电控液压助力转向系统简介

合集下载

电控助力转向系统(EPS)

电控助力转向系统(EPS)
优点: 低速行驶时可以增 大助力,便于驾驶员 灵活操纵。 高速行驶时又能减 小助力,增加驾驶员 的操纵力。车辆稳定。 方向盘角度传感器
一 、助力转向类型
3、电控助力转向
优点: 1)结构简单紧凑; 2)电能驱动、能耗低, 系统损耗低(不会像液压 助力一样有助力液损耗); 3)噪音小,不会有液压 泵或电子泵运转的噪音, 舒适性高; 4)助力力度能够随车辆 行驶速度可变; 5)可与其它电子系统联 用。
转向柱 方向盘
齿条 电控助力转向系统模块
பைடு நூலகம்
转向连杆
转向球头
用户功能
主动回位 回到中点
主动阻尼主动回位
无此零件的情况
有此零件的情况
主动阻尼 保持在方向盘中点
无此零件的情况
有此零件的情况
二 、电控助力转向结构
1、组成
传感器 ECU
执行器
二 、电控助力转向结构
2、ECU
作用: 根据车辆状态计 算和提交最佳的助力 比 在系统某一零部 件出现故障的情况下, 为电子助力转向提供 紧急备用模式
电控助力转向
2017.5
EPS
电控助力转向系统
助力转向系统类型
电控助力转向结构
电控助力转向原理
一 、助力转向类型
1、液压助力转向
优点: 有助力。
缺点: 方向盘转向助力 不能随车辆速度改变, 只跟方向盘的转角变 化有关。 动力来自发动机, 如果发动机不运转, 没有助力。
一 、助力转向类型
2、电控液压助力转向
二 、电控助力转向结构
靠近方向盘侧/转向柱 磁体
4、传感器:扭矩传感器
扭力杆
霍尔效应传感器
磁铁圈
磁通量的方向

电控电动助力转向系统实训

电控电动助力转向系统实训

电控电动助力转向系统实训电控电动助力转向系统是一种应用于汽车转向系统的技术,它通过电子控制单元(ECU)和电动助力转向器件实现对车辆转向的辅助控制。

本文将介绍电控电动助力转向系统的原理、结构和工作方式。

一、电控电动助力转向系统的原理电控电动助力转向系统是利用电动助力转向器件辅助传统机械液压转向系统,实现对车辆转向力的控制。

它通过ECU对车辆转向的需求进行感知,并通过控制电动助力转向器件提供相应的助力。

二、电控电动助力转向系统的结构电控电动助力转向系统主要由以下几个部分组成:1. 电动助力转向器件:包括电动助力转向电机和传感器等组件。

电动助力转向电机负责提供转向助力,传感器负责感知车辆转向的需求。

2. 电子控制单元(ECU):负责控制电动助力转向器件的工作,实现对车辆转向的辅助控制。

ECU通过接收传感器信号,对电动助力转向电机进行控制,提供相应的转向助力。

3. 转向角传感器:用于感知车辆转向的角度,将转向角信号传输给ECU。

4. 转向力传感器:用于感知车辆转向时需要施加的力,将转向力信号传输给ECU。

三、电控电动助力转向系统的工作方式电控电动助力转向系统的工作方式如下:1. 系统初始化:当车辆点火后,ECU进行自检,并将电动助力转向器件初始化为初始位置。

2. 转向需求感知:当驾驶员转动方向盘时,转向角传感器感知到转向角度的变化,并将信号传输给ECU。

3. 助力输出计算:ECU根据转向角度信号和其他传感器的信号,计算出所需要施加的转向助力。

4. 助力输出控制:ECU通过控制电动助力转向电机的转动,实现对转向助力的输出。

根据转向角度的变化和转向力的大小,电动助力转向电机提供相应的转向助力。

5. 助力调节和补偿:ECU对转向助力进行调节和补偿,以满足不同驾驶条件和需求。

6. 助力结束控制:当驾驶员转动方向盘回到初始位置或转向动作结束时,ECU停止对电动助力转向电机的控制,助力输出结束。

电控电动助力转向系统的优势在于提供了更加舒适和精确的转向操控感受。

液压助力转向系统原理

液压助力转向系统原理

液压助力转向系统原理
液压助力转向系统是一种常用于汽车和其他车辆的转向辅助系统。

其主要原理是利用液压力来帮助驾驶员转动方向盘,以降低驾驶的力度,提高转向的灵活性和舒适性。

系统的核心部件是液压助力装置,由液压泵、液压缸和控制阀等组成。

当驾驶员转动方向盘时,液压泵会向液压缸供给高压液压油。

在正常行驶情况下,系统中的感应阀会根据方向盘的转动程度和车速来调节液压油的流量和压力。

当方向盘转动时,液压油通过控制阀进入液压缸。

液压缸内的活塞会随之移动,将液压力转化为机械力,作用在转向机构上。

这种机械力可以减轻驾驶员转动方向盘时所需的力量,使驾驶更加轻松。

液压助力转向系统还可以根据驾驶条件的变化进行自动调节,以使转向更加稳定和灵敏。

例如,在低速行驶时,系统会提供更大的助力,使转向更加轻便;而在高速行驶时,系统会减小助力,以保持转向的稳定性。

总之,液压助力转向系统通过利用液压力来辅助驾驶员转动方向盘,提供轻松、灵活的转向操作。

无论是在城市道路还是高速公路上,这种系统都可以提供舒适且安全的转向体验。

电液助力转向系统的工作原理

电液助力转向系统的工作原理

电液助力转向系统的工作原理电液助力转向系统是一种通过电力和液压技术来提供转向力的系统。

它主要由电动泵、液压缸、转向阀和传感器等组成。

其工作原理是将电能转化为液压能,通过液体的流动来产生转向力,实现车辆转向的目的。

电液助力转向系统的工作过程可以分为四个阶段,分别是液体流动、转向助力、阻尼作用和回油。

首先,电动泵将电能转化为机械能,带动液体流动。

液体通过管道流入转向阀,转向阀根据传感器的信号来判断转向方向,并将液体引导到液压缸中。

液压缸的活塞将液体转化为机械力,通过连杆传递到车轮上,从而产生转向助力。

同时,系统还具有阻尼作用,能够减小转向力的突变,提高行车的稳定性。

最后,液体回流到电动泵中,形成循环。

电液助力转向系统相比于传统的机械转向系统,具有以下优势。

首先,它能够提供更大的转向力,使得车辆转向更加轻松灵活。

其次,它能够根据车速和转向角度的不同,自动调节转向力的大小,减小驾驶者的疲劳程度。

此外,它还具有阻尼作用,能够减小转向力的突变,提高行车的稳定性。

最后,它能够提高车辆的安全性能,避免因转向力不足而引发的意外事故。

尽管电液助力转向系统具有多重优势,但也存在一些缺点。

首先,它需要耗费电能来驱动电动泵和传感器等设备,增加了能源的消耗。

其次,它的维护成本较高,需要定期更换液压油和检修各个部件。

此外,它还存在着一定的故障率,需要进行及时的维修和更换。

电液助力转向系统是一种通过电力和液压技术来提供转向力的系统。

它能够提供更大的转向力,根据车速和转向角度的不同自动调节转向力的大小,减小驾驶者的疲劳程度,具有阻尼作用,提高行车的稳定性,能够提高车辆的安全性能。

然而,它也存在着能源消耗大、维护成本高和故障率等缺点。

因此,在使用和维护电液助力转向系统时,需要注意其优缺点,合理使用和维护,以确保其正常工作和使用寿命。

电液助力转向系统介绍

电液助力转向系统介绍

电液助力转向系统鉴于电液助力转向系统(Electro-Hydraulic Power Steering ,简称EHPS )技术较为成熟,考虑到EHPS 是在HPS 系统上发展起来的,布置更改较小。

建议首先配置EHPS 系统。

在此基础上,为进一步简化结构、方便安装维修并克服渗油问题,再装配自主研发的EPAS 系统。

EHPS 系统结构示意图见图1所示,主要包括电动机、控制器、装配在小齿轮轴上的转角传感器、齿轮泵、储油罐和转向机等,其中储油罐、齿轮泵、电机、电子控制单元集成一体,通过CAN 与整车中央控制单元总线交换必要信息数据(如车速),转向机结构与HPS 转向机相同,高效齿轮泵为EHPS 提供液压助力,齿轮泵由小惯量、内转子、三相无刷直流电机驱动,电源来自汽车12伏蓄电池。

EHPS 系统与传统HPS 系统相比具备良好的转向感并且节约能源。

图1 EHPS 系统结构示意图齿轮泵储油罐车速传感器方向盘转角传感器发动机转速传感器蓄电池交流发电机无刷电机齿条控制器数据线电源线高压进油管低压回油管图2 EHPS 系统工作原理图选用Polo轿车所配备的一体化电液泵(6Q0423 156M)和方向盘速度传感器(6Q1423291D),电液泵在车上的布置见图4所示。

一体化电液泵电气插头管脚定义示意图见图5所示。

图4 一体化电液泵在车上的布置图5 一体化电液泵电气插头管脚定义示意图在上电状态下,电液泵控制器实时采集方向盘转速信号,并通过CAN与整车中央控制单元通讯从而获取车速信号及发动机点火开关信号,实现车速感应型助力。

电液泵控制器CAN通讯协议初步解析结果如下:已知有效报文为两帧,其ID格式为11位标识符,传输速率为500Kbit/s。

两个报文的标识符分别为:280(其发送周期为10ms);320(其发送周期为50ms)。

报文数据场长度均为8,报文数据内容有待进一步研究。

油路最高压力为10.5Mpa,电机电流为60A,电液泵消耗电功率为720W。

电控液压助力转向

电控液压助力转向

汽车行业应用
汽车行业是电控液压助力转向技术应用的主要领域之一。通 过电控液压助力转向系统,汽车制造商可以提高汽车的操控 性能和驾驶舒适度,同时降低油耗和排放。
在汽车行业中,电控液压助力转向技术广泛应用于各类车型 ,如轿车、SUV、货车等。这种技术的应用有助于提高汽车 的安全性和稳定性,特别是在高速行驶和紧急避障等情况下 。
油压传感器
监测助力油压的大小,为 系统提供油压信号,用于 调节助力的大小。
控制器
电子控制单元(ECU)
作为系统的核心控制部件,接收来自传感器的信号,根据设 定的控制算法计算出所需的助力大小和方向,向执行器发送 控制指令。
人机交互界面
提供给驾驶员操作界面,可设置系统参数、查看系统状态等 。
执行器
电磁阀
根据ECU的控制指令,调节液压 油的流量和方向,实现助力转向 。
液压泵
为系统提供液压油,保证助力转 向的正常运行。
03
电控液压助力转向的液 压系统
液压泵
液压泵是电控液压助力转向系统的核 心部件之一,其主要作用是将发动机 或电动泵提供的机械能转化为液压能, 为系统提供动力。
液压泵的输出流量和压力可随转向阻 力矩的变化而自动调节,以提供最佳 的助力效果。
能。
液压缸
液压缸是电控液压助力转向系统的执行元件,其作用是将液压能转化为 机械能,推动转向节臂转动,从而协助驾驶员完成转向操作。
液压缸通常采用双作用缸或单作用缸,具有结构简单、工作可靠的特点。
液压缸的输出力和行程可随转向阻力矩的变化而自动调节,以提供最佳 的助力效果。
04
电控液压助力转向的应 用与案例
05
电控液压助力转向的发 展趋势与挑战
技术发展趋势

电控液压助力转向系统组成和工作原理

电控液压助力转向系统组成和工作原理

电控液压助力转向系统组成和工作原理简介电控液压助力转向系统(EHPS)是现代汽车转向系统的重要部分,它结合了电子控制和液压动力,以提供更精确、更稳定的转向助力。

以下是电控液压助力转向系统的组成和工作原理的详细介绍。

一、组成电控液压助力转向系统主要由以下几个部分组成:1.转向柱:这是驾驶员操作转向的主要设备,转向柱上装有转向盘。

2.电动助力泵:该设备由电动机驱动,将油从储油罐中泵出,增加液压压力。

3.储油罐:储存液压油,同时保持液压系统的压力。

4.动力转向器:这是一个将液压能转化为机械能的装置,它利用阀控制液压油的流动,从而产生转向助力。

5.电子控制单元(ECU):根据车速、方向盘转角等信息,控制电动助力泵的运转和提供转向助力的大小。

二、工作原理电控液压助力转向系统的工作原理可以概括为以下几点:1.电动助力泵:电动助力泵由电动机驱动,根据ECU的指令调整输出压力。

在低速时,电动机产生的助力较大,以增强转向性能;在高速时,电动机产生的助力较小,以保证稳定性。

2.液压回路:当驾驶员转动方向盘时,动力转向器中的阀会开启,使液压油流入助力缸中。

液压缸中的活塞受到液压力,推动转向柱和转向轮转动。

同时,液压回路中的单向阀确保液压油只能流向一个方向,防止回流。

3.电子控制单元:ECU根据车速、方向盘转角等信息,计算出合适的助力大小和方向。

它通过调节电动机的电流或电压,控制电动助力泵的输出压力,从而提供合适的助力。

此外,ECU还可以监控系统的运行状态,如有异常会立即采取措施。

4.反馈系统:在电控液压助力转向系统中,还设有反馈系统。

反馈系统通过传感器监测方向盘的转角和速度、车速等信息,将这些信息反馈给ECU。

ECU根据这些信息调整助力泵的工作状态,确保系统始终处于最佳工作状态。

5.液压油的循环:在系统中,液压油不断地在回油管路和助力缸之间循环流动。

回油管路中的温度传感器可以监测液压油的温度,防止过高或过低。

如果液压油的温度过高,系统会自动减少助力泵的工作时间,或者开启冷却系统降低温度。

电控助力转向系统的原理

电控助力转向系统的原理

电控助力转向系统的原理电控助力转向系统是一种通过电子控制单元(ECU)控制的汽车转向系统。

它利用电动机在驾驶员操纵转向盘时提供额外的助力,帮助驾驶员更轻松地转向车辆。

本文将详细介绍电控助力转向系统的原理和工作方式。

一、电控助力转向系统的原理电控助力转向系统由电动助力转向机构、传感器和控制单元组成。

其中,电动助力转向机构是系统的核心部件,它通过电机和齿轮装置实现助力转向。

传感器用于感知驾驶员的转向意图,并将信号传输给控制单元。

控制单元根据传感器信号,控制电动助力转向机构提供适当的助力。

二、电控助力转向系统的工作方式1. 感知转向意图电控助力转向系统通过安装在转向柱上的转向传感器感知驾驶员的转向意图。

转向传感器可以感知转向盘的转动角度和转速,并将这些信息传输给控制单元。

控制单元根据转向传感器的信号判断驾驶员的转向意图。

2. 提供助力根据驾驶员的转向意图,控制单元计算出相应的助力需求,并向电动助力转向机构发送指令。

电动助力转向机构根据控制单元的指令,通过电机和齿轮装置提供额外的助力。

助力的大小根据转向盘的转动力度和速度来调节,以满足驾驶员的需求。

3. 实时调整电控助力转向系统能够实时调整助力的大小,以适应不同驾驶条件和车辆状态。

例如,在低速行驶时,系统可以提供更大的助力,以增加转向的灵活性和舒适性。

而在高速行驶时,系统可以减小助力,以提高转向的稳定性和操控性。

三、电控助力转向系统的优势1. 提高操控性能电控助力转向系统可以根据驾驶员的转向意图提供适当的助力,使驾驶员更轻松地操控车辆。

尤其是在低速行驶和停车时,系统的助力能够显著减小驾驶员的转向力度,提高操控的精确性和灵活性。

2. 提升驾驶舒适性电控助力转向系统的助力能够根据驾驶员的需求进行实时调整,使转向更加轻盈和平稳。

驾驶员在长时间驾驶或疲劳驾驶时,能够减少对肌肉的负担,提高驾驶的舒适性和乘坐的舒适性。

3. 增加安全性电控助力转向系统能够根据驾驶员的转向意图提供适当的助力,并且具有实时调整能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电控液压助力转向(ECHPS)系统简介
——反力控制式
反力控制式ECHPS系统是在传统液压助力转向
系统(HPS)的基础上增加一套反力控制装置而构成
的。

该系统通过对转向控制阀的阀芯施加随车速而
变化的反作用力,使得转向操纵力矩必须克服施加
在阀芯上的反作用力而引起的转动阻力矩,才能使
阀芯和阀套产生相对转动而产生助力,见图1。


前,产生反作用力的方式大都采用液压助力转向系
统中的液压力,也有通过电磁方式施加反作用力。

1.液压反力式ECHPS 系统
液压反力式ECHPS 系统是在传统HPS 系统的基础上增加一套液压反力装置而构成,见图2。

液压反力装置由电磁阀和活塞等组成。

活塞套在阀芯的上部,二者可轴向移动,但不能相对转动。

活塞的下端及阀套的上端都加工有V 形槽,槽中放置有滚柱。

活塞与转向器壳体上部形成反力腔,反力腔中装有弹簧。

反力腔与转向器进油口的通道上安装有电磁阀,电磁阀受车速信号的控制。

当车速较低时,电磁阀关死,反力装置不起作用。

此时,系统的工作状态与传统HPS 系统相同。

随着车速的提高,电磁阀逐渐开启,反作用腔中建立起一定的压力。

此时,由于受弹簧力和液压力的共同作用,滚柱受到较大的轴向力,使得产生相同的阀芯和阀套间的相对转角所需的转向盘转矩较大,即转向助力减小。

电磁阀开度越大,节流阻力越小,反作用腔中压力越高,产生相同的阀芯和阀套间的相对转角所需的转向盘转矩越大,转向助力越小。

由图2可知,在反作用腔与回油口的通道上安装有单向阀。

当转动转向盘而使活塞相对阀芯向上运动时,反作用腔中压力进一步增加,此时单向阀开启,使反作用腔中压力不会超过设定值,也避免转向操纵过于沉重。

另外,反作用腔中的弹簧可提高转向盘中间位置路感。

图1 反力机构原理 1-阀芯;2-扭杆;
3-反力机构;4-阀套
图2 液压反力式ECHPS系统
2.电磁反力式ESHPS系统
上述电控液压助力转向系统是通过将进油腔的油液引入反力腔,对阀芯的转动施加阻力矩,不能产生助力。

而以下介绍的电磁反力方式,不仅能产生阻力,还能产生助力。

图3为电磁反力式液压助力转向器及其主要元件结构图,它是在普通转向器中增加一套由永久磁环、双环形铁芯及励磁线圈组成的电磁反力装置而构成的。

由30块N极和S极交错布置的永久磁铁组成的永久磁环通过保持架与阀芯固定,由齿环、齿圈和环形盘组成的双环形铁芯与阀套相连,励磁线圈固定在壳体中。

齿环和齿圈上各有15个径向齿,二者通过环形盘连成一个整体,且齿圈的内齿与齿环的外齿相互错开半个齿,见图3(c)。

齿圈内齿和齿环外齿间有一定的径向间隙,永久磁环即插在此间隙中,见图3(d)。

直行位置时,相邻两块永久磁铁中的一个与齿圈内齿和齿环外齿重叠3/4个磁铁宽度,而另一个则与齿
圈内齿和齿环外齿重叠1/4个磁铁宽度。

图3 电磁反力式液压助力转向器及主要元件结构
(a)转向器 (b)永久环形及保持架 (c)双环形铁芯端视图 (d)双环形铁芯轴向剖视图 (e)正向电流感应出的磁极 (f)励磁线圈总成 (g)反向电流感应出的磁极
当励磁线圈中无电流通过时,在
永久磁环的作用下,齿圈内齿和齿环
外齿感应出相应的极性,对永久磁环
(阀芯)和双环形铁芯(阀套)的相
对转动有一定的阻碍作用。

当给励磁
线圈通以正向电流时,在永久磁环和
励磁线圈电流磁场的共同作用下,齿
环和齿圈感应出相应的极性,对阀芯
和阀套的相对运动阻碍更大。

改变电
流方向时,双环形铁心的内外圈齿的感应极性也随之改变,对阀芯和阀套的相对转动起推进作用。

因此该系统在不过多减少扭杆刚度的条件下,能够获得很宽的助力范围,见图4。

但系统结构角复杂,转向器尺寸较大,成本较高。

图4 电磁反力式ECHPS 系统助力特性
夏利轿车后轮制动器间隙自调机构。

相关文档
最新文档