杆系有限元

合集下载

2-杆系结构有限元分析报告

2-杆系结构有限元分析报告

得,正因为形状函数反映了单元的位移分布状态,矩阵 Ν 及其
Ni , N j 也由此而得名为形状函数矩阵和形状函数。
<<结构分析中的有限单元法>> By Xiaojun Wang
8 /120
杆单元
从式(2.4)还可以看出:通过形状函数把两孤立的常值位移
ui , u j 化为连续函数 u(x) ,数学上讲,就是已知函数在闭区间 两个端点上的值 ui , u j ,构成一个连续函数 u(x) ,它在端点应 保证等于 ui ,u j ,这样的计算步骤就是内插,形状函数 Ni , N j 就是实现内插的两个函数,所以 Ni , N j 又叫内插函数,形状函 数矩阵 Ν 又叫内插函数矩阵,而式 u(x) Ni (x)ui N j (x)u j 又叫
1. 本点为 1,它点为 0; 2. 任意一点总各为 1。
杆单元形状函数 Ni , N j 如图 3.3 所示。
<<结构分析中的有限单元法>> By Xiaojun Wang
7 /120
杆单元
当结构变形之后, i,j 结点的位移通常都不为零,这时单
元内位移按式(2.4)由结点位移和相应的形状函数线性组合求
一个元素都是坐标的函数。
<<结构分析中的有限单元法>> By Xiaojun Wang
6 /120
杆单元
分析式(2.4):当 ui 1 , u j 0 时,杆单元的位移 u(x) 就 是 Ni ,当 ui 0 ,u j 1时,杆单元的位移分布就是 N j ,所以
形状函数的力学含义是当单元的一个结点位移为单位值,其他 结点的位移为零时,单元内位移的分布规律。可以发现形状函 数的两个重要性质为:

3杆系结构的有限元法

3杆系结构的有限元法

3杆系结构的有限元法有限元法是一种常用的结构分析方法,可以用来分析各种复杂的结构问题。

其中,杆系结构的有限元法是一种专门针对杆系结构及其变形特性的有限元分析方法。

本文将从有限元法的基本原理、杆系结构的有限元剖分、杆单元的刚度矩阵计算和应力计算四个方面介绍杆系结构的有限元法。

有限元法的基本原理:有限元法是一种将连续物体离散化为有限个独立几何单元的数值分析方法。

它的基本原理是将连续结构按一定的规则划分为若干个互不重叠的子域,然后在每个子域上建立适当的求解方程和函数,最后将各个子域的问题合并起来,得到整个结构的解。

有限元法可以将连续问题转化为一个线性代数方程组的求解问题,然后通过数值计算方法求解方程组,得到结构的变形、应力等信息。

杆系结构的有限元剖分:杆系结构是由多根杆件组成的结构体系。

在进行有限元分析时,需要将杆系结构进行剖分,将其离散化为有限个杆单元。

杆系结构的剖分方式可以有多种,常见的有线性剖分和非线性剖分。

线性剖分是指将每根杆件均匀地划分为若干个子单元,每个子单元长度相等。

线性剖分的好处是计算简单,但是在一些情况下不够准确。

非线性剖分是指根据杆件的曲线形状和载荷变化特点,对杆件进行不规则剖分。

这样可以更准确地描述杆系结构的实际变形情况。

非线性剖分的好处是结果更准确,但计算量相对较大。

杆单元的刚度矩阵计算:一般来说,杆单元的刚度矩阵可以通过两种方法进行计算:力法和位移法。

力法是指通过杆件上的内力和外力之间的平衡关系,推导出杆单元的刚度矩阵。

力法的基本原理是,杆单元上的总应变等于外力产生的内力,即σ=Eε=F/A。

其中,σ为应力,E为弹性模量,ε为应变,F为外力,A为杆单元的截面积。

位移法是指通过位移与应变之间的关系,推导出杆单元的刚度矩阵。

位移法的基本原理是,根据虚功原理和位移互相独立的原则,建立位移-应变-应力关系,然后通过对位移表达式积分,得到杆单元的刚度矩阵。

杆单元的应力计算:在有限元分析中,杆单元的应力计算是非常重要的一步。

空间杆系有限元法也称空间桁架位移法.

空间杆系有限元法也称空间桁架位移法.

对称面内节点荷载亦应按相同原则取值。在对 称荷载作用下,对称面内网架节点的反对称位 移为零,计算时应在相应方向予以约束。 与对称面相交的杆件,分析时可将该交点作为 一个节点,并在三个方向予以约束。 交叉腹杆或人字形腹杆的交叉点,位于对称面 时,亦应作为一个节点,并在两个水平方向予 以约束。 在反对称荷载作用下,对称面内网架节点的对 称位移应取为零。
整体坐标
图3.25 杆件在整体坐标中
设杆件ij (即 轴)与整体坐标x,y,z轴夹 角的余弦分别为l,m,n。由图25所示的几何关 系可以得出
式中lij——ij杆的长度
奥运会场所
令 分别表示杆件ij在整体 坐标系中的节点力,节点位移和单元刚度矩阵。 在整体坐标系中ij杆节点力和节点位移间的关 系力为:
{Fi} ,{Fj}——分别为杆件ij在整体坐标系下 i,j点的杆端力列阵; {δi},{δj}——分别为杆件ij在整体坐标系 下i,j点的位移列阵; [Kij],[Kjj]——分别为杆件ij在i端,j端发 生单位位移时,在i端,j端产生的内力; [Kij],[Kjj]——分别为杆件ij在j端,i端发 生单位位移时,在i端,j端产生的内力。
(2)边界条件 有限元计算中,边界条件将对网架结构内力及 变形产生较大影响。 网架支承处的边界条件既和支座节点构造有关, 也和支承结构的刚度有关,支座可以是无侧移、 单向可侧移和双向可侧移的铰接支座,支承结 构(柱、梁等)可以是刚性或弹性的。 当支承结构刚度很大可忽略其变形时,边界条 件完全取决于支座构造。
无侧移铰接支座,支承节点在竖向,边界线切线 和法向都无位移。 单向可侧移支座,竖向和边界切线方向位移为零, 而边界法向为自由。 双向可侧移的铰接支座,只有竖向位移为零,两 个水平方向都为自由。 在网架的四角处,至少一个角上的支座必须是无 侧移的,相邻的两角可以是单向可侧移的,相对 的角可以是双向可侧移的。 这种做法既防止网架的刚体移动,又提供了不少 于6根的约束链杆数。在工程实践中,如果温度 应力不大,也可考虑四角都用无侧移铰支座。

2 杆系结构有限元法

2 杆系结构有限元法

{F } = [K ]{δ }
[K ]
称为对应于施加在系统上各节点力的刚度矩阵。
问题: 1、复杂结构其刚度矩阵是多少阶的? 2、如何求出? 3、为什么着重讨论系统的刚度矩阵? 系统的整体刚度矩阵-求出所受外力作 用下各杆件节点处的位移-计算各杆件的 受力和应力
2-2 弹簧系统的刚度矩阵
一、单个弹簧的刚度矩阵
0 u1 = 0 − kb u 2 k b u3
从而可得到定解。通过解上述方程可得到各个节点的位移,利用已求得的位 移就可计算出每个弹簧所受力的大小。
弹簧1-2受力 pa=ka×(弹簧1-2长度的变化量) pa=ka×(u2-u1)
有限元方法求解弹簧系统受力问题的基本步骤: ①形成每个单元的刚度矩阵
(b) F1c
u1=0
2-3 有压力kbu2 F2b = (k a + kb )u2 分别对两弹簧求静力平衡,有 F1b = −k a u 2 , F3b = − kbu2
ka
F2c
u2=0
kb
u3,F3c
3) 只允许节点3有位移u3,类似于情况1),有
F3c = kb u3 , F2 c = − F3c = −kbu3
0 0 0 k 2 22 2 0 k32
0 2 k 23 2 k33
三、方程求解(约束条件的引入)
由式(2-6)和式(2-8)可知,刚度矩阵是一个奇异阵,即它的行列 式的值为零,矩阵的逆不存在。 对应线性代数方程组式(2-7)和式(2-9)无定解。 物理概念解释:对整个系统的位移u1、 u2和 u3,没有加以限制,从而在 任何外力的作用下系统会发生刚体运动。
− ka k a + kb − kb

杆系结构有限元

杆系结构有限元
有限元位移法是在每一个结点上建立平衡方 程,集合各结点的平衡方程得到一个平衡方 程组 [K]{D}={P},出现在方程组内的待定未 知数便是求解的结点位移分量。
有限单元法
土木工程学院
P-4
1.4.1 坐标转换矩阵
在整体坐标系中单元结点力向量和结点位移列向
量可分别表示成
de d dije e ui vi i uj vj
k42② k52② k62②
0
k46①k13② k56①k23② k66①k33②
k43② k53② k63②
0
k14② k24② k34② k44②k44③ k54②k54③ k64② k64③
k15② k25② k35② k45②k45③ k55②k55③ k65② k65③
k16② k26② k36② k46② k56② k66②
有限单元法
土木工程学院
P-27
1.5 按单元定位向量形成总刚度方程
按单元定位向量形成总刚度方程
前面介绍“对号入座”形成总刚的方法,是讲子 块的对号入座,而在计算机程序中必须是将单刚的 每个元素,用赋值语句送给总刚的相应位置,这比 子块对号入座复杂,加上结构各种不同的约束情况, 使其更难处理。因此,在先处理法中,常引进单元 定位向量的概念。利用单元定位向量则可灵活地处 理各种约束情况。
单元② i 端的杆端力 与2,3节点位移相关
根据杆端位移与结点位移之间的谐调关系 ── 代 入几何条件
d 2 ① d 2 ② D 2 d 1 ① D 1 d 3 ② D 3 则 P 2 K 2① 1 D 1 (K 2① 2 K 2② 2 )D 2 K 2② 3 D 3
有限单元法
土木工程学院
0
0

part6-钢筋混凝土结构的有限元分析2-杆系精品资料

part6-钢筋混凝土结构的有限元分析2-杆系精品资料

2.受拉钢筋屈服时的弯矩M y和曲率y
当受拉钢筋达到屈服时,假定截面的应变及应力分布如图6.17所示
此时受拉钢筋的应变为y fy Es 。如果假设受压区高度为x,则得
y
h
y
a
s
(6.51)
s y x a
(6.52)
c yx
(6.53)
n
D b cdx bix i
Ns D sEs As f y As
CHAPTER 6
钢筋混凝土的有限元分析 (梁柱单元)
杆系结构的有限元分析
基本假定:
1. 平截面假定仍然成立; 2. 结构变形是微小的,建立平衡方程时采
用结构原 来的几何尺寸,不考虑几何非 线性; 3. 忽略剪切变形的影响; 4. 对静定结构,结构破坏以混凝土达到其 极限压应变为标准;对超静定结构,结 构破坏以产生足够多的塑性铰使结构成 为可变体系。
当杆端塑性铰出现以前,杆件的截面港督为常数,当弯矩到达屈服弯矩My时,
刚度则下降进入另一常数。
为了计算方便,图6.5刚度模型可以用 双分量的模型来表示。所谓双分量模型, 就是假想每一杆件由两个平行的杆组成, 一根是理想弹塑性铰(当杆端弯矩超出屈服 弯矩My时,在该杆端出现塑性铰),另一根 是弹性杆。如图6.6的弯矩-曲率图形所示
0
3 l2
3 l
0
3 l2
3 l 2
(3)当j端出现塑性铰,即 M2i q M y 、M2 j q M j 时,单元刚度矩阵为
K2 0
2. 考虑二次矩
由于框架结构相对来说受力变形较大,在轴力N
的作用下,将引起杆内弯矩的变化和位移的增长。
在方程(6.1)中考虑二次矩的影响,需增加一个几何

第五章杆系结构的有限元法

第五章杆系结构的有限元法

第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。

其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。

杆系结构中的每个杆件都是一个明显的单元。

杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。

显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。

杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。

因此,本章将采用这种方法进行单元分析。

至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。

5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。

3. 外载荷均为作用于节点的集中力。

由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。

5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。

两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。

图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。

由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。

有限元法(杆系)

有限元法(杆系)

Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档