金融计量经济第五讲虚拟变量模型和Probit,Logit模型
logit 和probit模型的系数解释 -回复

logit 和probit模型的系数解释-回复主题:logit 和probit 模型的系数解释引言logit 模型和probit 模型是广泛应用于概率统计和经济学中的两个模型,用于解释事件发生的概率与相关因素之间的关系。
本文将详细介绍这两个模型的系数解释,并分析它们在实际应用中的区别和适用场景。
一、logit 模型系数解释logit 模型基于二项逻辑回归的概率模型,适用于事件结果是二元变量(如成功/失败,发生/不发生)的情况。
该模型通过计算事件发生的对数几率来建模,并利用最大似然估计来确定系数的值。
1. 系数的正负logit 模型中的系数是事件发生概率对于自变量的变化的影响大小。
系数的正负代表了自变量与事件发生概率之间的正相关或负相关关系。
正系数意味着自变量的增加会增加事件发生概率,而负系数意味着自变量的增加会减少事件发生概率。
2. 系数的大小logit 模型中,系数的大小代表了自变量单位变化对于事件发生概率的影响程度。
系数越大,自变量的一个单位变化对于事件发生概率的影响就越大。
一般来说,当系数的绝对值大于1时,其影响被认为是显著的。
3. 系数的统计显著性logit 模型使用最大似然估计来确定系数的值,同时也提供了对系数是否显著的统计检验。
当系数的p 值小于显著性水平(通常为0.05或0.01)时,我们可以认为该系数是显著的,即具有统计上的置信度。
二、probit 模型系数解释probit 模型是基于正态分布的概率模型,与logit 模型相似,用于解决二元变量的概率建模问题。
不同的是,probit 模型通过计算事件发生的累积分布函数值来建模,并同样利用最大似然估计来确定系数的值。
1. 系数的正负probit 模型中的系数的解释与logit 模型相同,系数的正负代表了自变量与事件发生概率之间的正相关或负相关关系。
正系数意味着自变量的增加会增加事件发生概率,而负系数意味着自变量的增加会减少事件发生概率。
probit模型与logit模型

probit模型与logit模型2013-03-30 16:10:17probit模型是一种广义的线性模型。
服从正态分布。
最简单的probit模型就是指被解释变量Y是一个0,1变量,事件发生地概率是依赖于解释变量,即P(Y=1)=f(X),也就是说,Y=1的概率是一个关于X的函数,其中f(.)服从标准正态分布。
若f(.)是累积分布函数,则其为Logistic模型Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销等统计实证分析的常用方法。
逻辑分布(Logistic distribution)公式P(Y=1│X=x)=exp(x’β)/1+exp(x’β)其中参数β常用极大似然估计。
Logit模型是最早的离散选择模型,也是目前应用最广的模型。
Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley (1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logit 形式的模型;McFadden(1974)反过来证明了具有Logit形式的模型效用非确定项一定服从极值分布。
此后Logit模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probit模型、NL模型(Nest Logit model)、Mixed Logit模型等。
模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。
当模型选择集没有发生变化,而仅仅是当各变量的水平发生变化时(如出行时间发生变化),可以方便的求解各选择枝在新环境下的各选择枝的被选概率。
比较线性模型和Probit模型、Logit模型

研究生考试录取相关因素的实验报告一,研究目的通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。
二,模型设定表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表定义变量。
上图为样本观测值。
1.线性概率模型根据上面资料建立模型用Eviews 得到回归结果如图: Dependent Variable: Y Method: Least Squares Date: 12/10/10 Time: 20:38 Sample: 1 97Included observations: 97 Variable Coefficient Std. Errort-StatisticProb.??C SCORER-squared????Mean dependent var Adjusted R-squared ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????F-statistic Durbin-Watson stat ????Prob(F-statistic)参数估计结果为: iY ˆ+ i SCORE Se=( t=p=预测正确率:Forecast: YF Actual: YForecast sample: 1 97 Included observations: 97Root Mean Squared Error Mean Absolute Error????? Mean Absolute Percentage Error Theil Inequality Coefficient? ?????Bias Proportion???????? ?????Variance Proportion? ?????Covariance Proportion?模型Dependent Variable: Y Method: ML - Binary Logit (Quadratic hill climbing)Date: 12/10/10 Time: 21:38Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivatives Variable Coefficient Std. Errorz-StatisticProb.??C SCOREMean dependent var ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????Hannan-Quinn criter. Restr. log likelihood ????Avg. log likelihood LR statistic (1 df) ????McFadden R-squaredProbability(LR stat)Obs with Dep=0 83 ?????Total obs 97Obs with Dep=1 14得Logit 模型估计结果如下p i = F (y i ) =)6794.07362.243(11i x e +--+ 拐点坐标 ,其中Y=+预测正确率Forecast: YF Actual: YForecast sample: 1 97 Included observations: 97Root Mean Squared Error Mean Absolute Error????? Mean Absolute Percentage Error Theil Inequality Coefficient? ?????Bias Proportion???????? ?????Variance Proportion? ?????Covariance Proportion?模型Dependent Variable: Y Method: ML - Binary Probit (Quadratic hill climbing)Date: 12/10/10 Time: 21:40Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariable Coefficient Std. Error z-Statistic Prob.??CSCOREMean dependent var ????. dependent var. of regression ????Akaike info criterionSum squared resid ????Schwarz criterionLog likelihood ????Hannan-Quinn criter.Restr. log likelihood ????Avg. log likelihoodLR statistic (1 df) ????McFadden R-squaredProbability(LR stat)Obs with Dep=0 83 ?????Total obs 97Obs with Dep=1 14Probit模型最终估计结果是p i = F(y i) = F+ x i) 拐点坐标,预测正确率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared ErrorMean Absolute Error?????Mean Absolute Percentage ErrorTheil Inequality Coefficient??????Bias Proportion?????????????Variance Proportion??????Covariance Proportion?预测正确率结论:线性概率模型RMSE= MAE= MAPE=Logit模型 RMSE= MAE= MAPE=Probit模型 RMSE= MAE= MAPE=由上面结果可知线性概率模型的RMSE、MAE、MAPE 均远远大于Logit模型和Probit模型,说明其误差率比Logit模型和Probit模型大很多,所以正确率远远小于Logit模型和Probit模型。
金融计量经济第五讲虚拟变量模型和Probit、Logit模型

原始模型:
YX (5.8)
• 其中Y为观测值取1和0的虚拟被解释变量,X为 解释变量。
• 模型的样本形式: yi Xii
(5.9)
• 因为E(i)0
,E所(y以i)Xi
• 令: p i P ( y i 1 ) 1 p i P ( y i 0 )
• 于是有: E ( y i) 1 P ( y i 1 ) 0 P ( y i 0 ) p i
其它季度
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
精品课件
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模 型
精品课件
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
精品课件
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066
虚拟变量回归模型:计量经济学3

3、虚拟变量的实际应用
(1)虚拟变量可以用于研究制度变迁的影响
如:研究2001年中国加入WTO事件对中国进出 口贸易的影响,可以建立如下方程:
+d 主要贸易伙伴国 GDP+e DWTO
中国的进出口贸易总值 =a b 人民币汇率 c 中国GDP
计量经济学专题:
虚拟变量的回归与Probit模型、 Logit模型
1、虚拟变量的性质
与有明确尺度量化了的变量(GDP、产 量、价格、成本、汇率等)不同,虚拟 变量是一种定性性质的变量,如性别、 种族、国籍等只涉及“是”与“非”两 种状态的变量。 虚拟变量的取值只取0或1。1表示某种性 质出现,0表示某种性质不出现。
(3)对一个普通变量与两个两分虚拟变 量的回归
例:种族及性别差异对薪金的影响。 假定薪金除了受工作年限、性别的影响 之外,还受种族的影响。
yi 1 2 D2i 3D3i xi ui
yi 为某人的工资水平,xi 为工作年限。
yi 1 2 D2i 3D3i xi ui 虚拟变量模型:
白人女性的工资水平:
E( yi D2 0, D3 1) (1 3) xi
yi 1 2 D2i 3D3i xi ui 虚拟变量模型:
其他人种男性的平均工资:
E( yi D2 1, D3 0) (1 2) xi
其他人种女性的平均工资:
Pi P r(Y 1) P r(I i * I i ) F ( I i ) 1 2 1 2
Ii
金融计量经济第五讲虚拟变量模型和Probit、Logit模型

第二节 虚拟被解释变量模型
• 问题1:对于商业银行,企业贷款可能出现违约,也就是说一家企 业贷款后有违约和不违约两种可能,如何甄别?(李萌,2005)
• 问题2:证券投资者在特定时期内的投资选择是买或不买,如何确 定这样的选择?(王冀宁等,2003)
• 问题3:上市公司出现经营问题,可能成为ST、PT,是什么原因导 致这样的结果?
6563.76 1597.98
16.904 16.9416 157.922
0
应用例题2:股息税削减对股价的影响
• 背景资料—2005年6月14日,财政部、税务总局发文,规定对个人投资者从
上市公司取得的股息红利所得,暂减按50%计入个应纳税所得额(红利税从 20%降为10%)。
• 利用事件分析法分析该政策对股价有无显著影响,即政策出台前后股票有无 异常收益。时间窗口为发布日及前后各二天。
E( yi ) P( yi 1) X i
• 但因为
i
1 X
Xi i
当yi 1,其概率为X i 当yi 0,其概率为1 X i
• 模型具有明显的异方差性,故而用模型(5.8)直接进行参数估计 是不合适的。
• 另外,由于要求
E( yi ) P( yi 1) Xi 1
亦
难以达到。
Di 0, 其它季度的数据
, i 2,3,4
• •
原 则模 引型 入若 虚为 拟变量后的y模t 型为:
xt
ut
yt xt 2 D2t 3 D3t 4 D4t ut (5.6)
• 回归模型可视为:
yˆt ˆ ˆxt
一季度
yˆt ˆ ˆxt ˆ2 二季度
yˆt ˆ ˆxt ˆ3 三季度
二、虚拟变量的设置原则
计量经济学虚拟变量模型课件

计量经济学虚拟变量模型
21
1 正常年份 D1i 0 非正常年份
式(5.2)也可表示为
1 非正常年份 D2i 0 正常年份
Y i 0 X 1 i 1 X 2 i 2 X 3 i 3 X i u i (5.3)
其中,X 1i1 ,X 2iD 1i,X 3iD 2i,显然如下等式成立。
X1i X2i X3i
计量经济学虚拟变量模型
3
例如,性别可表现为男或女;人种可表 现为白种人和非白种人;宗教信仰可表 现为教徒和非教徒;政府的经济政策可 表现为改革开放前和改革开放后,如此 等等。
Hale Waihona Puke 计量经济学虚拟变量模型4
显然,这种不同的具体形式是无法直接引 入经济计量模型中去的。但由于这类变量 通常表现为品质、属性、种类的出现或者 未出现,所以我们可以根据质量变量的这 一特征将其数量化。
Y i1 D 1 i2 D 2 i3 X i u i (5.5)
显然模型(5.5)中,解释变量D1,D2和X之间 无完全的多重共线性。可以使用普通最小二乘 法估计式(5.5)的参数。
第五章 虚拟变量模型
在经济计量模型中除了有量的因素外 还有质的因素,质的因素包括被解释变量 为质的因素和解释变量为质的因素。如果 被解释变量为质的因素,主要是逻辑回归 要涉及的内容。
计量经济学虚拟变量模型
1
第一节 虚拟变量的概念与设定
一、虚拟变量的概念 在经济计量分析中, 经常会碰到所建模
型的被解释变量不仅受诸如收入、产量 、价格、 成本、需求、投资等数量变量
(5.4)
计量经济学虚拟变量模型
22
式(5.4)表明模型(5.3)即原模型(5.2)中有 完全的多重共线性,将导致最小二乘估计无 解。我们称该情景为掉入虚拟变量陷阱。所 以,在有截距项的情况下,如果一个质的因 素有多少个特征就引入多少个虚拟变量是行 不通的。
金融计量经济第五讲虚拟变量模型和Probit、Logit模型

• 括号内为t统计值。 • 显然,三季度和四季度与一季度差异并不明显,重 新回归,仅考虑二季度,有结果:
例子:佣金与销售额的关系:
• 模型:
Yi = α1 + β1 xi + β 2 ( xi − x* ) Di + ui 其中 : Yi是销售佣金, X i是销售额, X*是销售额基数值. 若X i > X * , 则Di = 1
• 样本回归函数: ˆ ˆ α +β x
ˆ Yi =
1
1 i
xi < x* xi ≥ x*
D1 = , 0, S < S1 , S ≥ S2 D2 = 0, S < S2
• 工资模型为: • I i = β 0 + β1[ S1 + (1 − D1i − D2i )(Si − S1 )]
+ β 2 [ D2i ( S 2 − S1 ) + D1i ( Si − S1 )] + β 3 D2i ( Si − S 2 ) + ui (5.7)
t t
一季度 ˆ β2 ˆ β3 二季度 三季度 四季度
ˆ ˆ ˆ ˆ y t = α + β xt + β 4
例题:美国制造业的利润—销售额行为 • 模型:利润t = α1 + α 2 D2t + α 3 D3t + α 4 D4t + β (销售)t + ut • 利用1965—1970年六年的季度数据,得结果:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 注:邹氏应是邹至庄。
例1:储蓄余额与国民收入的关系
• CXYE = -1878.817965 + 5.965038605*GMSR + 812.1046287*D1
• 1952—1977: • CXYE = -1066.71 + 5.965*GMSR • 1978—1990: • CXYE = -1878.82 + 5.965*GMSR
CXYE
GMSR
应用例题1:Hedonic住宅价格模型
• 也称特征价格模型。其核心认为住宅价格由若干 hedonic(可享受的)特征构成,包括房屋建筑 特征、区位特征、社区特征等。
• 该模型常用于计算住宅价格指数。 • 一般形式:
GMSR
虚拟变量用于斜率
• CXYE = -1217.425 + 5.209*GMSR + 1.13*(D1*GMSR)
• 1952—1977: • CXYE = -1217.425 + 6.339*GMSR • 1978—1990: • CXYE = -1217.425 + 5.209*GMSR
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利润t 1 2D2t 3D3t 4D4t (销售)t ut • 利用1965—1970年六年的季9D2t
217.8D3t
183.86D4t
0.0383(销售)t
(3.9) (2.07) (-0.445) (0.28) (3.33)
• 括号内为t统计值。
• 显然,三季度和四季度与一季度差异并不明显,重 新回归,仅考虑二季度,有结果:
利润 t
6541.66 1311.4D2t
0.0393(销售)t
(4.01) (2.7) (3.717)
• 4、引用虚拟变量处理“时间拐点”问题。
• 同样可以写成二个模型:
yˆi ˆ0 (ˆ ˆ1)x1i ˆk xki D 1
yˆi ˆ0 ˆ1x1i ˆk xki
D0
• 可考虑同时在截距和斜率引入虚拟变量:
yi 0 0Di (1Di 1)x1i k xki ui (5.5)
• 3、虚拟变量用于季节性因素分析。
二、虚拟变量的设置原则
• 引入虚拟变量一般取0和1。
• 对定性因素一般取级别数减1个虚拟变量。例 子1:性别因素,二个级别(男、女)取一个 虚拟变量,D=1表示男(女),D=0表示女 (男)。
• 例子2:季度因素,四个季度取3个变量。
1, 一季度
D1
0,
其它季度
1, 二季度
D2
0,
其它季度
1, 三季度
•
1, D1 0,
S1 S S2 S S1,S S2
,
• 工资模型为:
1 , D2 0,
S S2 S S2
• Ii 0 1[S1 (1 D1i D2i )(Si S1)]
2[D2i (S2 S1) D1i (Si S1)] 3D2i (Si S2 ) ui (5.7)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模型
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
Yi 1 1xi 2 (xi x* )Di ui
其中
:
Yi是销售佣金
,
X
是销售额
i
,
X*是销售额基数值
.
若X i X *,则Di 1
• 样本回归函数:
Yˆi
ˆ1 ˆ1xi ˆ1 ˆ2 x* (ˆ1 ˆ2 )xi
xi x* xi x*
附录:Chow检验(邹氏检验)
• Chow检验有二个内容,断点检验和预测检 验。和虚拟变量模型作用有相近之处的是 断点检验(Chow Breakpoint Test)。
•取
1, 当样本为第i季度的数据
Di 0, 其它季度的数据
, i 2,3,4
• 原模型若为 yt xt ut
• 则引入虚拟变量后的模型为:
yt xt 2D2t 3 D3t 4D4t ut (5.6)
• 回归模型可视为:
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
D2=1
S0
D1=1
S1
S2
• 作OLS得到参数估计值后,三个阶段的 报酬回归模型为:
Iˆi
ˆ0
ˆ 1
Si
,
Si S1
Iˆ i
ˆ0
ˆ 1
S1
ˆ2 (Si
S1),
S2 Si S1
Iˆ i
ˆ0
ˆ 1
S1
ˆ2 (S2
S1)
ˆ3 (Si
S2),
Si S2
例子:佣金与销售额的关系:
• 模型:
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
yi 0 D 1x1i k xki ui (5.1) • 对上式作OLS,得到参数估计值和回归模型:
yˆi ˆ0 ˆD ˆ1x1i ˆk xki (5.2)
• (5.2)相当于两个回归模型:
• 常见的情况:
• a. 若T0为两个时间段之间的某个拐点,虚拟变
量为: 1,
D 0,
t T0 tT 0
• b. 用虚拟变量表示某个特殊时期的影响;
1, D 0,
t T1,T2 t T1,T2
• 模型中虚拟变量可放在截距项或斜率处。
• 5、分阶段计酬问题。
• 若工作报酬与业务量挂钩,且不同业务量提成比例 不一样(递增),设S1、S2为二个指标临界点
yˆi ˆ0 ˆ ˆ1x1i ˆk xki D 1 yˆi ˆ0 ˆ1x1i ˆk xki D 0
• 2、在斜率处引入虚拟变量,改变斜率。
yi 0 (D 1)x1i k xki ui (5.3)
• 作OLS后得到参数估计值,回归模型为:
yˆi ˆ0 (ˆD ˆ1)x1i ˆk xki (5.4)