苏教版高中数学必修三高一参考答案

合集下载

高中数学必修三习题带答案

高中数学必修三习题带答案

第一章1. 家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的是 B(A)靠近电视的一小段,开始检查 (B)电路中点处检查 (C)靠近配电盒的一小段开始检查 (D)随机挑一段检查2. 早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 C (A)S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 (B)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 (C)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播 (D)S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3. 给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a ,b ,c ,中的最大数;④求函数⎩⎨⎧<+≥-=)0(2)0(1)(x x x x x f 的函数值;⑤求两个正整数a ,b 相除的商及余数.其中不需要用条件语句来描述其算法的有_____125_______. 4. 下面的问题中必须用条件分支结构才能实现的是__23__________.①求面积为1的正三角形的周长; ②求方程0ax b +=(,a b 为常数)的根; ③求两个实数,a b 中的最大者; ④求1+2+3+…+100的值 5. 840和1764的最大公约数是84.6. 用秦九韶算法计算多项式23456()1235879653f x x x x x x x =+-++++,在4x =-时的值时,3V 的值为 C(A)-845 (B)220 (C)-57 (D)34 9.___28_____.12.(08-广东-9)阅读下图的程序框图,若输入4m =,3n =,则输出a =12,i =3;13.按如图所示的框图运算:若输入x =8,则输出k =5;(基本算法语句)1.下列给出的赋值语句中正确的是 B(A)M =4 (B)M M -= (C)3==A B (D)0=+y x 2.下列给变量赋值的语句正确的是 D(A)3a =(B)1a a +=(C)3a b c ===(D)8a a =+ 3.下列赋值语句中错误的是 C(A)1N N =+ (B)*K K K = (C)()C A B D =+ (D)M=M/5第二章一、选择题:1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样 B.系统抽样C.分层抽样 D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( C )A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( A )k=5A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

高中数学苏教版必修三教学案:第1章1.2流程图含答案

高中数学苏教版必修三教学案:第1章1.2流程图含答案

第1章算法初步1.2013 年全运会在沈阳举行,运动员 A 报名参赛100米短跑并经过初赛、半决赛、决赛最后获取了银牌.问题 1:请简要写出该运动员参赛并获银牌的过程.提示:报名参赛→初赛→半决赛→决赛.问题 2:上述参胜过程有何特色?提示:参胜过程是明确的.问题 3:倘若你家住南京,想去沈阳观看 A 的决赛,你怎样设计你的旅途?提示:第一预定定票,而后选择适合的交通工具到沈阳,准时出席,检票入场,进入竞赛场所,观看竞赛.x +=2,①2.给出方程组yx- y=1,②问题 1:利用代入法求解此方程组.提示:由①得y=2-x,③把③代入②得x-(2-x)=1,3即 x=2.④把④代入③得1y=.23x=2,获取方程组的解1y=2.问题 2:利用消元法求解此方程组.3提示:①+②得x=2.③3 1x = 2,将③代入①得y = ,得方程组的解2y = 1.问题 3:从问题 1、 2 能够看出,解决一类问题的方法独一吗?提示:不独一.1.算法的观点对一类问题的机械的、一致的求解方法称为算法.2.算法的特色(1) 算法是指用一系列运算规则能在有限步骤内求解某类问题,此中的每条规则一定是明确立义的、可行的.(2) 算法从初始步骤开始,每一个步骤只好有一个确立的后继步骤,进而构成一个步骤序列,序列的停止表示问题获取解答或指出问题没有解答.1.算法的基本思想就是探究解决问题的一般性方法,并将解决问题的步骤用详细化、程序化的语言加以表述.2.算法是机械的,有时要进行大批重复计算,只需循规蹈矩地去做,总能算出结果,往常把算法过程称为“数学机械化”,其最大长处是能够让计算机来达成.3.求解某一个问题的算法不必定只有独一的一个,可能有不一样的算法.[ 例 1] 以下对于算法的说法:①求解某一类问题的算法是独一的②算法一定在有限步操作后停止③算法的每一步操作一定是明确的,不可以存在歧义④算法履行后必定能产生确立的结果此中,不正确的有 ________.[ 思路点拨 ] 利用算法特色对各个表述逐个判断,而后解答.高中数学苏教版必修三教学案:第1章1.2流程图含答案[ 精解析 ]由算法的不独一性,知①不正确;由算法的有性,知②正确;由算法确实定性,知③和④正确.[答案]①[一点通]1.个型的,正确理解算法的观点及其特色是解决此的关.2.注意算法的特色:有限性、确立性、可行性.1.以下句表达中是算法的有________.①从南到巴黎能够先乘火到北京,再坐机到达1②利用公式S=2ah 算底1,高2的三角形的面1③2x>2x+4④求 M(1,2)与 N(-3,-5)两点的方程,可先求MN的斜率,再利用点斜式方程求得分析:算法是解决的步与程,个其实不限于数学.①②④都表达了一种算法.答案:①②④2.算以下各式中的S ,能算法求解的是________.①S=1+2+3+⋯+100②S=1+2+3+⋯+100+⋯③S=1+2+3+⋯+ n( n≥1且 n∈N)分析:算法的要求步是可行的,而且在有限步以内能达成任.故①、③可算法求解.答案:①③[ 例 2]已知直l 1:3x-y+12=0和 l 2:3x+2y-6=0,求 l 1,l 2, y 成的三角形的面.写出解决本的一个算法.[ 思路点 ]先求出l1,l2的交点坐,再求l 1, l 2与 y 的交点的坐,即获取三角形的底;最后求三角形的高,依据面公式求面.3x-y+ 12= 0,[ 精解析 ]第一步解方程得l1,l2的交点P(-3x+ 2y- 6= 02,6) ;第二步在方程 3x-y+ 12= 0 中令x=0 得y= 12,进而获取A (0,12) ;第三步在方程 3 x +2 -6=0 中令x =0 得 y = 3,获取 (0,3) ;yB第四步 求出△ ABP 底边 AB 的长 | AB | =12- 3= 9;第五步求出△ ABP 的底边 AB 上的高 h =2;1第六步 代入三角形的面积公式计算S =2| AB | · h ;第七步 输出结果.[一点通]设计一个详细问题的算法,往常按以下步骤:(1) 仔细剖析问题,找出解决本题的一般数学方法; (2) 借助相关变量或参数对算法加以表述; (3) 将解决问题的过程区分为若干步骤;(4) 用精练的语言将这个步骤表示出来.3.写出求两底半径分别为1 和 4,高也为 4 的圆台的侧面积、表面积 及体积的算法.解:算法步骤以下:第一步 取 r1=1, 2=4, =4;rh第二步第三步第四步第五步计算 l =r 2- r 12+ h 2;22=π(r + r ) l ;计算 S =π r,S =π r ; S1122侧1 2计算 S 表=S +S +S;12侧1计算 V = 3( S 1+ S 1S 2+ S 2 ) h .4.已知球的表面积为 16π,求球的体积.写出解决该问题的两个算法.解:算法 1:第一步 S =16π;第二步计算 =S ( 因为 =4π 2) ;R4πS R第三步 计算 V =34πR 3 ;第四步 输出运算结果 V .算法 2:第一步=16π;S计算 V =4S3第二步3π(4π );第三步输出运算结果V.[例3](12分 ) 某居民区的物业部门每个月向居民收取卫生费,计算方法是:3人或 3人以下的住宅,每个月收取 5 元;超出 3 人的住户,每高出 1 人加收 1.2元.设计一个算法,依据输入的人数,计算应收取的卫生费.[ 精解详析 ]设某户有 x 人,依据题意,应收取的卫生费y 是 x 的分段函数,即 y=5,≤3,x(4 分)1.2 x+ 1.4 ,x>3.算法以下:第一步输入人数 x;(6 分)第二步假如 x≤3,则 y=5,假如 x>3,则 y=1.2 x+1.4;(10 分)第三步输出应收卫生费 y.(12分)[一点通]对于此类算法设计应用问题,应该第一成立过程模型,依据模型,达成算法.注意每步设计时要用简炼的语言表述.5.以下算法:第一步输入 x 的值;第二步若 x≥0成立,则 y=2x,不然履行第三步;第三步y=log2(- x);第四步输出 y 的值.若输出结果 y 的值为4,则输入的x的值为 ________.分析:算法履行的功能是给定x,2x,x≥0,求分段函数 y=- x 对应的函数值.log 2, x<0由 y=4知2x=4或log2(- x)=4.∴x=2或-16.答案: 2 或- 166.已知直角三角形的两条直角边分别为a, b,设计一个求该三角形周长的算法.解:算法以下:第一步计算斜边 c=a2+ b2;第二步计算周长 l =a+ b+ c;第三步输出 l .1.算法的特色:有限性、确立性、逻辑性、不独一性、广泛性.2.在详细设计算法时,要明确以下要求:(1)算法设计是一类问题的一般解法的抽象与归纳,它要借助一般问题的解决方法,又要包括这种问题的全部可能情况.设计算法时常常要把问题的解法区分为若干个可履行的步骤,有些步骤是重复履行的,但最后却一定在有限个步骤以内达成.(2)借助相关的变量或参数对算法加以表述.(3)要使算法尽量简单,步骤尽量少.课下能力提高( 一 )一、填空题1.写出解方程2x+ 3= 0 的一个算法过程.第一步 __________________________________________________________________ ;第二步 __________________________________________________________________ .答案:第一步将常数项 3 移到方程右侧得2x=- 3;3第二步在方程两边同时除以2,得x=-2.2.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求他的总分和均匀分的一个算法为:第一步令 A=89, B=96, C=99;第二步计算总分 S=________;第三步计算均匀分M=________;第四步输出 S和 M.分析:总分S 为三个成绩数之和,A+B+C S均匀数 M=3=3.答案: A+ B+ C S 33.给出以下算法:第一步输入 x 的值;第二步当x >4 时,计算y=+ 2;不然履行下一步;x第三步计算 y=4-x;第四步输出 y.当输入 x=0时,输出 y=__________.分析:因为x=0>4不可立,故y=4-x= 2.答案: 24.已知点P0( x0, y0)和直线 l : Ax+By+ C=0,求点到直线距离的一个算法有以下几步:①输入点的坐标x0, y0;②计算 z1= Ax0+By0+ C;③计算 z2= A2+ B2;④输入直线方程的系数A, B和常数 C;⑤计算= | z1|;z2⑥输出 d 的值.其正确的次序为 ________.分析:利用点到直线的距离公式:| 0+0+|Ax By Cd=A2+ B2.答案:①④②③⑤⑥5.已知数字序列: 2,5,7,8,15,32,18,12,52,8.写出从该序列搜寻18 的一个算法.第一步输入实数 a.第二步__________________________________________________________________.第三步输出 a=18.分析:从序列数字中搜寻18,一定挨次输入各数字才能够找到.答案:若 a=18,则履行第三步,不然返回第一步二、解答题6.写出求a, b, c 中最小值的算法.解:算法以下:第一步比较a ,b的大小,当>时,令“最小值”为b;不然,令“最小值”为a;a b第二步比较第一步中的“最小值”与 c 的大小,当“最小值”大于 c 时,令“最小值”为c;不然,“最小值”不变;第三步“最小值”就是a, b, c 中的最小值,输出“最小值”.7.某铁路部门规定甲、乙两地之间游客托运转李的花费为c=0.53 ω,ω≤50,50×0.53 +ω- 50×0.85 ,ω >50.此中ω(单位:kg)为行李的重量,怎样设计计算花费c(单位:元)的算法.解:算法步骤以下:第一步输入行李的重量ω;第二步假如ω≤50,那么c=0.53ω ;假如ω>50,那么c=50×0.53+(ω-50)×0.85;第三步输出运费 c.8.下边给出一个问题的算法:第一步输入 a;第二步若 a≥4,则履行第三步,不然履行第四步;第三步输出 2a- 1;第四步输出 a2-2a+3.问题: (1) 这个算法解决的是什么问题?(2)当输入a 等于多少时,输出的值最小?解: (1) 这个算法解决的问题是求分段函数2x- 1,x≥4,f ( x)=x2-2x+3,x<4的函数值问题.(2)当 x≥4时, f ( x)=2x-1≥7,当 x<4时, f ( x)= x2-2x+3=( x-1)2+2≥2.∴当 x=1时, f ( x)min=2.即当输入 a 的值为1时,输出的值最小.。

最新苏教版高中数学必修三-第三章-概率知识讲解(全套及答案)

最新苏教版高中数学必修三-第三章-概率知识讲解(全套及答案)

最新教学资料·苏教版数学第3章概率§3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率(教师用书独具)●三维目标1.知识与技能:①了解随机事件、必然事件、不可能事件的概念;②正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系;2.过程与方法:通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力.通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性;做到在探索中学习,在探索中提高.3.情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系.●重点难点重点:理解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义;难点:理解随机事件发生的随机性,以及随机性中表现出的规律性.难点突破:给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知.按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程。

从而强化重点.(教师用书独具)●教学建议在本节课的教学中建议教师主要渗透以下几个方面的学法指导.(1)让学生亲自经历运用科学方法探索的过程。

主要是创设“掷硬币时‘正面向上’出现的比例是多少”的问题情境,让学生在探索中体会科学知识.(2)培养学生学会通过自学、观察、试验等方法获取相关知识,使学生在探索研究过程中提高分析、归纳、推理能力.(3)让学生通过试验,相互交流试验数据,体会相互合作提升办事效率.结合本节课的教学内容以及学生的认知情况,本节课主要突出运用了“探究式”教学方法,在试验探究的过程中,培养学生探究问题的能力、语言表达能力.●教学流程创设问题情境,引出问题1日常生活中的实例和问题2掷骰子实验.⇒引导学生结合前面学习过的频率的知识,观察、比较、分析,得出概率的概念.⇒通过引导学生回答所提问题理解频率与概率的关系.⇒通过例1及其变式训练,使学生掌握随机事件,必然事件及不可能事件的概念.⇒通过例2及其变式训练,使学生掌握概率与频率的关系问题的解题策略.⇒通过例3及其变式训练阐明概率的意义,使学生明确与概率有关的问题的解决方法.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识课标解读1.通过实例知道必然事件,不可能事件.2.理解随机事件的概念及概率的含义(重点).3.理解概率与频率的区别与联系,会列出重复试验的结果(难点).随机现象及事件【问题导思】考察下列现象:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)常温常压下石墨能变成金刚石;(4)三角形的内角和大于360°;(5)明天下雨以上现象中哪几个是必然会发生的?哪几个是肯定不会发生的?【提示】(1)(2)必然发生;(3)(4)肯定不会发生;(5)可能发生也可能不发生.1.确定性现象随机现象在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.2.事件及其分类(1)定义:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件.(2)分类事件确必然在一定条件下,必然会发生的事件叫做必然事件定 事件事件 不可能事件在一定条件下,肯定不会发生的事件叫做不可能事件随机事件 ①定义:在一定条件下,可能发生也可能不发生的事件叫做随机事件②表示:一般用A 、B 、C 等大写字母来表示概率【问题导思】做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数. 在本实验中出现了几种结果,还有其它实验结果吗?【提示】一共出现了1点,2点,3点,4点,5点,6点六种结果,没有其它结果出现.若做大量地重复实验,你认为出现每种结果的次数有何关系? 【提示】 大致相等一般地,对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ).(1)有界性:对任意事件A ,有0≤P (A )≤1.(2)规范性:若Ω、Ø分别代表必然事件和不可能事件,则P (Ω)=1,P (Ø)=0.事件类型的判断指出下列事件中哪些是必然事件、不可能事件、随机事件:(1)巴西足球队在下届世界杯足球赛中夺得冠军; (2)x 2-3x +2=0有两个不相等的实数根; (3)李四走到十字路口遇到张三; (4)某人购买福利彩票5注,均未中奖;(5)在标准大气压下,温度低于0 ℃时,冰融化.【思路探究】 本题可以根据事件的定义去判断,解决此类问题的关键是根据题意明确条件,判断在此条件下,事先能否断定出现某种结果.【自主解答】巴西足球队在下届世界杯足球赛中是否夺得冠军不确定,故(1)为随机事件;(2)∵Δ=(-3)2-8=1>0,∴(2)是必然事件;(3)(4)是随机事件;(5)是不可能事件.准确掌握随机事件、必然事件、不可能事件的概念是解题的关键,应用时要特别注意看清条件,在给定的条件下判断是一定发生,还是不一定发生,还是一定不发生,来确定属于哪一类事件.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少15次传呼;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥同性电荷,相互排斥.【解】由实数运算性质知①恒成立是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽,标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4也可能取不到4,电话总机在60秒可传呼15次也可不传呼15次.②④是随机事件.频率与概率的关系某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统计结果如下表所示:分组[0,900)[900,1 100)[1 100,1 300)[1 300,1 500)[1 500,1 700)[1 700,1 900)[1 900,+∞) 频数4812120822319316542频率(1)将各组的频率填入表中;(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.【思路探究】(1)频率=频数÷总数.(2)先求出灯管使用寿命在[0,1 500)的频数,再应用公式f n (A )=n An 求解.【自主解答】 (1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中使用寿命不足1 500小时的频数是48+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6,即估计灯管使用寿命不足1500小时的概率为0.6.1.频率是事件A 发生的次数m 与试验总次数n 的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n 很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.2.解此类题目的步骤是:先利用频率的计算公式依次计算频率,然后用频率估计概率.下表中列出了10次抛掷一枚硬币的试验结果,n 为每次试验抛掷硬币的次数,m 为硬币正面向上的次数.计算每次试验中“正面向上”这一事件的频率,并考查它的概率.试验序号抛掷的次数n正面向上的次数m1 500 2512 500 2493 500 2564 500 2535 500 2516 500 2467 500 2448 500 2589 500 262 10500247【解】 由事件发生的频率=mn ,可分别得出这10次试验中“正面向上”这一事件出现的频率依次为0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数字都在0.5附近摆动,由概率的统计定义可得,“正面向上”的概率为0.5.概率的意义张明同学抛一枚硬币10次,共有8次反面向上,于是他指出:“抛掷一枚硬币,出现反面向上的概率应为0.8”.你认为他的结论正确吗?为什么?【思路探究】 正确理解频率定义及概率的统计性定义是解答本题的关键.他的结论显然是错误的.【自主解答】 从概率的统计定义可看出:事件A 发生的频率m n 叫做事件A 发生的概率的近似值.但要正确理解概率的定义必须明确大前提:试验次数n 应当足够多.也就是说,只有“在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定”时,才用这个常数来刻画该随机事件发生的可能性大小,即称为这一事件发生的概率的近似值.张明同学抛掷一枚硬币10次,有8次正面向上,就得出“正面向上”的概率为0.8,显然是对概率统计性定义曲解的结果.1.随机事件的概率,本质上是刻画该事件在一次试验中发生的可能性大小的数量,不能由此断定某次试验中一定发生某种结果或一定不发生某种结果.2.在理解概率的定义时,一定要将频率与概率区分开,频率与试验的次数有关,概率不随试验次数而变化,是个客观值.某同学认为:“一个骰子掷一次得到6点的概率是16,这说明一个骰子掷6次一定会出现一次6点.”这种说法正确吗?说说你的理由.【解】 这种说法是错误的.因为掷骰子一次得到6点是一个随机事件,在一次试验中,它可能发生,也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现6点,也可能不出现6点,所以6次试验中有可能一次6点也不出现,也可能出现1次,2次,…,6次.混淆随机事件的概念致误先后抛两枚质地均匀的硬币.(1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种?(3)出现“一枚正面,一枚反面”的概率是多少?【错解】 (1)一共可能出现“两枚正面”“两枚反面”“一枚正面,一枚反面”3种不同的结果.(2)出现“一枚正面,一枚反面”的结果有1种. (3)出现“一枚正面,一枚反面”的概率是13.【错因分析】 忽略了“一枚反面,一枚正面”与“一枚正面,一枚反面”是两种不同的结果,从而导致得出错误的结果.【防范措施】 1.明确事件的构成,分清事件间的区别与联系. 2.试验的所有结果要逐一写出,不能遗漏.【正解】 (1)一共可能出现“正、正”“正、反”“反、正”“反、反”4种不同的结果.(2)出现“一枚正面,一枚反面”的结果,是“正、反”“反、正”两种. (3)出现“一枚正面,一枚反面”的概率是12.1.随机事件可以重复地进行大量的试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现出一定的规律性.2.随机事件频率与概率的区别与联系 频率概率区别频率反映了一个随机事件发生的频繁程概率是一个确定的值,它反映随机事件发度,是随机的.生的可能性的大小.联系频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率.1.以下事件是随机事件的序号是________.①2013年清明节下雨②打开电视,正在播放电视剧《西游记》③半径为R的圆,面积为πR2④某次数学考试二班的及格率为70%【解析】③为必然事件,其余为随机事件.【答案】①②④2.下面给出了四种现象:①若x∈R,则x2<0;②没有水分,种子发芽;③某地明年8月8日天晴;④若平面α∩平面β=m,n∥α,n∥β,则m∥n.其中是确定性现象的是________.【解析】根据确定性现象的定义知①②④为确定性现象.【答案】①②④3.已知随机事件A发生的频率为0.02,事件A出现了1 000次,由此可推知共进行了________次试验.【解析】1 0000.02=50 000.【答案】50 0004.对某电视机厂生产的电视机进行抽样检测的数据如表所示:抽取台数50100200300500 1 000优等品数4092192285478954(1)计算表中优等品的各个频率?(2)估计该厂生产的电视机是优等品的概率是多少?【解】(1)结合公式f n(A)=mn及题意可计算出优等品的各个频率依次为:0.8,0.92,0.96,0.95,0.956,0.954.(2)由(1)知计算出的优等品的频率虽然各不相同,但却都在常数0.95左右摆动,且随着抽取台数n 的增加,频率稳定于0.95,因此,估计该厂生产的电视机是优等品的概率是0.95.一、填空题 1.下列事件:①物体在重力作用下会自由下落; ②函数f (x )=x 2-2x +3=0有两个零点; ③下周日会下雨;④某寻呼台某一时段内收到传呼的次数少于10次. 其中随机事件的个数为________.【解析】 根据定义知①为必然事件,②为不可能事件,③④为随机事件. 【答案】 22.某地气象局预报说,明天本地降雨概率为80%,则下列解释正确的是________. ①明天本地有80%的区域降雨,20%的区域不降雨; ②明天本地有80%的时间降雨,20%的时间不降雨; ③明天本地降雨的机率是80%; ④以上说法均不正确.【解析】 本题主要考查对概率的意义的理解.选项①,②显然不正确,因为80%的概率是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的可能性是80%.【答案】 ③3.某班共49人,在必修1的学分考试中,有7人没通过,若用A 表示参加补考这一事件,则下列关于事件A 的说法正确的是________(填序号).(1)概率为17;(2)频率为17;(3)频率为7;(4)概率接近17.【解析】 频率是概率的近似值,当试验次数很大时,频率在概率附近摆动,本题中试验次数是49,不是很大,所以只能求出频率为17,而不能求出概率.【答案】 (2)4.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.【解析】 16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.【答案】 0.35 5.给出下列4个说法:①现有一批产品,次品率为0.05,则从中选取200件,必有10件是次品;②做100次抛掷一枚硬币的试验,结果有51次出现正面向上,因此,出现正面向上的概率是51100;③抛掷一颗骰子100次,有18次出现1点,则出现1点的频率是950;④随机事件的概率一定等于这个事件发生的频率. 其中正确的说法是________(填序号).【解析】 次品率为0.05,即出现次品的概率(可能性)是0.05,所以200件产品中可能有10件是次品,并非“必有”,故①错;在1次具体的试验中,正面向上的次数与试验的总次数之比是频率,而不是概率,故②错;③显然正确;由概率的定义知,概率是频率的稳定值,频率在概率附近摆动,故随机事件的概率不一定等于该事件发生的频率,故④错.故填③.【答案】 ③6.某人忘记了自己的存折密码的最后一位数字,但只记得最后一位数字是偶数,他随意按了一个数字,则他按对密码的概率为________.【解析】 最后一位是偶数有0,2,4,6,8共5种情况,按任一数字都是随机的,因此他按对密码的概率P =15.【答案】 157.任意抛掷一颗质地不均匀的骰子,向上的各点数的概率情况如下表所示:点数 1 2 3 4 5 6 概率110161613013012则在一次试验中最容易出现的向上的点数为________.【解析】 概率大的点数易出现,由上表知点数为6的最易出现. 【答案】 68.样本容量为200的频率分布直方图如图3-1-1所示,根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.图3-1-1【解析】 落在[6,10)内的概率为0.08×4=0.32,所以频数为0.32×200=64.落在[2,10)内的频率为(0.02+0.08)×4=0.4.【答案】 64 0.4 二、解答题9.我国西部某地区的年降水量在下列范围内的概率如下表所示: 年降水量 (单位:mm)低于130 [130,180) [180,230) [230,280) 高于280 概率0.150.280.310.210.05根据上表数据,计算:(1)年降水量在[180,280)范围内的概率; (2)年降水量小于230 mm 的概率.【解】 (1)[180,280)分成两个范围,第一范围是在[180,230);第二范围是[230,280). 由于在第一个范围的概率为0.31,第二个范围的概率为0.21,因此,年降水量在[180,280)范围内的概率为P =0.31+0.21=0.52.(2)由于小于230 mm 有三个范围,其一是低于130 mm 的;其二是[130,180)的;其三是[180,230)的;而这三个范围的概率分别是0.15、0.28、0.31,因此,年降水量小于230 mm 时的概率为P =0.15+0.28+0.31=0.74.10.如果掷一枚质地均匀的硬币10次,前5次都是正面向上,那么后5次一定都是反面向上,这种说法正确吗?为什么?【解】 不正确.如果把掷一枚质地均匀的硬币1次作为一次试验,正面向上的概率是12,指随着试验次数的增加,即掷硬币次数的增加,大约有一半正面向上.但对于一次试验来说,其结果是随机的,因此即使前5次都是正面向上,但对后5次来说,其结果仍是随机的,每次掷硬币试验正面向上的概率仍然是12,即每次可能是反面向上,也可能是正面向上,可能性相等.11.已知f (x )=x 2+2x ,x ∈[-2,1],给出事件A :f (x )≥a(1)当A为必然事件时,求a的取值范围;(2)当A为不可能事件时,求a的取值范围.【解】f(x)=x2+2x,x∈[-2,1],∴f(x)min=-1,此时x=-1.又f(-2)=0<f(1)=3,∴f(x)max=3.∴f(x)∈[-1,3](1)当A为必然事件时,即f(x)≥a恒成立,故有a≤f(x)min=-1,即a的取值范围是(-∞,-1].(2)当A为不可能事件时,即f(x)≥a一定不成立,故有a>f(x)max=3,则a的取值范围为(3,+∞).(教师用书独具)2011年6月4日,中国选手李娜在法国网球公开赛女单决赛中战胜意大利老将斯齐亚沃尼,顺利在罗兰·加洛斯红土球场夺得了个人第一座大满贯冠军,这是中国的第一个单打大满贯冠军,也创下了亚洲女选手首次登顶大满贯的纪录.决赛前,有人对两人参赛训练中一发成功次数统计如下表发球次数n 102050100200500李娜一发成功次数9174492179450一发成功的频率发球次数n 102050100200500斯齐亚沃尼一8194493177453发成功次数 一发成功的频率请根据以上表格中的数据回答以下问题:(1)分别计算出两位运动员一发成功的频率,完成表格; (2)根据(1)中计算的结果估计两位运动员一发成功的概率.【思路点拨】 先计算两位运动员一发成功的频率,然后根据频率估计概率. 【规范解答】 (1)发球次数n 10 20 50 100 200 500 李娜一发成功次数 9 17 44 92 179 450 一发成功的频率 0.90.850.880.920.8950.9发球次数n 10 20 50 100 200 500 斯齐亚沃尼一发 成功次数 8 19 44 93 177 453 一发成功的频率0.80.950.880.930.8850.906(2)由(1)中的数据可知,随着发球次数的增多,两位运动员一发成功的频率都越来越集中在0.9的附近,所以估计两人一发成功的概率均为0.9.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:时间范围 1年内 2年内 3年内 4年内 新生婴儿数n 5 544 9 607 13 520 17 190 男婴数m2 8834 9706 9948 892(1)计算男婴出生频率(保留4位小数); (2)估计这一地区男婴出生的概率约是多少. 【解】 (1)计算mn 即得到男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.(2)由于这些频率非常接近0.5173,因此估计这一地区男婴出生的概率约为0.5173.§3.2古典概型(教师用书独具)●三维目标1.知识与技能(1)理解基本事件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

高中数学苏教版必修三教学案:第1章 章末小结与测评含答案

高中数学苏教版必修三教学案:第1章 章末小结与测评含答案

一、算法的设计1.算法设计它与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象与概括,它往往是把问题的解法划分为若干个可执行的步骤,有时是重复多次,但最终都必须在有限个步骤之内完成.2.设计算法时的注意事项(1)与解决该问题的一般方法相联系,从中提炼与概括算法步骤.(2)将解决的问题过程划分为若干步骤.(3)引入有关的参数或变量对算法步骤加以表达.(4)用简炼的语言将各步骤表达出来.二、流程图1.流程图的定义用规定的图框和流程线来准确、直观、形象地表示算法的图形.2.算法的三种基本逻辑结构(1)顺序结构:(2)选择结构:(3)循环结构:3.画流程图的规则(1)使用标准的图框符号.(2)一般按从上到下、从左到右的方向画.(3)除判断框外,其他图框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号.(4)一种判断框分为“是”与“不是”两个分支,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.三、基本算法语句(1)赋值语句的一般格式:变量←表达式(2)输入语句要求输入的值只能是具体的常数,不能是表达式、变量或函数;输出语句可以输出常量、变量或表达式的值甚至也可以输出字符.(3)条件语句的一般形式:If A ThenBElseCEnd If(4)条件语句的嵌套的一般形式:其相应的流程图如下图所示.(5)循环语句①当型语句:While P循环体End While②直到型语句:Do循环体Until PEnd Do③当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为:For I From“初值”To“终值”Step“步长”循环体End For(6)使用算法语句时应注意的几个问题:①一个输入语句可以对多个变量赋值,中间用“,”隔开,输出语句也类似.②赋值号左边只能是变量,而不能是表达式.两边不能对换,若对换,需引入第三个变量.③条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两数大小等.④当型循环是当条件满足时执行循环体.而直到型循环是当条件不满足时执行循环体.⑤在解决一些需要反复执行的任务时,如累加求和、累乘求积通常都用循环语句来实现,要注意循环变量的控制条件.⑥在循环语句中嵌套条件语句时,要注意书写格式.四、算法案例(求最大公约数)1.更相减损术更相减损术(也叫等值算法)是我国古代数学家在求两个正整数最大公约数时的一个算法,其操作过程是:对于给定的两个正整数,用较大的数减去较小的数,接着把得到的差与较小的数比较,用这两个数中较大的数减去较小的数,继续上述操作(大数减去小数),直到产生一对相等的数为止,那么这个数(等数)即是所求的最大公约数.2.辗转相除法辗转相除法(即欧几里得算法)就是给定两个正整数,用较大的数除以较小的数,若余数不为零,则将较小的数和余数继续上面的除法,直到余数为零,此时的除数就是所求的最大公约数.3.二者的区别与联系辗转相除法进行的是除法运算,即辗转相除,而更相减损术进行的是减法运算,即辗转相减,但实质都是一个递归过程.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.如图表示的算法结构是________结构.解析:由流程图知为顺序结构. 答案:顺序2.语句A ←5,B ←6,A ←B +A ,逐一执行后,A 、B 的值分别为________. 解析:∵A =5,B =6, ∴A =6+5=11,B =6. 答案:11、63.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则lg1 000⊗(12)-2=________.解析:令a =lg1 000=3,b =(12)-2=4,∴a <b , 故输出b -1a =4-13=1. 答案:14.如图是一个算法的流程图,最后输出的W =________.解析:第一次循环后知S =1. 第二次循环后知T =3,S =9-1=8. 第三次循环后知T =5,S =25-8=17. 所以输出W =17+5=22. 答案:225.下面的伪代码运行后的输出结果是________.a ←1b ←2c ←3a ←b b ←c c ←aPrint a ,b ,c解析: 第4行开始交换,a =2,b =3,c 为赋值后的a , ∴c =2. 答案: 2,3,26.一个伪代码如图所示,输出的结果是________.S ←1For I From 1 to 10 S ←S +3×I End For Print S解析:由伪代码可知S=1+3×1+3×2+…+3×10=1+3×(1+2+…+10)=166.答案:1667.下面的伪代码输出的结果是________.i←1s←1While i≤4s←s×ii←i+1End WhilePrint s解析:由算法语句知s=1×1×2×3×4=24.答案:248.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数是51.答案:519.下列算法,当输入数值26时,输出结果是________.Read xIf 9<x<100 Thena←x\10b←Mod(x,10)x←10b+aPrint xEnd If解析:这是一个由条件语句为主体的一个算法,注意算法语言的识别与理解.此算法的目的是交换十位、个位数字得到一个新的二位数.(x\10是取x除以10的商的整数部分).答案: 6210.(广东高考)执行如图所示的程序框图,若输入n的值为4,则输出s的值为________.解析:本题第1次循环:s=1+(1-1)=1,i=1+1=2;第2次循环:s=1+(2-1)=2,i=2+1=3;第3次循环:s=2+(3-1)=4,i=3+1=4;第4次循环:s=4+(4-1)=7,i =4+1=5.循环终止,输出s的值为7.答案: 711.如图所示的流程图输出的结果为________.解析:由题意知,输出的b为24=16.答案:1612.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是________.解析:依据循环结构运算并结合输出结果确定条件.k=2,s=1,s=1×log23=log23,k=3,s=log23·log34=log24,k=4,s=log24·log45=log25,k=5,s=log25·log56=log26,k=6,s=log26·log67=log27,k=7,s=log27·log78=log28=3.停止,说明判断框内应填k≤7或k<8.答案:k≤7(或k<8)13.下列伪代码运行后输出的结果为________.j←1While j≤5a←mod a+j,5j←j+1End WhilePrint a解析:第一步:a=mod(1,5)=1,j=2;第二步:a=mod(1+2,5)=3,j=3;第三步:a =mod(3+3,5)=1,j=4;第四步:a=mod(1+4,5)=0,j=5;a=mod(0+5,5)=0,j=6,此时输出,∴a=0.答案:014.执行如图所示的流程图,若输出的结果是8,则判断框内m的取值范围是________.解析:由题知,k=1,S=0,第一次循环,S=2,k=2;第二次循环,S=2+2×2=6,k=3;……;第六次循环,S=30+2×6=42,k=6+1=7;第七次循环,S=42+2×7=56,k=7+1=8,此时应输出k的值,从而易知m的取值范围是(42,56].答案:(42,56]二、解答题(本大题共4小题,共50分)15.(本小题满分12分)写出求最小的奇数I,使1×3×5×7×…×I>2 012的伪代码.解:t←1I←1While t≤2 012t←t×II←I+2End WhilePrint I-216.(本小题满分12分)高中毕业会考等级规定:成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D”.试编制伪代码算法,输入50名学生的考试成绩(百分制,且均为整数),输出其相应的等级.解析:伪代码如图:While I≤50Read a I学生成绩If a I<60 ThenPrint “D”Else If a I<70 ThenPrint “C”Else If a I<85 ThenPrint “B”ElsePrint “A”End IfI←I+1End While17.(本小题满分12分)下面是计算应纳个人所得税的算法过程,其算法如下:S1 输入工资x(x≤8 000);S2 如果x≤3 500,那么y=0;如果3 500<x≤5 000,那么y=0.03(x-3 500);否则y=45+0.1(x-5 000) S3 输出税款y,结束.请写出该算法的伪代码及流程图.解:伪代码.Read x(x≤8 000)If x≤3 500 Theny←0ElseIf x≤5 000 Theny←0.03(x-3 500)Elsey←45+0.1(x-5 000)End IfEnd IfPrint y流程图18.(本小题满分14分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法.解:(1)y=100×1.012x(2)伪代码如下:S←100I←1.012For x From 1 To 10S←S×IEnd ForPrint S(3)即求满足100×1.012x≥120的最小正整数x,其算法流程图如图.。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

2019年苏教版高中数学必修三-模块学习评价及答案

2019年苏教版高中数学必修三-模块学习评价及答案

模块学习评价(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为2∶3∶5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n =________.【解析】 根据分层抽样比可知22+3+5=16n,∴n =80. 【答案】 802.如图1所示,若输入的值为-5,则输出的结果是______.图1【解析】 ∵-5<0, ∴x =2-5, ∵2-5>0,∴x =4+log 2 2-5=4-5=-1. 【答案】 -13.将一批数据分成5组列出频率分布表,其中第1组的频率是0.1,第4组和第5组的频率之和是0.3,则第2组和第3组的频率之和是________.【解析】 由频率分布直方图的特点知,第2组和第3组的频率之和为1-0.1-0.3=0.6. 【答案】 0.64.已知一颗粒子等可能地落入如图2所示的四边形ABCD 内的任意位置.如果通过大量试验发现粒子落在△BCD 内的频率稳定在25附近,那么点A 和点C 到直线BD 的距离之比约为________.图2【解析】 ∵P =25,∴粒子落在△ABD 内的概率为1-25=35,∴S △ABD S △CBD =3525=32, ∴点A 与点C 到直线BD 的距离之比约为3∶2. 【答案】 3∶25.(2018·苏州高一检测) x←2 y←3 z←3x+2y Print z上面伪代码输出的结果为________. 【解析】 z =3×2+2×3=12. 【答案】 126.(2018·广东高考)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)【解析】 利用平均数、中位数、标准差公式分类讨论求解. 假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4, 则⎩⎪⎨⎪⎧x 1+x 2+x 3+x44=2,x 2+x 32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4.又s =141-2+2-2+3-2+4-2]=121-2+2-2+-x 2-2+-x 1-2=121-2+2-2]=1,∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.【答案】 1,1,3,37.(2018·重庆高考改编)如图3是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.图3【解析】 由题意知,这10个数据落在区间[22,30)内的有22、22、27、29,共4个,所以其频率为410=0.4.【答案】 0.48.已知两个变量x 和y 之间具有线性相关关系,5次试验的观测数据如下:经计算得线性回归方程y ∧=bx +a 的系数b =0.575,则a =________.【解析】 由题意知:x =140,y =65.6,因为点(x ,y )一定在直线上,代入可得a =-14.9. 【答案】 -14.99.已知集合A ={-1,0,1,3},从集合A 中有放回地任取两个元素x ,y 作为点P 的坐标,则点P 落在坐标轴上的概率为________.【解析】 所有基本事件构成集合Ω={(-1,-1),(-1,0),(-1,1),(-1,3),(0,-1),(0,0),(0,1),(0,3),(1,-1),(1,0),(1,1),(1,3),(3,-1),(3,0),(3,1),(3,3)},其中点P 落在坐标轴上的事件所含基本事件有(-1,0),(0,-1),(0,0),(0,1),(0,3),(1,0),(3,0),∴P =716.【答案】71610.(2018·陕西高考改编)对一批产品的长度(单位:毫米)进行抽样检测,下图4为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品,用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是________.图4【解析】 由图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.【答案】 0.4511.(2018·浙江高考改编)图5若某流程图如图5所示,则该程序运行后输出的值等于__________. 【解析】 当k =1时,S =1+11×2=32; 当k =2时,S =32+12×3=53;当k =3时,S =53+13×4=74;当k =4时,S =74+14×5=95;此时k =5>4,所以S =95.【答案】 9512.有一个质地均匀的正四面体,它的四个面上分别标有1,2,3,4这四个数字.现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.【解析】 总的基本事件总数为4×4×4=64,数字之和为4的有(1,1,2),(1,2,1),(2,1,1)共3个,P =364. 【答案】36413.为了科学的比较考试成绩,有些选拔性考试中常常会将考试分数转化为标准分,转化关系为:Z =x -xs (其中x 是某位学生的考试分数,x 为该次考试的平均分,s 是该次考试的标准分,Z 称为这位学生的标准分),转化成标准分后可能会出现小数或负数,因此,又常常再将Z 作线性变换转化成其他分数.例如某次学业选拔考试采用的是T 分制,线性变换公式为:T =40Z +60,已知在这次考试中某位学生的考试分数是85分,这次考试的平均分是70,标准分是25,则该考生的T 分数为________.【解析】 Z =85-7025=35,∴T =40×35+60=84(分).【答案】 8414.设a ∈[0,10)且a≠1,则函数f(x)=log a x 在(0,+∞)内为增函数且g(x)=a -2x在(0,+∞)内也为增函数的概率为________.【解析】 由条件知,a 的所有可能取值为a ∈[0,10)且a≠1,使函数f(x),g(x)在(0,+∞)内都为增函数的a 的取值为⎩⎪⎨⎪⎧a>1,a -2<0,∴1<a<2.由几何概率知,P =2-110-0=110.【答案】110二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)下面是水稻产量与施化肥量的一组观测数据(单位:千克/亩):(1)(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?【解】 (1)散点图如图.(2)从图中可以发现数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系.当施化肥量由小到大变化时,水稻产量由小变大,但水稻产量不会一直随化肥施用量的增加而增长.16.(本小题满分14分)对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度的数据如下:甲:27 38 30 37 35 31 乙:33 29 38 34 28 36 根据以上数据,试判断他们谁更优秀?【解】 x 甲=16(27+38+30+37+35+31)=33,s 2甲=16[(27-33)2+(38-33)2+(30-33)2-(37-33)2+(35-33)2+(31-33)2]=16×94≈15.67,s 甲≈3.96. x 乙=16(33+29+38+34+28+36)=33,s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=16×76≈12.67,s 乙≈3.56. ∴x 甲=x 乙,s 甲>s 乙. 所以乙表现更优秀.17.(本小题满分14分)某校从参加2019年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据:图6(1)根据表中已知数据,你认为在①、②、③、④处的数值分别为________、________、________、________. (2)补全在区间[70,140]上的频率分布直方图;(3)若成绩不低于110分的同学能出线参加决赛,那么可以估计该校大概有多少学生出线? 【解】 (1)50 0.040 0.100 5 (2)如下图所示:(3)在随机抽取的50名同学中有7名出线,450×750=63.故在参赛的450名同学中大概有63名同学出线.18.(本小题满分16分)试写出一个算法,计算全班物理考核学期总平均分,其中期中考核占30%,期末考核占40%,平时表现占30%,并给出流程图(假设全班学生数为m).【解】 算法如下: S1 t←0,n←m; S2 输入x ,y ,z ;S3 ω←0.3x+0.4y +0.3z ; S4 t←t+ω; S5 n←n-1;S6 如果n≤0,执行S7,否则,执行S2; S7 s←t/m; S8 输出s.这个程序如果要想计算出结果,那么只要对x ,y ,z 输入一个非负数值即可. 流程图如图所示:19.(本小题满分16分)已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0. (1)若a 、b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.【解】 (1)基本事件(a ,b)共有36个,方程有正根等价于a -2>0,16-b 2>0,Δ≥0,即a>2,-4<b<4,(a -2)2+b 2≥16.设“方程有两个正根”为事件A ,则事件A 包含的基本事为(6,1),(6,2),(6,3),(5,3)共4个,故所求的概率为P(A)=436=19.(2)试验的全部结果构成区域Ω={(a ,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16. 设“方程没有实根”为事件B ,则构成事件B 的区域为 B ={(a ,b)|2≤a≤6,0≤b≤4,(a -2)2+b 2<16},其面积为S(B)=14×π×42=4π,故所求的概率为P(B)=4π16=π4.20.(本小题满分16分)(2018·湖南高考)某人在如图7所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:图7(1)完成下表,并求所种作物的平均年收获量:(2)【解】 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:所种作物的平均年收获量为 51×2+48×4+45×6+42×315=102+192+270+12615=69015=46.(2)由(1)知,P(Y =51)=215,P(Y =48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P(Y≥48)=P(Y =51)+P(Y =48)=215+415=25.。

2019-2020学年度最新苏教版高中数学苏教版必修三学案:第一单元 习题课 -含答案

2019-2020学年度最新苏教版高中数学苏教版必修三学案:第一单元 习题课 -含答案

学习目标 1.提高把具体问题的求解转化为算法步骤的能力;2.能正确选择并运用三种算法结构流程图表示具体问题的算法;3.提高读图能力.知识点一 三种算法结构思考1 我们先后学了三种算法结构,你能简述一下什么时候会用到它们吗?思考2 循环结构是个难点.你认为循环结构的关键在哪里?需要注意些什么?知识点二 用流程图表示算法设计一个算法的流程图通常要经过以下步骤: 第一步,用__________表述算法步骤.第二步,确定每一个算法步骤所包含的算法结构,并用相应的__________表示,得到该步骤的流程图.第三步,将所有步骤的流程图用__________连接起来,并加上起止框,得到表示整个算法的流程图.类型一 算法的设计例1 已知函数y =⎩⎪⎨⎪⎧-x 2-1, x ≤-1,x 3, x >-1,试设计一个算法,输入x 的值,求对应的函数值.反思与感悟 设计一个具体问题的算法,通常按以下步骤:(1)认真分析问题,找出解决此题的一般数学方法. (2)借助有关变量或参数对算法加以表述. (3)将解决问题的过程划分为若干步骤. (4)用简练的语言将这个步骤表示出来.跟踪训练1 已知函数y =⎩⎪⎨⎪⎧2x-1, x ≤-1,log 2(x +1), -1<x <2,x 2, x ≥2,试设计一个算法,输入x 的值,求对应的函数值.类型二 画流程图例2 设计求1×2×3×4×…×2 016×2 017的值的算法,并画出流程图.反思与感悟 算法要求指令明确,在有限步内解决问题,故用自然语言设计算法时不能大而化之.一旦用自然语言表述出算法,转换为流程图就会相对简单,但画时要用对图框,并尽量使主线在一条纵轴上,以增强流程图的条理性. 跟踪训练2 某流程图如图所示,它的功能是什么?类型三 算法在生活中的应用例3 以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60,画出求80分以上的同学的平均分的流程图.反思与感悟在循环结构中,要注意根据条件设置合理的计数变量、累加(乘)变量,同时条件的表述要恰当、准确.累加变量的初值一般为0,而累乘变量的初值一般为1.跟踪训练3乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车客票托运费计算方法:行李质量不超过50 kg 时按0.25元/kg;超过50 kg而不超过100 kg时,其超过部分按0.35元/kg;超过100 kg时,其超过部分按0.45元/kg.设计输入行李质量,计算出托运的费用的算法,并画出流程图.1.流程图中,具有赋值、计算功能的是________框.2.下列关于流程图的描述中,正确的有________.①对于一个算法来说,流程图是唯一的;②任何一个流程图都必须有起止框;③流程图只有一个入口,也只有一个出口;④输出框一定要在终止框前.3.执行如图所示的流程图,若输入n的值为3,则输出s的值是________.4.如图所示,算法输出的结果s=132,则判断框中应填______.1.在一个问题中经常要进行多次判断,这就需要选择结构嵌套来进行解决.2.直到型循环结构是先执行一次循环体,然后再判断是否继续执行循环体,当型循环结构是先判断是否执行循环体;直到型循环结构是在条件不满足时执行循环体,当型循环结构是在条件满足时执行循环体.要掌握这两种循环结构,必须抓住它们的区别.3.算法问题经常涉及到与现实生活有关的题目,解答时,首先根据题意写出内含的表达式,选择适合的结构,设计流程图,因此,解题的关键是写出函数解析式.答案精析问题导学知识点一思考1(1)顺序结构每一个流程图都有.(2)当一个问题需要根据不同的条件选择不同的处理方法时,要用到选择结构;在循环结构中用选择结构来控制循环.(3)循环结构用于处理需要反复执行同一个算法的问题.思考2在循环结构中,关键是根据条件设置合理的计数变量、累加(乘)变量,需要注意的是控制循环的条件表述要恰当、准确.累加变量的初值一般为0,而累乘变量的初值一般为1. 知识点二自然语言流程图流程线题型探究例1解算法如下:S1输入x的值.S2当x≤-1时,y←-x2-1,否则执行S3.S3y←x3.S4输出y.跟踪训练1解算法如下:S1输入x的值.S2当x≤-1时,y←2x-1,否则执行S3.S3当x<2时,y←log2(x+1),否则执行S4.S4y←x2.S5输出y.例2解算法如下:S1设M的值为1.S2设i的值为2.S3如果i≤2 017,则执行S4,否则转去执行S6.S4计算M乘i,并将结果赋给M.S5计算i加1,并将结果赋给i,转去执行S3.S6输出M的值并结束算法.流程图如图:跟踪训练2解i=1,S=12;i=2,S=12-22;i=3,S=12-22+32;i=4,S=12-22+32-42;i=100,S=12-22+32-42+…+992-1002,i=100+1>100,终止循环,输出S. 故其功能是计算12-22+32-42+…+992-1002的值.例3解流程图如图:跟踪训练3 解 设行李质量为x kg ,应付运费为y 元,则运费公式:y =⎩⎪⎨⎪⎧0.25x ,0<x ≤50,0.25×50+0.35(x -50),50<x ≤100,0.25×50+0.35×50+0.45(x -100), x >100,整理得y =⎩⎪⎨⎪⎧0.25x ,0<x ≤50,0.35x -5,50<x ≤100,0.45x -15,x >100.算法步骤:S1 输入行李质量x .S2 当x ≤50时,y ←0.25x ,否则,执行S3.S3 当x ≤100时,y ←0.35x -5;否则,y ←0.45x -15. S4 输出y . 流程图如图:当堂训练1.处理2.②③解析②③正确,对于一个算法来说,流程图不唯一,与设计有关,故①错.输入、输出的位置,不一定在开始和结束处,故④错.3.4解析i=1,s=1→s=1,i=2→s=2,i=3→s=4,i=4,结束.4.i≥11解析由题意知,i=12,s=1,进入循环,s=12,i=11,再次循环,s=132,i=10,此时应输出s,则判断框中应填“i≥11”.。

苏教版数学高一【必修三】第二章《平面解析几何初步》综合检测

苏教版数学高一【必修三】第二章《平面解析几何初步》综合检测

(时间:120分钟;满分160分)一、填空题(本大题共14小题,每小题5分,共计70分.把答案填在题中横线上) 1.直线l过点A(1,|t|)和点B(-2,1),当________时,直线的倾斜角为钝角.解析:表示出直线的斜率k=1-|t|-2-1,由直线的倾斜角为钝角得1-|t|-3<0,求得-1<t<1.答案:-1<t<12.两条平行线l1:3x+4y-2=0,l2:ax+6y=5间的距离为________.解析:由l1∥l2得a3=64,a=92,所以l2的方程为3x+4y-103=0.l1、l2间的距离d=|-2+103|5=415.答案:4 153.若直线l过点A(3,4),且点B(-3,2)到直线l的距离最大,则直线l的方程为________.解析:只有当l⊥AB时符合要求,∵k AB=4-23-(-3)=13,∴l的斜率为-3.∴直线l的方程为y-4=-3(x-3),即3x+y-13=0.答案:3x+y-13=04.设点P(x,y,z)关于原点的对称点为Q,则PQ=________.解析:点P(x,y,z)关于原点的对称点为Q(-x,-y,-z),则PQ=2x2+y2+z2.答案:2x2+y2+z25.已知点P是圆C:x2+y2+4x+ay-5=0上任意一点,P点关于直线2x+y-1=0的对称点在圆上,则实数a等于________.解析:依题意可知,直线2x+y-1=0过圆心(-2,-a2),则2×(-2)-a2-1=0,∴a=-10.答案:-106.圆x2+y2+4y-1=0关于原点(0,0)对称的圆的方程为________(标准方程).解析:先求出圆心(0,-2)关于原点的对称点(0,2),再让半径相等即可.答案:x2+(y-2)2=57.对于任意实数λ,直线(λ+2)x-(1+λ)y-2=0与点(-2,-2)的距离为d,则d的取值范围为________.解析:无论λ取何值,直线都过定点(2,2),而点(2,2)与点(-2,-2)的距离为42,又点(-2,-2)不在已知直线上,故d>0,所以0<d≤4 2.答案:0<d≤4 28.圆x2+y2-2x-3=0与直线y=ax+1交点的个数为________.解析:直线y=ax+1恒过定点(0,1),而02+12-2×0-3<0,即点在圆内,所以直线与圆相交,有两个交点.答案:29.(2010年高考课标全国卷)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C 的方程为________.解析:由题意知A 、B 两点在圆上,∴直线AB 的垂直平分线x =3过圆心.又圆C 与直线y =x -1相切于点B (2,1),∴k BC =-1.∴直线BC 的方程为y -1=-(x -2),即y =-x +3.y =-x +3与x =3联立得圆心C 的坐标为(3,0),∴r =BC =(3-2)2+(0-1)2= 2.∴圆C 的方程为(x -3)2+y 2=2.答案:(x -3)2+y 2=210.等腰直角三角形ABC 中,∠C =90°,若点A 、C 的坐标分别为(0,4),(3,3),则点B 的坐标是________.解析:设B (x ,y ),根据题意可得⎩⎪⎨⎪⎧ k AC ·k BC =-1BC =AC, 即⎩⎪⎨⎪⎧ 3-43-0·y -3x -3=-1(x -3)2+(y -3)2=(0-3)2+(4-3)2.解得⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧ x =4y =6, ∴B (2,0)或B (4,6).答案:(2,0)或(4,6)11.已知直线y =12x +b (b ≠0)与x 轴、y 轴的交点分别为A 、B ,如果△AOB 的面积(O 为原点)小于等于1,那么b 的取值范围是________.解析:令x =0,则y =b ,∴点B 坐标是(0,b );令y =0,则x =-2b ,∴点A 坐标是(-2b,0).∴△AOB 的面积S =12·|b |·|-2b |=b 2≤1, ∴-1≤b ≤1且b ≠0.答案:-1≤b ≤1且b ≠012.在平面直角坐标系xOy 中,若曲线x =4-y 2与直线x =m 有且只有一个公共点,则实数m 等于________.解析:∵曲线x =4-y 2,即为x 2+y 2=4(x ≥0).其图形如图所示的半圆.∴直线x =m 与半圆有且只有一个公共点时m =2.答案:213.两圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-1=0的公共弦长的最大值为________.解析:两圆方程相减得相交弦所在直线为x +y +a +b =0,∴弦长=2 1-⎝ ⎛⎭⎪⎫a -b 22,∴a =b 时,弦长最大为2.答案:214.直线x -y +1=0与2x -2y -1=0是圆的两条切线,则该圆的面积是________. 解析:∵两平行直线间的距离即为圆的直径.∴2R =|1+12|2=324, ∴R =328, ∴S 圆=πR 2=932π. 答案:932π 二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知直线l 的方程是3x +4y -12=0,求分别满足下列条件的l ′的方程:(1)l ′与l 平行,且过点(-1,3);(2)l ′与l 垂直,且l ′与坐标轴围成的三角形面积为4.解:(1)设所求直线的方程为3x +4y +t =0,将(-1,3)代入上式得-3+12+t =0,有t =-9. ∴所求直线方程为3x +4y -9=0.(2)设所求直线方程为4x -3y +C =0,则它与坐标轴的交点分别为⎝⎛⎭⎫-C 4,0,⎝⎛⎭⎫0,C 3, ∴S =12⎪⎪⎪⎪-C 4⎪⎪⎪⎪C 3=4,C =±46, ∴所求直线方程为4x -3y ±46=0.16.(本小题满分14分)如图,已知△ABC 在第一象限中,A (1,1)、B (5,1),∠A =60°,∠B=45°,求:(1)AB 边所在直线的方程;(2)AC 边、BC 边所在直线的方程.解:(1)∵A (1,1),B (5,1),∴直线AB 的方程是y =1.(2)由题图可知,k AC =tan 60°=3,∴直线AC 的方程是y -1=3(x -1),即3x -y -3+1=0.∵k BC =tan(180°-45°)=-1,∴直线BC 的方程是y -1=-(x -5),即x +y -6=0.17.(本小题满分14分)已知正方形的中心为直线x -y +1=0和2x +y +2=0的交点,正方形一边所在直线方程为x +3y -2=0,求其他三边方程.解:由⎩⎪⎨⎪⎧ x -y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴中心坐标为(-1,0).∴中心到已知边的距离为|-1-2|12+32=310, 设正方形相邻两边方程为x +3y +m =0和3x -y +n =0.∵正方形中心到各边距离相等,∴|-1+m |10=310和|-3+n |10=310, ∴m =4或m =-2(舍),或n =6或n =0.∴其他三边方程为x +3y +4=0,3x -y =0,3x -y +6=0.18.(本小题满分16分)已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R)表示的图形是圆.(1)求其中面积最大时圆的方程;(2)若点P (3,4t 2)恒在所给圆内,求t 的取值范围.解:(1)方程即(x -t -3)2+(y +1-4t 2)2=(t +3)2+(1-4t 2)2-16t 4-9,∴r 2=-7t 2+6t +1>0,∴-17<t <1. ∵r =-7t 2+6t +1= -7⎝⎛⎭⎫t -372+167, ∴t =37∈⎝⎛⎭⎫-17,1时,r max =477,此时圆面积最大, 所对应的圆的方程是⎝⎛⎭⎫x -2472+⎝⎛⎭⎫y +13492=167. (2)当且仅当32+(4t 2)2-2(t +3)×3+2(1-4t 2)4t 2+16t 4+9<0时,点P 恒在圆内.∴8t 2-6t <0,即0<t <34. 19.(本小题满分16分)已知圆C :x 2+y 2-2x -4y +m =0,(1)求实数m 的取值范围;(2)若直线l :x +2y -4=0与圆C 相交于M ,N 两点,且OM ⊥ON ,求m 的值. 解:(1)由x 2+y 2-2x -4y +m =0得(x -1)2+(y -2)2=5-m ,故5-m >0,即m <5.(2)设M (x 1,y 1),N (x 2,y 2).直线OM ,ON 的斜率显然都存在,由OM ⊥ON ,得y 1x 1·y 2x 2=-1, 即x 1x 2+y 1y 2=0.①由⎩⎪⎨⎪⎧x +2y -4=0,x 2+y 2-2x -4y +m =0,得5y 2-16y +m +8=0.又因直线l 与圆C 交于M ,N 两点,所以Δ=162-20(m +8)>0,得m <245,且y 1+y 2=165,y 1y 2=m +85,所以x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2=4m -165.代入①,得m =85,满足m <245. 所以m =85. 20.(本小题满分16分)如图,圆x 2+y 2=8内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦.(1)当α=135°时,求AB ;(2)当弦AB 被点P 平分时,求出直线AB 的方程;(3)设过P 点的弦的中点为M ,求点M 的坐标所满足的关系式.解:(1)如图所示,过点O 做OG ⊥AB 于G ,连结OA ,当α=135°时,直线AB 的斜率为-1,故直线AB 的方程为x +y -1=0,∴OG =|0+0-1|2=22. 又∵r =22,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兴化市板桥高级中学2009-2010学年度第二学期期中学情检测
高一数学参考答案
1、90
2、2,1-==b a
3、0
4、-2
5、),1(),(+∞⋃-∞a
a 6、ο307、18、25 9、3
39210、311、112、直角 13、32
312214、③ 15、解:(1)()[]()21cos cos cos -
=+-=+-=B A B A C π∴C =120° (2)由题设:⎩⎨⎧=+=322b a ab

-+=•-+=∴120cos 2cos 222222ab b a C BC AC BC AC AB ()()102322
222=-=-+=++=ab b a ab b a 10=∴AB
16、(1)因为x>0,y>0,且2x+y=1
所以
12121x y x y ⎛⎫+=+⨯ ⎪⎝⎭()122x y x y ⎛⎫=++ ⎪⎝⎭
44y x x y =++
448≥+=+=
4112,,42y x y x x y ==上式中,等号当且仅当
即也即x=y=时成立 min 128x y ⎛⎫∴+= ⎪⎝⎭
(2)
(
)()()(
)(
)2
2min ,,23
302
3
,3a+b 22260
1
121
a b R a b ab a b ab a b a b R a b a b ab a b a b a b a b a b ++∈++=-++∴=>∴+<∈+≥-++⎛⎫≥= ⎪⎝⎭∴+++-≥∴+≥==
∴+=因为且而当时,有
即上式中等号当且仅当时成立
17、
45451530453015sin sin 1000sin 30sin15sin15cos 7541000100010005001
sin 30sin 302
o o o o
o o o
o o
o o o o ABS SBC BSA AS BS ABS BAS
BS BS ∆∠=-∠=-=∠=-=∴=∠∠∴=∴=⨯=⨯=⨯=在ABS 中,
答:沿SB 还需走500米才能到达山顶。

18、(1):当;2,111===S a n 时
,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当
故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列.
设{b n }的公比为.41,4,,11=
∴==q d b qd b q 则 故1111
122,{}.44n n n n n n b b q b b ---==⨯=即的通项公式为 (II ),4)12(422411
---=-==n n n
n n n n b a c Θ ]4)12(4
)32(454341[4],
4)12(45431[13212121n n n n n n n n T n c c c T -+-++⨯+⨯+⨯=-++⨯+⨯+=+++=∴--ΛΛΛ
两式相减得 ].54)56[(9
1]54)56[(314)12()4444(2131321+-=∴+-=-+++++--=-n n n n n n n T n n T Λ 19、⑴由11A B x =,知114000B C x =,所以4000(20)(8)S x x
=++ 8000041608(0)x x x
=++>
⑵800004160841605760S x x =++
≥+=当且仅当800008100x x x ==即时取等号。

答:要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米。

(]1000041608(),0,80S x x x =++
∈(3)由题意知: ()()(]100000,80f x x f x x x =+∈令,利用定义证明在上为单调减函数。

()8020541608205
x f x S =+⨯所以,当时,取得最小值,从而取得最小值 5800=。

答:要使公园所占面积最小,休闲区应设计为长80米,宽50米。

20、(1)由112323(1)n n n n n S a S a n ++=-=-+及
123n n a a +=+得∴32331=∴=+++c a a n n
(2)1111112)3(3:)1(3,32-⋅+=+=∴-==n n a a a a S a 知由Θ
*32.3N n a n n ∈-=∴
(3)设存在S ,P ,r 成等差数列使且r p s a a a r P S N ,,,*<<∈, r s p a a a +=∴2即)323()323()323(2-⋅+-⋅=-⋅r s p
s r s p r s p -+-++=∴+=∴21222211(*)
*..S P r N S P r
∈<<Q 且2122p r s -+-∴、为偶数 所以1+2r-s 为奇数,这与(*)矛盾,故不存在适合条件的项。

相关文档
最新文档