高中数学解题方法
高中数学解题技巧

高中数学解题技巧一、“构造法+函数法”的结合而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。
二、转换法这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。
比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?解题(1):由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD在一个平面,所以可以求得点D、B、F、E在同一个平面。
解题(2):假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。
同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R 三点共线。
三、反证法任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。
数学解题技巧也是如此。
首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。
例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。
解题分析:(1)因为(a+b)≥0,移项后,可得:a≥-b,由于函数为单调递增函数,则:f(a)≥f(-b),又(a+b)≥0,移项后,可得:b≥-a,f(b)≥f(-a);两个方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此证明完毕。
高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学解题方法

高中数学解题方法高中数学是一门关于数学的高级学科,其内容包含了现代数学的基本知识和理论。
在学习高中数学时,掌握一些解题方法对于提高数学水平非常重要。
本文将介绍一些常用的高中数学解题方法。
一、代数解题方法代数是高中数学的基础,也是解题过程中经常使用的数学工具之一。
在代数解题中,我们常常使用的方法有:1. 方程法:将问题转化为一个或多个方程,通过解方程来求解问题。
例如,已知一个几何图形的面积和周长,可以通过列方程解方程的方法来求解图形的尺寸。
2. 几何解法:有时候在解代数问题时,我们可以绘制几何图形,通过几何图形的性质和关系来解决问题。
例如,通过几何图形的相似性和比例关系来求解两个量之间的比值。
3. 因式分解法:将一个多项式进行因式分解,可以简化问题的计算。
因式分解法在解决方程和不等式问题时特别有用。
4. 递推法:递推法是一种迭代求解的方法,通过逐步推导得到结果。
递推法在解决数列和函数问题时经常使用。
例如,递推求和法可以用于求解等差数列的前n项和。
二、几何解题方法几何是高中数学的另一个重要内容,解题时也常常使用一些几何解题方法。
1. 利用图形的性质:几何图形有许多性质和定理,通过利用这些性质和定理可以解决一些几何问题。
例如,利用三角形的面积公式和相似性定理可以计算三角形的面积。
2. 几何运算:几何运算是指通过计算几何图形的面积、周长、体积等来解决问题。
例如,计算一个多边形的面积可以通过将其分解为若干个简单图形来进行计算。
3. 三角法:三角法是一种运用三角学思想解决几何问题的方法。
例如,可以通过正弦定理和余弦定理来解决三角形的边长和角度问题。
三、概率与统计解题方法概率与统计是数学的一个分支,研究随机现象和数据分析的方法。
在解决概率与统计问题时,我们可以使用以下方法:1. 概率模型:建立一个合适的概率模型,通过计算概率来求解问题。
例如,通过建立一个事件空间模型,可以计算某个事件发生的概率。
2. 统计分析:通过对收集到的数据进行统计分析,可以得到一些有关该数据的特征和规律。
高中数学解题技巧与方法

高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。
许多学生在面对数学题目时感到困扰,不知道如何下手。
本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。
一、理清思路在解题之前,首先要理清思路。
仔细阅读题目,分析题目的要求和条件。
可以在纸上做标记或者画图来帮助理解题目。
同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。
二、多角度思考在解题过程中,不要被固定的思维方式所限制。
尝试从不同的角度思考问题,寻找不同的解题思路。
这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。
三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。
因此,培养逻辑思维是解题的关键。
可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。
合理运用推理能力,可以更快地找到解题的方法。
四、归纳总结解题过程中,要善于归纳总结。
将解题的方法和思路记录下来,形成笔记或者思维导图。
这样有助于巩固所学知识,也方便在以后的学习中查阅。
通过总结,我们可以更好地掌握解题的技巧和方法。
五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。
可以选择一些专门的习题集或者题库进行练习。
在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。
六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。
可以向老师请教,或者与同学进行讨论。
他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。
总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。
掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。
加油吧!。
高中数学万能解题模板

高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。
高中数学各类题型解题技巧

一、选择填空题选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一:三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二:解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
《教材帮》帮你全面总结知识点,再也不用担心公式知识点记不住了!专题三:数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
高中数学解题的七种常用方法

高中数学解题的 七种常用方法
张晓娇
高中数学相对于初中数学,不仅要学习 掌握的内容数量增加了许多,而且内容难度 也加大了,所以学生需要掌握更多的数学思 想以及常见的解题方法。对于高中生而言,掌 握并熟练运用这些数学方法,可以在解题过 程中快速解决问题,得出正确答案。
一、配方法 在高中数学的学习中,学生首先掌握的 数学方法就是配方法。这是一种广泛运用的 数学方法,主要运用在已知或者未知中存在 二次方程、二次函数,或者二次不等式等,还 有在曲线平移等问题中被作为基础方法运 用。配方法是对数学式子进行定向变形,找到 已知与未知数量关系的联系,最终达到化繁 为简的目的。在配方过程中运用裂项和添项, 巧凑和巧拼,实现配方,所以也被称为“凑配 法”。例如已知 sinα+cosα=2,则 sinαcosα 的 值为 ______。这道题就需要通过配方法进行 解答,将 sinα+cosα=2 进行配方,最终得到(sinα+ cosα)2-2sinαcosα,最终得到 sinαcosα 的值。 二、换元法 换元法也是比较常用的数学解题方法, 就是通过将一个式子看作一个整体,用另一 个变量进行替换,使问题得以简化,快速找到 解答方法。其实,换元从本质上讲就是转化, 通过造元和设元,进行等量代换,将问题转移 到熟悉的环境下进行解决。从复杂到简单,由 非标准变成标准。这种方法主要运用于高次 降为低次,分式变成整式,将无理变成有理, 将复杂变成简单,适用函数、三角、不等式和 数列等问题中。例如,设实数 x、y 满足 x+xy- 3=0,则 x+y 的取值范围是多少。运用换元法, 将 x+y 设置成“k”,然后运用“△”进行求解, 最终得出 k 的取值范围,从而得到 x+y 的取 值范围。
六、参数法 数学参数法就是在解题过程中引入一些 与题目相关联的新变量。通过该变量进行分 析和解答,最终消除参数,得出答案。这种方 数 法在直线与二次曲线之间的关系中比较常 学 用。参数法充分体现出事物普遍的联系,而通 篇 过参数法就能找出联系,从而找出事物的本 质。参数法体现出运动与变化的思想,其观点 42 被运用在数学的各个方面。运用参数法时需
高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想一.十九种数学解题方法1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题方法
数学是研究现实世界中空间形式和数量关系的科学.数和形是数学中最基本的两大概念,也是整个数学发展过程中的两大柱石,而数和形是相互联系,也是可以相互转化的.把问题的数量关系与空间形式结合起来考察,或者把数量关系转化成图形的性质问题,或者把图形的性质转化成数量关系问题,这种处理问题的思想与方法就是数形结合的思想方法.其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.
数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取“胸中有图,见数想图”,以开拓自己的思维视野.
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”.
以下就对“以形助数”试做一番探讨:
一、与方程的根有关的问题
例1.若关于x的方程x2+2kx+3k=0的两根都在-1和3之间,求k 的取值范围.
分析:令f(x)=x2+2kx+3k,其图像与x轴的交点的横坐标就是方程f(x)=0的根,由y=f(x)的图像可知,要使两根都在-1,3之间,只需f(-1)>0,f(3)>0,f(-b2a)=f(-k)a.1个 b.2个 c.3个 d.1个或2个或3个
分析:判断方程的根的个数等价于判断图像y=a|x|与y=|logax|的图像交点个数,出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(b).
二、与不等式有关的问题
例3.解不等式x+2>x.
解:令y1=x+2,y2=x,则不等式x+2>x的解,就使y1=x+2在y2=x 的上方的那段对应的横坐标,如图,不等式的解集为{x|xa≤x1,两函数图象如图1所示,显然当x∈(1,2)时,
图1 图2
要使y1若0三、与函数有关的问题
例5.求函数u=2t+4+6-t的最值.
分析:由于等号右端根号内同为t的一次式,故作简单换元
2t+4=m,无法转化求出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元.
解:设x=2t+4,y=6-t,则u=x+y
且x2+2y2=16(0≤x≤4,0≤y≤22)所给函数化为以u为参数的直线方程y=-x+u,它与椭圆x2+2y2=16在第一象限的部分(包括端
点)有公共点(如图),umin=22.
相切于第一象限时,u取最大值
y=-x+ux2+2y2=163x2-4ux+2u2-16=0
解δ=0,得u=±26,取u=26∴umax=26
例6.求函数y=x2+1+x2-4x+8的最小值.
分析:考察式子特点,从代数的角度求解,学生的思维受阻,这时利用数形结合为转化手段,引导学生探索函数背后的几何背景,巧用两点间距离公式,可化为
x2+1+x2-4x+8=(x-0)2+(0-1)2+(x-2)2+(0-2)2令a(0,1),b(2,2),p(x,0),则问题转化为在x轴上求一点p,使pa+pb 有最小值(如图).由于ab在x轴同侧,故取a关于x轴的对称点c(0,-1),故(pa+pb)min=(0-2)2+(-1-2)2=13
例7.求函数y=sinx+2cosx-2的值域.
解法一(代数法):则y=sinx+2cosx-2得ycosx-2y=sinx+2,sinx-ycosx=-2y-2,y2+1sin(x+φ)=-2y-2∴sin(x+φ)
=-2y-2y2+1,而|sin(x+φ)|≤1∴|-2y-2y2+1|≤1,解不等式得-4-73≤y≤-4+73
∴函数的值域为[-4-73,-4+73].
解法二(几何法):y=sinx+2cosx-2的形式类似于斜率公式
y=y2-y1x2-x1,y=sinx+2cosx-2表示过两点p0(2,-2),p(cosx,sinx)的直线斜率。
由于点p在单位圆x2+y2=1上(如图),显然,kp0a≤y≤kp0b,设过p0的圆的切线方程为y+2=k(x-2),
则有|2k+2|k2+1=1,解得k=-4±73即kp0a=-4-73,kp0b=-4+73 ∴-4-73≤y≤-4+73 ∴函数的值域为[-4-73,-4+73].
四、与解析几何有关的问题
例8.已知x,y满足x216+y225=1,求y-3x的最大值与最小值. 分析:对于二元函数y-3x在限定条件x216+y225=1下求最值问题,常采用构造直线的截距的方法来求之.
解:令y-3x=b,则y=3x+b,原问题转化为:在椭圆x216+y225=1上求一点,使过该点的直线斜率为3,且在y轴上的截距最大或最小,由图可知,当直线y=3x+b与椭圆x216+y225=1相切时,有最大截距与最小截距.
y=3x+bx216+y225=1169x2+96bx+16b2-400=0
由δ=0,得b=±13,故y-3x的最大值为13,最小值为-13.
此外,还有斜率型y-bx-a,距离型(x-a)2+(y-b)2.
例9.若集合m=(x,y)x=3cosθy=3sinθ(0<θ<π),集合n={(x,y)|y=x+b}
且m∩n≠,则b的取值范围.
分析:m={(x,y)|x2+y2=9,0<y≤1},显然,m表示以(0,0)为圆心,以3为半径的圆在x轴上方的部分,(如图),而n则表示一条直线,其斜率k=1,纵截距为b,由图易知,要使m∩n≠,即是使直线y=x+b与半圆有公共点,显然b的最小逼近值为-3,最大值为32,即-3<b≤32.
五、与复数有关的问题
例10.已知复数z满足|z-2-2i|=2,求|z|的最大值、最小值.
分析:由于|z-2-2i|=|z-(2+2i)|有明显的几何意义,他表示复数z对应的点到复数2+2i对应的点之间的距离,因此满足|z-(2+2i)|=2的复数z对应点z,在以(2,2)为圆心,半径为2
的圆上(如图),而|z|表示复数z对应的点z到原点o的距离,显然,当点z、圆心c、点o三点共线时,|z|取得最值|z|min=2,
|z|max=32,
∴|z|的取值范围为[2,32].
例11.适合|z-1|=1且argz=π4的复数z的个数为()
a.0个
b.1个
c.2个
d.4个
分析:|z-1|=1表示以(1,0)为圆心,以1为半径的圆,显然点z对应的复数满足条件argz=π4,另外,点o对应的复数o,因其辐角是多值,它也满足argz=π4,故满足条件的z有两个.
通过以上几个方面的探讨,我们初步领略了数形结合的美妙所在.而在运用数形结合思想分析和解决问题时,要注意三点:
第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;
第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;
第三是正确确定参数的取值范围.
综观高中数学,可以知道其研究的对象不外是一些常见的数量关
系与简单的图形,数与形不仅是两个相互对立的概念,而且是数学中较其他对立较为特殊的一种对立,然而,数与形与其他对立的双方一样,也可以在一定的条件下实现相互转化.华罗庚曾说过:“数缺形时少直观,形缺数时难入微.”因此,化数为形;化形为数,数形相互为用是数学探索和解决数学问题的重要途径.
数形结合思想在高中数学中应用十分广泛,它为我们提供了多条解决问题的通道,渗透在学习新知和新知的应用过程中,在解题中数学老师要做好这种“数”与“形”关系的揭示与转化,启发学生深刻认识数学问题的实质——数学知识的精髓需要平时多注意积累,有意识的加强这方面的训练,才能将知识转化为能力,才能提高学生灵活运用数形结合思想转化或化归思想与函数(方程)思想解决问题的能力.才能使灵活性,创造性的思维品质在其中得到了更大限度的发挥.
参考文献
[1] 康小玲.数形结合法[j].数学教学通讯,2002,(5):46
[2] 张亮.数形结合的几个应用[j].井冈山师范学院学报.2003,(5):5
[3] 刘焕芬.巧用数形结合思想解题[j].数学通报,2005,(1):42
[4] 徐加生.例谈数形结合解题应注意的问题[j].中学数学研究,2004,(4):10。