最新版特殊平行四边形测试题
(完整版)特殊平行四边形练习题(答案已做)

特殊平行四边形专题练习1、练习:①矩形ABCD 的两条对角线相交于O ,∠AOD=120°,AB=4cm ,则矩形对角线AC 长为______cm .②.四边形ABCD 的对角线AC ,BD 相交于点O ,能判断它为矩形的题设是( )A .AO=CO ,BO=DOB .AO=BO=CO=DOC .AB=BC ,AO=COD .AO=CO ,BO=DO ,AC ⊥BD③.四边形ABCD 中,AD //BC ,则四边形ABCD 是 ___________,又对角线AC ,BD 交于点O , 若∠1=∠2,则四边形ABCD 是_______________.2、练习:①.如图,BD 是菱形ABCD 的一条对角线,若∠ABD=65°,则∠A=_____.②. 一个菱形的两条对角线分别是6cm ,8cm ,则这个菱形的周长等于 cm,面积= cm 2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为(三)正方形:3.练习:①正方形的面积为4,则它的边长为____,对角线长为_____.②已知正方形的对角线长是4,则它的边长是 ,面积是 。
③如图所示,在△ABC 中,AB=AC ,点D ,E ,F 分别是边AB ,BC ,AC 的中点,连接DE ,EF ,要使四边形ADEF 是正方形,还需增加条件:_______.二、复习练习: (一)、选择题:1、矩形ABCD 的长AD=15cm ,宽AB=10cm ,∠ABC 的平分线分AD 边为AE 、ED两部分,这AE 、ED 的长分别为( )A .11cm 和4cmB .10cm 和5cmC .9cm 和6cmD .8cm 和7cm2、四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AD=BC C .AB=BC D .AC=BD3、如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEBO ( ) A. 10° B .15° C .20° D .12.5°4、如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,如果EF=2,那么菱形ABCD 的周长是( ) A. 4 B .8 C .12 D .16ABDECABCDEEF(二)、填空题5、已知正方形ABCD 对角线AC ,BD 相交于点O ,•且AC=•16cm ,•则DO=•_____cm , •BO=____cm ,∠OCD=____度.6、在平面直角坐标系中,四边形ABCD 是菱形,∠ABC=60°, 且点A 的坐标为(0,2),则点B 坐标( ), 点C 坐标为( ),点D 坐标为( )。
特殊的平行四边形试题及参考答案

第一章特殊平行四边形检测题一、 选择题(每小题3分,共30分)1.下列四边形中,对角线一定不相等的是(D )A.正方形B.矩形C.等腰梯形D.直角梯形3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是(D ) ①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④4.已知一矩形的两边长分别为10 cm 和15 cm ,其中一个内角的平分线分长边为两部分,这两部分的长为(B )A.6 cm 和9 cmB.5 cm 和10 cmC.4 cm 和11 cmD.7 cm 和8 cm5.如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为(B )A .3B .4C .6D.86.如图,在菱形中,,∠,则对角线等于(D )A .20B .15C .10D .57.若正方形的对角线长为2 cm ,则这个正方形的面积为(B )A.4B .2C .D .8.矩形、菱形、正方形都具有的性质是( C )A .每一条对角线平分一组对角B .对角线相等C .对角线互相平分D .对角线互相垂直A. B . C . D .(1) (2)一、 填空题(每小题3分,共24分)11.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是___6______.13.如图,四边形ABCD 是正方形,延长AB 到点E ,使,则∠BCE 的度数是22.5°.14.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24 cm ,则矩形的周长是48cm.15.已知,在四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________. 16.已知菱形的周长为,一条对角线长为,则这个菱形的面积为____96_____.17.如图,在矩形ABCD 中,对角线与相交于点O ,且,则BD 的长为____4____cm ,BC 的长为_______cm.三、解答题(共66分)19.(8分)如图,在△ABC 中,AB =AC ,AD 是△ABC 外角的平分线,已知∠BAC =∠ACD .(1)求证:△ABC ≌△CDA ;(2)若∠B =60°,求证:四边形ABCD 是菱形.证明:(1)∵AB =AC ,∴∠B =∠ACB ,∴∠FAC =∠B +∠ACB =2∠BCA .第5题图 第6题图∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB.在△ABC和△CDA中,∠BAC=∠DCA,AC=AC,∠DAC=∠ACB,∴△ABC≌△CDA.(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC.∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形.∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.20.(8分)如图,在□ABCD中,E为BC边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.证明:(1)在□ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.22.(8分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°.将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°.在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF(SAS),∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM-MF=BM-EF=4-x.∵EB=AB-AE=3-1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=,即EF=.23.(8分)如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.解:因为平分,所以.又知,所以因为,所以△为等边三角形,所以因为,所以△为等腰直角三角形,所以.所以,,所以=75°24.(8分)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.25.(8分)已知:如图,在四边形中,∥,平分∠,,为的中点.试说明:互相垂直平分.解:如图,连接∵AB⊥AC,∴∠BAC=90°.因为在Rt△中,是的中点,所以是R t△的斜边BC上的中线,所以,所以.因为平分,所以,所以所以∥.又AD∥BC,所以四边形是平行四边形.又,所以平行四边形是菱形,所以互相垂直平分.。
北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)

矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加
,
四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().
第一章 特殊平行四边形 单元测试(含答案)

第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
(完整版)浙教版八年级下册数学第五章特殊平行四边形单元测试卷

第五章 特殊的平行四边形姓名:---------- 成绩:------ --- 一.选择题 (每小题4分,共40分)1. 若菱形ABCD 中,AE 垂直平分BC 于E,AE=1cm,则BC 的长是 A.1cm B.332cm C.3cm D.4cm 2. 如果a 表示一个菱形的对角线的平方和,b 表示这个菱形的一边的平方,那么 A.a =4b B.a =2b C .a =b D.b =4a3. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形4. 如图,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是 A.7.5 B.6 C.10 D.55. 如图所示,过四边形ABCD 的各顶点,作对角线BD 、AC 的平行线,围城四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是A.菱形B.平行四边形 C.矩形 D.对角线相等的四边形6. 在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是. A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格7. 图1中有8个完全相同的直角三角形,则图中矩形的个数是A. 5B. 6C. 7D. 8A E DB FC 图(2)图(1)MNN M 图1 图2A C8. 如图,正方形ABCD 中,∠︒=25DAF ,AF 交对角线BD 于点E ,那么∠BEC 等于A.︒45B.︒60C.︒70D.︒759. Rt △ABC 的两边长分别是3和4,若一个正方形的边长是△ABC 的第三边,则这个正方形的面积是 A.25 B.7C.12D.25或7 10. 下列图形中,不能..经过折叠围成正方形的是A. B C. D.第Ⅱ卷(非选择题 共8道填空题8道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 二.简答题 (每小题3分,共24分)11. 如图矩形,ABCD 中,AC 、BD 相交于O,AE 平分∠BAD 交BC 于E,若∠CAE=15º,则∠BOE=_________ 12. M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC,PF ⊥MB,当AB 、BC 满足_________时,四边形PEMF 为矩形 13. 给定下列命题:(1)对角线相等的四边形是矩形;(2)对角相等的四边形是矩形;(3)有一个角是直角的平行四边形是矩形;(4)一个角为直角,两条对角线相等的四边形是矩形;(5)对角线相等的平行四边形是矩形;其中不正确的命题的序号是____________14. 如图,矩形ABCD 中,E 、F 分别为AD 、AB 上一点,且EF=EC,EF ⊥EC,若DE=2,矩形周长为16,则矩形ABCD 的面积为_________15. 现有一张长52cm,宽28cm 的矩形纸片,要从中剪出长15cm 宽、12cm 的矩形小纸片(不能粘贴),则最多能剪出__________张16. 已知矩形的周长是40cm,被两条对角线分成的相邻两个三角形的周长的差是8cm,则较长的边长为________17. 已知菱形ABCD 的边长为6,∠A=60º,如果点P是菱形内一点,切PB=PD=32,那么AP 的长为____________18. 矩形ABCD 的对角线AC 、BD 相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的长是_________cmA DERBC D B E C三.解答题(共56分)19. 如图,菱形AB CD中,点M、N分别在B C、CD上,且CM=CN,求证:(1)△AB M≌△A DN(2)∠A MN=∠A NM20. 如图,在四边形ABCD中,AD∥BC,对角线AC与BD相交于点O,AC平分∠BAD,请你再添一个什么条件? 就能推出四边形ABCD是菱形,并给出证明.21. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示。
特殊平行四边形测试题

特殊平行四边形测试题考号:___________姓名:_______________班级:__________得分:_______________一、选择题(每空4 分,共32 分)1、如图,菱形ABCD中,周长为8,∠A﹦60°,E是AD的中点,AC上有一动点P,则PE+PD的最小值为 ( )A.4 B.4 C.2 D .2、如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B . C . D.53、平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD4、如图,矩形ABCD的一边AB=8cm,它的一条对角线AC=10cm,BE⊥AC于点E,则AE的长是()A.6cm B.5.8 cm C.7.4cm D.6.4 cm5、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为().A.8 B.8 C.2D.106、如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm7、如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A. 3.5 B.4 C.7 D. 148、如图,延长正方形ABCD的一边BC至E,使CE=AC,连结AE交CD于F,则∠AFC的度数是A、112.5°B、120°C、122.5°D、135°二、填空题(每空4 分,共32分)9、如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是________。
2020-2021学年最新北师大版九年级数学上册《特殊的平行四边形》单元测试题及答案-精品试题

第一章特殊平行四边形测试题(时间:分钟满分:120分)一、选择题(每小题3分,共30分)1.已知下列命题:①矩形是轴对称图形,且有两条对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形.其中正确的有()A.4个B.3个C.2个D.1个2.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°3.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF等于()A50° B.60° C.70° D.80°4.相邻两边长分别为2和3的平行四边形,若边长保持不变,其内角大小变化,则它可以变为()A.矩形B.菱形C.正方形D.矩形或菱形5.如图,在□ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE,CF,则四边形AECF是()A.矩形 B. 菱形 C. 正方形 D. 无法确定6.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD的面积为1,则阴影部分的面积为()A.12B.13C.14D.15、第2题图第5题图第3题图第6题图第7题图第8题图7.如图,正方形ABCD 的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A.1B. 2C.4-2 2D.32-48.如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形9.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连接BD 并延长,交EG于点T,交FG于点P,则GT等于()A. 2B.2 2C.2D.110.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 3 D. 16 3二、选择题(每小题3分,共24分)11.如图,四边形ABCD的对角线互相垂直,且OB=OD,请你添加一个适当的条件______,使四边形ABCD成为菱形(只需添加一个即可).12.如图,矩形ABCD内有一点E,连接AE,DE,CE,使AD=ED=EC,若∠ADE=20°,则∠AEC=____.13.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D.已知AB=BC=CD=DA=5 km,村庄C到公路l1的距离为4 km,则第10题图第9题图第11题图第12题图第13题图村庄C到公路l2的距离是______km.14如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为______.第16题图第15题图第14题图15.如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=______度.16.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为______度时,两条对角线长度相等.17.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.若点O运动到AC的中点,则∠ACB=_____°时,四边形AECF是正方形.第17题图第18题图18.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接AD1,BC1.若∠ACB=30°,AB=1,CC1=x,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形.其中正确的是(填序号).三、解答题(共66分)19.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,点P是AC的中点.求证:∠BDP=∠DBP.第19题图20.(6分)如图,在直线MN上和直线MN外分别取点A,B,过线段AB的中点作CD∥MN,分别与∠MAB与∠NAB的平分线相交于点C,D.求证:四边形ACBD是矩形.21.(8分)如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.22.(8分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.第20题图第21题图第22题图23.(8分)如图,Rt△ABE与Rt△DCF关于直线m对称,已知∠B=90°,∠C=90°,连接EF,AD,点B,E,F,C 在同一条直线上.求证:四边形ABCD是矩形.第23题图24.(8分)如图, 在△ACD中,∠ADC=90°,∠ADC的平分线交AC于点E,EF⊥AD交AD于点F,EG⊥DC交DC于点G,请你说明四边形EFDG是正方形.第24题图25.(10分)如图,正方形ABCD中,动点E在AC上,AF⊥AC,且AF=AE.(1)求证:BF=DE;(2)当点E运动到AC的中点时(其他条件都保持不变),四边形AFBE是什么特殊四边形?说明理由.第25题图26.(12分)如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=3cm,AD=4cm,P从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.参考答案一、1.C 2.B 3.B 4.A 5.B 6.C 7.C 8.A 9.B 10.D二、11. 不唯一,如OA=OC 12. 120°13.4 14. 4.8 15.90 16.90 17.9018.①②③三、19.证明:∵∠ABC=∠ADC=90°,P是AC的中点,∴BP=12AC,PD=12AC.∴BP=PD.∴∠BDP=∠DBP.20.证明:∵AD平分∠BAN,∴∠DAN=∠BAD.∵CD∥MN,∴∠CDA=∠DAN.∴∠BAD=∠CDA.∴OD=OA.同理CO=OA. ∴CO=OD.∵AO=BO,∴四边形ACBD是平行四边形.21. (1)提示:证△ADE≌△CDE即可.(2)解:点F是线段BC的中点.理由:连接AC.在菱形ABCD中,AB=BC.又∵∠ABC=60°,∴△ABC是等边三角形.∴∠BAC=60°.∵AE=EC,∠CEF=60°,∴∠EAC=12∠BAC=30°.∴AF是△ABC的角平分线.∴点F是线段BC的中点.22.证明:(1)∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∵四边形ABCD是平行四边形,∴∠A=∠C.又DE=DF,∴△AED≌△CFD.(2)∵△AED≌△CFD,∴AD=CD.∵四边形ABCD是平行四边形,∴四边形ABCD 是菱形.23.解:∵Rt△ABE与Rt△DCF关于直线m对称,∴AB=DC.∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,∴AB∥CD.∴四边形ABCD是平行四边形.第26题图∵∠B=90°,∴平行四边形ABCD是矩形.24.解:∵∠ADC=90°,EF⊥AD,EG⊥CD,∴四边形EFDG是矩形. 又∵DE平分∠ADE,∴EF=EG.∴四边形EFDG是菱形.∴四边形EFDG是正方形25.(1)提示:由SAS证△ABF≌△ADE即可得BF=DE.(2)解:当点E运动到AC的中点时,四边形AFBE是正方形.理由:∵点E运动到AC的中点,AB=BC,∴BE⊥AC,BE=AE=12 AC.∵AF=AE,∴BE=AF=AE. 又∠FAE=90°,∴BE∥AF.。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级第一章测试题(特殊的平行四边形)
考试时间120分钟,满分100分
第I 卷(选择题,共30 分)
、选择题(每题3分,共30 分)
2 .若平行四边形的一边长为10cm,则它的两条对角线的长度可以是
3.如图,平行四边形ABCD 中,经过两对角线交点 0的直线分别交 于点E ,交AD 于点F.若BC=7 CD=5 OE=2则四边形ABEF 的周长等 于
(
)
如图,矩形ABCD 勺对角线AC BD 相交于点0, CE// BD, DE// AC 若 AC=4则四边形CODE 勺周长( )
6 C . 8 姓名
班级
得分
1.以不在同一直线上的三个点为顶点作平行四边形, 最多能作(
A. 4个
B . 3个 C. 2个 D. 1个
A. 5cm 和 7cm
B. 18cm 和 28cm
C. 6cm 和 8cm
D. 8cm 和 12cm
BC
A. 14
B . 15 C. 16 D.无法确定
D .
10
A. S i =S
B . S i >S
C. S v S 2
D 不能确定
120°,若一条对角线的长是2,那
5.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到 一个钝角为120°
6.如图,菱形ABCD 中,对角线AC BD 交于点0,菱形ABCD 周长为32, 点P 是边CD 的中点,贝懺段OP 的长为(
的菱形,剪口与第二次折痕所成角的度数应为( )
A. 15° 或 30
B . 30° 或
45 C. 45° 或 60° D. 30° 或 60°
A. 3
B. 5
C. 8
7.如图,在平行四边形ABCD 中, HG// AB 若四边形AEPH 和四边形 S 2的大小关系为( ) BD 上一点 P,作 EF// BC , CFPG 勺面积分另为S i 和S,则S 与 过对角线 n
A
C
B
11.在菱形ABCD 中 AC, BD 是对角线,如果/ BAC= 70°, 那么/ ADC 等于 _________________________________ 12.如图,矩形 ABCD 勺对角线AC BD 相交于点0, DE// AC, CE// BD
若AC=4则四边形CODE 勺周长为 ___________________
A. 6 C. 2 (1+佰)
9.如图,菱形ABCD 中,/ A=120° , E 是AD 上的点, 点A 恰好落在BD 上的点F ,那么/ BFC 的度数是(
沿BE 折叠△ ABE )
A. B . C. 共 24
70 D.
3
13.如图,在梯形 ABCD 中, AD// BC, AD=4 BC=12 E 是BC 的中点.点 P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时 以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止 运动时,点Q 也随之停止运动.当运动时间为 或 秒时,以点P, Q, E , D 为顶点的四边形是平行四边形.
14.如图,折叠矩形纸片ABCD 使点B 落在边AD 上,折痕EF 的两端分 别在AB BC 上 (含端点),且 AB=6cm BC=10cm 则折痕EF 的最大值 是 ________ cm
16.如图,在矩形ABCD 中, AB=8, BC=10 E 是AB 上一点,将矩形 ABC 沿CE 折叠后,点B 落在AD 边的F 点上,贝U DF 的长为 ______________ 17.如图,菱形ABCD 勺边长为4,/ BAD=120,点E 是AB 的中点,点 F 是AC 上的一动点,贝U EF+BF 的最小值是 _______________________________ AB=2 / BAD=60 , E 是AB 的中点,P 是对 P E+PB 的最小值是
15 .如图,将两条宽度都是为2的纸条重叠在一起,使/ ABC=45,则 四边形ABCD 的面积为
月
(第 13 题) (第 14 题)
18.如图,菱形ABC 冲, 角线AC 上的一个动点, £>
(第 17 题)
E Q
5 R'
D
D
(第 15
F
E
(第 16
A
E
n
F
C
D
P
.
4
C
B
(第 18
三、解答题(19、20每题7分,21、22、23、24每题8分共46分)
19.如图,点E、F、G H分别为矩形ABCD四条边的中点,证明:四边形EFGH是菱形.
连结AE BD且
21.如图,在菱形ABCD中,/ ABC=60,过点A作AEXCD于点E,交对角线BD于点F,过点F作FG丄AD于点G
(1)求证:BF=AE+FG
(2)若AB=2,求四边形ABFG勺面积.
22.如图,△ ABC中, 作DE//AB,DE与AC
(1)求证:AD= EC
⑵当/ BAC= 90°时, AD是边BC上的中线,过点A作AE//BC,过点D AE分别交于点O点E,连接EC
求证:四边形ADCE是菱形
. 』——e——D
23.已知:矩形ABCD中,对角线AC与BD交与点O, / BOC=120 ,AC=4cm 求:矩形ABCD勺周长和面积。
24.将平行四边形纸片ABC 敢如图方式折叠,使点C 与A 重合,点D 落到D'处,折痕为EF.
(1) 求证:△ ABE^A AD' F ;
(2) 连接CF,判断四边形AECF 是什么特殊四边形?证明你的结论.
D。