计量虚拟变量模型

合集下载

计量经济学第5章 虚拟变量模型

计量经济学第5章 虚拟变量模型
第五章 虚拟变量模型
在经济计量模型中除了有量的因素外还有质的因 素,质的因素包括被解释变量为质的因素和解释变量 为质的因素。如果被解释变量为质的因素,主要是逻 辑回归要涉及的内容。本章就解释变量和被解释变量 为质的因素也就是存在虚拟解释变量和虚拟被解释变 量时如何进行参数估计等一系列问题进行讨论。
1
为基础类型截距项。
12
三、虚拟变量的作用 ⑴ 可以描述和测量定性因素的影响。
⑵ 能够正确反映经济变量之间的相互关系,提 高模型的精度。
⑶ 便于处理异常数据。
即将异常数据作为一个特殊的定性因素
1 , 异常时期
D
0
,
正常时期
13
第二节 虚拟解释变量模型
一 、截距变动模型(加法模型)
虚拟变量与其它变量相加,以加法形式引入模
Y i 0 1 D 1 i 2 D 2 i 3 X i u i
Y i ------年支出医疗保健费用支出 X i ------居民年可支配收入
18
1 , 高中
D 1i
0
,
其他
1 , 大学
D 2i
0
,
其他
于是:小学教育程度:
E (Y i X i,D 1 i 0 ,D 2 i 0 )03 X i
7
二、虚拟变量的设置规则
虚拟解释变量模型的设定因为质的因素的多少 和这些因素特征的多少而引入的虚拟变量也会不同。
以一个最简单的虚拟变量模型为例,如果只包 含一个质的因素,而且这个因素仅有两个特征,则 回归模型中只需引入一个虚拟变量。如果是含有多 个质的因素, 自然要引入多个虚拟变量。
8
如果只有一个质的因素,且该质的因素具有 m 个 相互排斥的特征(或类型、属性),那么在含有截距 项的模型中,只能引入 m-1 个虚拟变量,否则会陷入 所谓“虚拟变量陷阱”(dummy variable trap),产 生 完全的多重共线性,会使最小二乘法无解;在不含有 截距项的模型中, 引入 m 个虚拟变量不会导致完全 的多重共线性,不过这时虚拟变量参数的估计结果, 实际上是 D = 1 时的样本均值。

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
.
二、虚拟变量的设置原则
• 引入虚拟变量一般取0和1。
• 对定性因素一般取级别数减1个虚拟变量。例 子1:性别因素,二个级别(男、女)取一个 虚拟变量,D=1表示男(女),D=0表示女 (男)。
• 例子2:季度因素,四个季度取3个变量。
1, 一季度 D1 0, 其它季度
1, 二季度
D2
0,
其它季度
• 同样可以写成二个模型:
y ˆi ˆ0(ˆˆ1)x1iˆkxki D1
y ˆi ˆ0ˆ1x1iˆkxki
D0
• 可考虑同时在截距和斜率引入虚拟变量:
y i 0 0 D i (1 D i 1 ) x 1 i k x k iu i (5.
.
.
• 3、虚拟变量用于季节性因素分析。
•取
1, 当样本 i季为 度第 的数据 Di 0,其它季度的, i数 2,3据 ,4
• 工资模型为:
• Ii01 [S 1 (1 D 1 i D 2 i)S ( i S 1 )] 2 [D 2 i(S 2 S 1 ) D 1 i(S i S 1 ) ]3 D 2 i(S i S 2 ) u i (5.7
.
D2=1
S0
D1=1
S1
S2
.
• 作OLS得到参数估计值后,三个阶段的 报酬回归模型为: Iˆi ˆ0ˆ1Si, Si S1 Iˆi ˆ0ˆ1S1ˆ2(Si S1), S2Si S1 Iˆi ˆ0ˆ1S1ˆ2(S2S1)ˆ3(Si S2), Si S2
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
精品课件
原始模型:
YX (5.8)
• 其中Y为观测值取1和0的虚拟被解释变量,X为 解释变量。
• 模型的样本形式: yi Xii
(5.9)
• 因为E(i)0
,E所(y以i)Xi
• 令: p i P ( y i 1 ) 1 p i P ( y i 0 )
• 于是有: E ( y i) 1 P ( y i 1 ) 0 P ( y i 0 ) p i
其它季度
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
精品课件
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模 型
精品课件
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
精品课件
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

第二节 虚拟被解释变量模型
• 问题1:对于商业银行,企业贷款可能出现违约,也就是说一家企 业贷款后有违约和不违约两种可能,如何甄别?(李萌,2005)
• 问题2:证券投资者在特定时期内的投资选择是买或不买,如何确 定这样的选择?(王冀宁等,2003)
• 问题3:上市公司出现经营问题,可能成为ST、PT,是什么原因导 致这样的结果?
6563.76 1597.98
16.904 16.9416 157.922
0
应用例题2:股息税削减对股价的影响
• 背景资料—2005年6月14日,财政部、税务总局发文,规定对个人投资者从
上市公司取得的股息红利所得,暂减按50%计入个应纳税所得额(红利税从 20%降为10%)。
• 利用事件分析法分析该政策对股价有无显著影响,即政策出台前后股票有无 异常收益。时间窗口为发布日及前后各二天。
E( yi ) P( yi 1) X i
• 但因为
i
1 X
Xi i
当yi 1,其概率为X i 当yi 0,其概率为1 X i
• 模型具有明显的异方差性,故而用模型(5.8)直接进行参数估计 是不合适的。
• 另外,由于要求
E( yi ) P( yi 1) Xi 1

难以达到。
Di 0, 其它季度的数据
, i 2,3,4
• •
原 则模 引型 入若 虚为 拟变量后的y模t 型为:
xt
ut
yt xt 2 D2t 3 D3t 4 D4t ut (5.6)
• 回归模型可视为:
yˆt ˆ ˆxt
一季度
yˆt ˆ ˆxt ˆ2 二季度
yˆt ˆ ˆxt ˆ3 三季度
二、虚拟变量的设置原则

计量经济学课件虚拟变量

计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。

虚拟变量回归模型:计量经济学

虚拟变量回归模型:计量经济学
在实时经济分析和决策支持方面,虚拟变量回归模型可以结合实时数据流进行 动态更新和预测,为政策制定者和市场参与者提供及时、准确的经济分析和决 策支持。
对未来研究的展望
拓展模型应用领域
未来研究可以进一步拓展虚拟变 量回归模型的应用领域,如环境 经济学、劳动经济学、金融经济 学等,以更深入地揭示经济现象 背后的规律。
宏观经济学领域应用
经济增长研究
引入虚拟变量以刻画不同国家或地区的经济增 长模式,并分析各种因素对经济增长的贡献。
通货膨胀与货币政策研究
利用虚拟变量回归模型,探讨通货膨胀的成因、 传导机制及货币政策的效应。
国际贸易研究
通过构建虚拟变量,分析贸易自由化、关税壁垒等因素对国际贸易流量的影响。
金融学领域应用
线性问题,影响模型的稳定性和解释性。
预测能力有限
03
对于具有复杂关系的数据,虚拟变量回归模型可能无法提供准
确的预测。
与其他模型的比较
01
与线性回归模型的比较
虚拟变量回归模型是线性回归模型的一种扩展,通过引入 虚拟变量来处理分类变量。线性回归模型则主要关注连续 变量的影响。
02 03
与逻辑回归模型的比引言 • 虚拟变量回归模型基本原理 • 虚拟变量回归模型应用举例 • 虚拟变量回归模型优缺点分析 • 虚拟变量回归模型在实证研究中的应用 • 虚拟变量回归模型的发展趋势和前景
01 引言
计量经济学简介
1 2
计量经济学定义
计量经济学是应用数学、统计学和经济学方法, 对经济现象进行定量分析的学科。
完善模型理论和方法
在模型理论和方法方面,未来研 究可以进一步完善虚拟变量回归 模型的理论基础和方法体系,提 高模型的解释力和预测能力。

计量经济第七章虚拟变量模型

计量经济第七章虚拟变量模型
11
1.线性概率模型(LPM模型)
定义:以虚拟变量为因变量的线性回 归模型称为线性概率模型。 (linear probability model,LPM) 模型的基本形式为:
Yi 0 1 X1i +2 X 2i L k X ki ui ,
E Yi | X 0 1 X1i +2 X 2i L k X ki ,
第八章 虚拟变量模型
1
第一节 第二节 第三节
虚拟变量模型概述 二元概率模型 二元逻辑模型
2
第一节
虚拟变量模型概述
一、虚拟变量的含义 二、虚拟变量作为自变量 三、虚拟变量作为因变量
3
一、虚拟变量的含义
• 一个定性变量,它的可能值只有两个, 也就是说出现或不出现某种属性。一般 地,用1表示出现某种属性,用0表示没 有出现该属性。像这样取值只为0、1的 变量称为虚拟变量或哑变量。 • 并用符号 D表示,从而与常用符号 X区别 开。我们把赋值为0的一类称为基准类。
14
一、二元Probit模型
• 二元Probit模型的基本形式为:
1 Pi Zi 2

Zi

e
t 2 /2
dt
其中 Zi 0 1 X1i +L +k X ki ;是累积标 准正态分布函数,t 为服从标准正态分布 的随机变量。
Zi 1 P i 1 P i 0 1 X1i +L +k X ki .
i 1,2,L , n.
1,已婚 其中 Yi 为个人月支出, D1i = 0,未婚
7
• 未婚者的月期望支出为:
E Yi | D1i 0 E 0 1 g0 ui 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 春季 D1t 0 其他
1 夏季 D2t 0 其他 1 D3t 0
秋季 其他
1 春季 D1t 0 其他
1 夏季 D2t 0 其他
1 D3t 0
秋季 其他
则冷饮销售量的模型为:
Yt 0 1 X 1t k X kt 1 D1t 2 D2t 3 D3t t
E(Yi | X i , D1 0, D2 0) 0 1 X i
•男职工本科以下学历的平均薪金:
E(Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
•女职工本科以上学历的平均薪金:
E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i
如果只取六个观测值,其中春季与夏季取了 两次,秋、冬各取到一次观测值,则式中的:
1 1 1 ( X, D) 1 1 1 X 11 X k1 X 12 X k 2 X 13 X k 3 X 14 X k 4 X 15 X k 5 X 16 X k 6 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
在上述模型中,若再引入第四个虚拟变量 则冷饮销售模型变量为:
1 D4t 0
冬季 其他
Yt 0 1 X 1t k X kt 1 D1t 2 D2t 3 D3t 4 D4t t
其矩阵 形式为:
B Y ( X, D) A U
t ( 4.77) (11.73) ( 0.40) (1.13) R 0.99
2
表明:受教育水平对平 均保健支出没有影响。 收入
• 还可将多个虚拟变量引入模型中以考察多种“定 性”因素的影响。
如在上述职工薪金的例中,再引入代表学历的虚拟 变量D2:
1 D2 0
本科及以上学历
表 5.1.1 90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
1979~2001 年中国居民储蓄与收入数据(亿元) GNP 90年后 储蓄 4038.2 1991 9107 4517.8 1992 11545.4 4860.3 1993 14762.4 5301.8 1994 21518.8 5957.4 1995 29662.3 7206.7 1996 38520.8 8989.1 1997 46279.8 10201.4 1998 53407.5 11954.5 1999 59621.8 14922.3 2000 64332.4 16917.8 2001 73762.4 18598.4
E(Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
大学教育 高中教育 低于高中教育
• 大学及其以上:E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i 假定3>2, 保健 支出 ˆ 1.29 0.17 其几何意义: Y X 0.07 D1 0.45D2
E(Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
大学教育 高中教育 低于高中教育
• 大学及其以上:E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i 假定3>2, 保健 其几何意义: 支出
0 1 B k
1 2 A 3 4
1 春季 D1t 0 其他
1 夏季 D2t 0 其他
1 D3t 0
秋季 其他
1 冬季 D4t 0 其他
虚拟变量的个数须按以下原则确定: (1)若定性因素有m个相互排斥的类型或属性,只能引 入(m-1)个虚拟变量,否则会陷入“虚拟变量陷阱”,产 生完全共线性。(当无截距项时,应引入m个虚拟变量) (2)一般情况,虚拟变量取“0”值代表比较的基准。 例如,引入政府经济政策的变动对应变量的影响:
1 政策变动 Dt 0 政策不变
• 为了在模型中能够反映这些因素的影响,并提高 模型的精度,需要将它们“量化”。
这种“量化”通常是通过引入“虚拟变量”来 完成的。根据这些因素的属性类型,构造只取“0” 或“1”的人工变量,通常称为虚拟变量(dummy variables),记为D。
1 例如,反映文化程度的虚拟变量可取为:D t 0 1 反映性别的虚拟变量可取为: Dt 0 虚拟变量的作用: 本科学历 非本科学历 男 女
本科以下学历
职工薪金的回归模型可设计为:
Yi 0 1 X i 2 D1 3 D2 i
Yi 0 1 X i 2 D1 3 D2 i
于是,不同性别、不同学历职工的平均薪金分别为: •女职工本科以下学历的平均薪金:
1 本科及以上 D2 0 本科以下 0 女 D1 1 男
(1)将定性因素(或属性因素)对应变量的影响数量化, 当虚拟变量值取“1”时,表明质的影响发生作用,即代表 某种属性的因素存在或某种定性因素发生作用;取“0” 时… (2)引入虚拟变量后,相当于把不同属性类型的样本合 并,即相当于扩大样本容量,从而提高模型精度。 (3)分离异常因素的影响。
例如,一个以性别为虚拟变量考察企业职工薪金的模型:
收入
Yi 0 1 X i 2 D1 3 D2 i
1 D1 0 高中 其他 1 D2 0 大学及其以上 其他
在E(i)=0 的初始假定下,高中以下、高中、大学及其以上 教育水平下个人保健支出的函数:
• 高中以下: • 高中:
E(Yi | X i , D1 0, D2 0) 0 1 X i
Yi 0 1 X i 2 Di i
其中:Yi为企业职工的薪金(千元),Xi为工龄
1 男 Dt 0 女
ˆ 17.97 1.37X 1.33D Y t (93.61) (38.45) (8.57) R 2 0.99
女性平均年薪:
ˆ 17.97 1.37X Y
Yi 0 1 X i 2 D1 3 D2 i
1 D1 0 高中 其他 1 D2 0 大学及其以上 其他
在E(i)=0 的初始假定下,高中以下、高中、大学及其以上 教育水平下个人保健支出的函数:
• 高中以下: • 高中:
E(Yi | X i , D1 0, D2 0) 0 1 X i
(3)虚拟变量在单一方程中,可以作为解释变量,也 可以作为应变量。
三、虚拟变量的引入
• 虚拟变量做为解释变量引入模型有两种基本方式: 加法方式和乘法方式。
1、加法方式
Yi 0 1 X i 2 Di i
上述企业职工薪金模型中性别虚拟变量的引入采 取了加法方式。 在该模型中,如果仍假定E(i)=0,则 企业女职工的平均薪金为:
E(Yi | X i , Di 0) 0 1 X i
企业男职工的平均薪金为:
E(Yi | X i , Di 1) ( 0 2 ) 1 X i
Yi 0 1 X i 2 Di i 几何意义: • 假定2>0,则两个函数有相同的斜率,但有不同 的截距。意即,男女职工平均薪金对工龄的变化 率是一样的,但两者的平均薪金水平相差2。 • 可以通过传统的回归检验,对2的统计显著性进 行检验,以判断企业男女职工的平均薪金水平是 否有显著差异。 • 2称为截距差异系数。
第九章 虚拟变量模型
一、虚拟变量的基本含义 二、虚拟变量的设置原则 三、虚拟变量的引入
一、虚拟变量的基本含义
• 许多经济变量是可以定量度量的,如:商品需求 量、价格、收入、产量等。 • 但也有一些影响经济变量的因素无法定量度量, 如:职业、性别对收入的影响,战争、自然灾害 对GDP的影响,季节对某些产品(如冷饮)销售 的影响等等。
0 1 B k
1 2 A 3 4
显然,(X,D)中的第1列可表示成后4列的线性组合, 从而(X,D)不满秩,参数无法唯一求出。 这就是所谓的“虚拟变量陷阱”,应避免。
二、虚拟变量的设置原则
如,设
1 Dt 0
正常年份 反常年份
消费模型可建立如下:
Ct 0 1 X t 2 Dt X t t
• 这里,虚拟变量D以与X相乘的方式引入了模型中, 从而可用来考察消费倾向的变化。 • 假定E(i)= 0,上述模型所表示的函数可化为:
正常年份:
E(Ct | X t , Dt 1) 0 ( 1 2 ) X t
男性平均年薪:
表明:当性别变量为常数时, 工龄每增加一年,平均年薪增 加 1370元,当工龄保持不变时, 男性的平均年薪比女性多 1330 元,性别对薪金的影响是显著 的。
ˆ (17.97 1.33) 1.37X 19.30 1.37X Y
二、虚拟变量的设置原则
虚拟变量的个数须按以下原则确定: (1)若定性因素有m个相互排斥的类型或属性,只能引 入(m-1)个虚拟变量,否则会陷入“虚拟变量陷阱”,产 生完全共线性。(当无截距项时,应引入m个虚拟变量) 例。已知冷饮的销售量Y除受k种定量变量Xk的影响外,还受 春、夏、秋、冬四季变化的影响,要考察该四季的影响,只 需引入三个虚拟变量即可:
反常年份:
E(Ct | X t , Dt 0) 0 1 X t
此处, 2称为斜率差异系数。
相关文档
最新文档