐r∨┐p∨q) (消去→)
((p∧┐q)∨r)∧(┐p∨q∨┐r) (否定号内移)
(p∨r)∧(┐q∨r)∧(┐p∨q∨┐r) (∨对∧分配律)
6. 将公式转化为范式的步骤
① 消除联结词,
A→B ┐A∨B A B (A B) ∧(B A) ② 缩小┐的作用范围
(┐A∨B)∧(A∨┐B
pqr 000 m0
pqr
pqr 001 m1 p q r
pqr 010 m2 p q r
pqr 011 m3 p q r
pqr 100 m4 p q r
pqr 101 m5 p q r
pqr 110 m6 p q r
pqr 111 m7 p q r
解释 000 001 010 011 100 101 110 111
pq r
000 001 010 011 100 101 110 111
结论: 公式的所有成真赋值对应主析取范式的所有极小项.
(rp)(q(pr))的主合取范式 (rp)(qp)(qr) (p r)(qp)(qr) [(pr) q] [(pr) p] (qr) [(p q) (q r) (p p) (p r) ](qr) (p q q) (q r q) (p r q)
(p→q) r (p∨r)∧(┐q∨r)∧(┐p∨q∨┐r)
(p∨q ∨ r)∧ (p∨ ┐ q ∨ r) ∧(┐ p ∨ ┐q∨r)∧(┐p∨q∨┐r) M0 M2 M6 M5
如何求一个公式的主析取范式? (1)利用等值转化法 (2)利用真值表 (3)通过主合取范式求逆
例3: 求命题公式p→q的主析取范式和主合取范式。
真值表法:
( p →q) (q r) m3 m7
pq 00 00 01 01 10 10 11 11
r p p →q 01 0 11 0 01 1 11 1 00 1 10 1 00 1 10 1
q r ( p →q) (q r) 00 00 00 11 00 00 00 11
练习: 求 ( p →q) (q r) 的主析取范式
➢ 如何求主析取范式(主合取范式)? • 首先求等价的析取范式(合取范式) • 然后对非极小项(或者非极大项)进行扩展。
A A ∨(P∧┐P) (A ∨ P)∧( A ∨ ┐P )
A A ∧ (P ∨ ┐P) (A ∧ P) ∨ ( A ∧ ┐P )
• 最后,求出某公式的主析取范式(主合取范式)后,将极小 项(极大项)都用名称写出,并且按极小项(极大项)名称的 角标由小到大顺序排列。
记法 M0 M1 M2 M3 M4 M5 M6 M7
相关文档
最新文档