微波技术在各领域的应用

合集下载

微波技术在通信领域中的应用研究

微波技术在通信领域中的应用研究

微波技术在通信领域中的应用研究微波技术是一种在通信领域中广泛应用的高频电磁波技术。

它与低频电磁波相比,具有更高的频率和更短的波长,因此适用于高速数据传输、高清视频传输等高频通信场景。

本文将探讨微波技术在通信领域中的应用研究。

一、微波技术在通信领域中的基础应用微波技术最早应用于雷达系统中,用于测量距离和速度等物理量。

随着时代的发展,微波技术在通信领域中的应用也日趋广泛。

目前,微波技术主要在以下几个方面得到了广泛的应用:1. 无线通信系统无线通信系统是微波技术最为广泛的应用领域之一。

微波信号可以通过无线电波传输,因此可以实现无线通信。

无线通信系统主要包括移动通信、卫星通信和无线局域网等。

在移动通信方面,微波技术主要应用于3G、4G和5G等无线通信标准中。

无线通信系统通过微波信号将语音、数据和视频等信息传输到用户手机中,实现无线通信功能。

在卫星通信方面,微波技术用于卫星信号的传输。

卫星通信可以实现全球覆盖,因此在军事、民用和科研等领域得到了广泛的应用。

在无线局域网方面,微波技术主要应用于WiFi技术中。

WiFi技术可以实现在有线网络不便的地方进行无线网络接入,因此在家庭、办公室和公共场所等领域得到了广泛的应用。

2. 高速数据传输随着信息时代的到来,高速数据传输成为了一个重要的应用领域。

微波技术的高频特性可以实现高速数据传输,因此在高速数据传输领域得到了广泛的应用。

高速数据传输主要包括光纤通信和微波通信两种方式。

在光纤通信方面,微波技术主要用于光纤通信的放大器和光纤通信系统的测试等方面。

在微波通信方面,微波技术主要用于无线局域网和蓝牙等短距离高速数据传输领域。

3. 高清视频传输随着高清视频技术的发展,高清视频传输成为了一个重要的应用领域。

微波技术的高频特性可以实现高清视频传输,因此在高清视频传输领域得到了广泛的应用。

高清视频传输主要包括数字电视、高清视频监控和高清视频会议等方面。

微波技术可以实现数字电视的高清信号传输、高清视频监控的远程监控和高清视频会议的高速传输等功能。

微波的在生活中应用及原理

微波的在生活中应用及原理

微波的在生活中应用及原理1. 应用领域广泛•烹饪领域:微波炉是最常见的微波应用之一。

通过向食物中施加微波辐射,可以迅速加热食物,节省烹饪时间。

此外,微波炉还可以解冻食物,蒸汽蔬菜和煮熟坚果。

•通信领域:微波技术在通信领域得到广泛应用。

微波信号能够在大气层的某些频率范围内进行传输,被用于卫星通信、无线通信、卫星广播等领域。

•医疗领域:医学领域使用微波技术进行诊断和治疗。

例如,通过使用微波成像技术,可以检测和诊断肿瘤。

此外,微波还用于物理治疗,例如通过热疗治疗肿瘤。

•雷达技术:雷达是一种使用微波辐射并接收其反射信号来探测目标的技术。

雷达的应用范围广泛,包括气象预报、空中和海上监视、导航系统等。

2. 微波的原理微波是一种电磁波,其频率范围在300 MHz到300 GHz之间,波长约为1 mm 到1 m之间。

微波具有以下特点:•高频率:相比于无线电波、可见光和红外线等其他类型的电磁波,微波波长较短,频率较高。

这种高频率使得微波在传输和处理信息时更加高效。

•穿透力强:微波可以穿透许多以及不导电材料,例如塑料、玻璃、陶瓷等。

这使得微波在烹饪和通信领域的应用更为方便和广泛。

•与水分子相互作用:微波与水分子之间存在相互作用。

水分子具有极性,在外加微波辐射下,水分子会不断地定向旋转。

这种运动导致了水分子之间的摩擦和碰撞,转化为热能。

这正是微波炉加热食物的原理。

3. 微波炉的工作原理微波炉利用微波与水分子相互作用的原理来加热食物。

其工作原理如下:1.微波炉内部有一个称为磁控管的装置,该装置产生微波的电磁场。

2.微波在磁控管中产生,并通过一个称为波导的管道传输到微波炉的内腔。

3.微波炉的内腔由金属材料制成,可以反射和保持微波。

4.当微波通过食物时,微波与水分子相互作用,导致水分子的定向旋转和摩擦。

这种运动将能量转化为热能,使食物加热。

5.微波在金属内壁上反射,确保微波被完全吸收和利用,而不会逃离微波炉。

6.微波炉内部还配备了一个旋转的托盘,以确保食物均匀加热。

微波提取技术的应用

微波提取技术的应用

微波提取技术的应用微波提取技术是一种应用广泛的分析技术,它在农业、食品、环境、医药等领域具有重要的应用价值。

本文将从这几个方面介绍微波提取技术的应用。

一、农业领域微波提取技术在农业领域的应用主要集中在土壤和植物样品的分析上。

传统的土壤样品处理方法通常需要较长的时间和复杂的操作步骤,而且易受到环境条件的影响。

微波提取技术的出现改变了这种情况,可以在短时间内高效地提取土壤中的有机物、无机物和微量元素等,提高了分析的速度和准确性。

同时,微波提取技术还可以应用于植物样品的分析,例如提取植物中的天然产物、农药残留等。

二、食品领域微波提取技术在食品领域的应用主要体现在食品中有害物质的检测和分析上。

食品中常常存在农药残留、重金属等有害物质,传统的提取方法需要使用有机溶剂,操作复杂且有一定的毒性。

而微波提取技术可以利用微波辐射的热效应和溶剂的选择性溶解作用,高效地提取食品中的有害物质。

同时,微波提取技术还可以应用于食品中营养成分的分析,例如提取食品中的维生素、脂肪等。

三、环境领域微波提取技术在环境领域的应用主要包括水样和大气颗粒物的分析。

传统的水样处理方法通常需要大量的有机溶剂和时间,而且提取效果不稳定。

微波提取技术可以快速、高效地提取水样中的有机物、重金属和微量元素等,提高了分析的准确性和稳定性。

同时,微波提取技术还可以应用于大气颗粒物的分析,例如提取颗粒物中的有机物、重金属等。

四、医药领域微波提取技术在医药领域的应用主要体现在药物成分的分析和药物残留的检测上。

传统的提取方法通常需要大量的有机溶剂和时间,而且操作复杂且有一定的毒性。

微波提取技术可以利用微波辐射的热效应和溶剂的选择性溶解作用,高效地提取药物成分和药物残留物。

同时,微波提取技术还可以应用于药物中活性成分的提取和分析,例如提取中草药中的有效成分。

微波提取技术在农业、食品、环境和医药等领域都有着重要的应用价值。

它可以提高分析速度和准确性,简化操作步骤,减少有机溶剂的使用量,对于提高分析效率和保护环境具有积极的意义。

微波技术的应用领域

微波技术的应用领域

微波技术的应用领域微波技术是一种利用微波电磁波进行通信、雷达、加热等应用的技术。

它已经广泛应用于许多领域,为我们的生活带来了诸多便利和创新。

本文将从通信、雷达、加热和其它应用四个方面介绍微波技术的应用领域。

一、通信领域微波通信是目前主要的无线通信方式之一。

微波技术在通信领域的应用主要包括卫星通信、微波通信塔和微波通信设备。

卫星通信利用微波电磁波实现长距离通信,使得我们可以在世界各地进行语音通话、视频会议、互联网接入等。

微波通信塔是无线通信的重要基础设施,它通过微波电磁波进行信号传输,实现了手机、电视、广播等服务的覆盖。

微波通信设备则是实现微波通信的关键组件,包括微波天线、微波放大器、微波滤波器等,它们能够将微波电磁波转化为电信号或者将电信号转化为微波电磁波,实现信号的传输和处理。

二、雷达领域雷达是利用微波电磁波进行探测和测量的技术。

雷达在军事、航空、气象等领域有广泛的应用。

在军事方面,雷达可以用于目标探测、目标跟踪、导弹防御等,提高军事作战的能力。

在航空领域,雷达可以用于飞机导航、飞行安全等,提高飞行的效率和安全性。

在气象领域,雷达可以用于天气预报、降雨量测量等,为我们提供准确的天气信息。

三、加热领域微波加热是利用微波电磁波对物体进行加热的技术。

微波加热的应用非常广泛,包括食品加热、材料加热、医疗治疗等。

在食品加热方面,微波炉是最常见的应用,它利用微波电磁波快速加热食物,使得我们可以方便快捷地进行烹饪。

在材料加热方面,微波加热可以用于塑料加热成型、木材干燥、橡胶硫化等,提高生产效率。

在医疗治疗方面,微波加热可以用于肿瘤治疗、物理疗法等,对一些疾病有较好的疗效。

四、其他应用领域除了通信、雷达和加热领域,微波技术还有许多其他的应用。

例如,微波传感器可以用于测量湿度、温度、压力等物理量,广泛应用于工业控制、环境监测等领域。

微波干燥可以用于食品、药品等的干燥加工,提高产品质量。

微波消毒可以用于医疗器械的消毒,保证医疗过程的安全性。

微波技术的研究和应用

微波技术的研究和应用

微波技术的研究和应用近年来,随着科技的发展,微波技术也越来越得到了人们的关注和重视。

除了在通讯、导航和雷达等方面得到广泛应用外,微波技术还有很多其他领域的应用,比如物联网、生物医学、食品加工等。

本文将从不同角度探讨微波技术的研究和应用。

一、微波技术在通讯领域的应用微波技术在通讯领域的应用十分广泛,其中最为常见的就是在手机通讯和卫星通讯中使用。

由于微波通讯信号的传输速度快,能够传输大量信息,因此被广泛应用于无线通信领域。

相较于传统的有线通讯,微波通讯更加便捷、快速,使通讯变得更加高效和方便。

此外,微波技术还应用于医疗领域。

利用微波检测技术可以检测人体微波信号,从而获得人体的某些信息,比如人体温度、呼吸和心跳等生理信号。

这种检测技术可以对医学诊断和治疗提供帮助。

二、微波技术在雷达领域的应用雷达是微波技术的另一个重要应用领域。

雷达依靠微波信号来探测目标并获得相关信息。

比如在航空领域,雷达可以探测飞机的位置、速度、高度等信息,从而确保飞行的安全。

在军事领域,雷达可以探测敌方目标,进行情报搜集。

另外,雷达还应用于气象预报。

利用雷达探测技术,可以对天气进行精确预测和监测,从而提供有用的气象信息。

三、微波技术在食品加工领域的应用微波在食品加工领域的应用也非常广泛。

微波加热技术可以使食品迅速加热,从而更加快捷和高效。

此外,由于微波加热温度较低,不会破坏食品的营养成分和口感,因此越来越多的食品加工企业选择采用微波加热技术进行食品加工。

微波杀菌技术也被广泛应用于食品加工领域。

在食品加工过程中,使用微波杀菌技术可以彻底杀灭食品中的细菌和病毒,避免食品污染,从而保证食品的安全性。

四、微波技术在物联网领域的应用随着物联网技术的发展,微波技术在物联网领域的应用也越来越广泛。

物联网中采用了大量的传感器设备,而这些传感器设备一般需要通过无线方式进行通讯。

由于微波通讯信号传输速度快、传输距离远,因此在物联网中的应用非常广泛。

五、微波技术在生物医学领域的应用微波技术在生物医学领域的应用也越来越受到重视。

微波辐射技术的应用前景

微波辐射技术的应用前景

微波辐射技术的应用前景近年来,随着人类经济、科学技术的不断发展壮大,微波辐射技术也日益成为研究热点。

微波辐射技术是一种利用微波辐射作用物体、改善、促进或者控制物体某些物理化学性质的技术,具有广泛的应用前景。

本文将从农业、医疗、通讯等多个角度,探讨微波辐射技术的应用前景。

一、农业领域微波辐射技术在农业领域的应用越来越受到人们的关注。

它可以用来灭菌杀虫、加热杀菌、提高种子发芽率、加快饲料干燥速度等。

比如,在肉禽养殖过程中,加热能够使食物中的菌群迅速被灭活,从而解决食品卫生问题。

同时,微波烘干技术也逐渐被应用于农产品加工过程中,它不仅能够降低加工成本,减少生老病死人员的存在,还能够提高农产品加工的速度与质量。

二、医疗领域微波辐射技术在医疗领域的应用也日渐普及。

利用微波辐射技术实现无创检测、生物激发、医疗治疗等功能,已经成为医学界的重要研究课题。

以医用微波消融技术为例,它利用微波传导性能,快速将癌细胞组织变为高温状态,达到治疗的目的。

而在医学影像领域,微波成像技术也已经逐渐成为一个新的研究方向,它可以帮助医生更加精准地检查病患症状,避免对病患造成的任何伤害。

三、通讯领域微波技术是通讯技术中的重要组成部分,它被广泛用于无线通讯、移动通讯、雷达、卫星通信等领域。

特别是在5G通信领域,微波技术的应用更是被重点关注。

现有的4G网络虽然已经覆盖大多数地区,但是随着多媒体通讯的普及以及人类日益增长的数据传输需求,4G网络已经不能满足目前的需求。

微波技术不仅可以提高网络传输速率,还能够支持大量设备同时连接,满足大数据时代的通讯需求。

综上所述,微波辐射技术不仅具有广泛的应用前景,而且其发展速度也在不断加快。

从农业、医疗、通讯等多个领域来看,微波辐射技术所产生的美好效果已经开始显现。

相信在不久的将来,微波辐射技术的应用前景必将更为广阔,发挥着更为重要的作用。

微波技术的应用原理与应用领域

微波技术的应用原理与应用领域

微波技术的应用原理与应用领域简介微波技术是指利用微波的特殊性质和特定的工作频率来实现各种应用的一种技术。

微波是指频率范围介于0.3GHz到300GHz之间的电磁波,其波长范围在1厘米到1毫米之间。

微波技术在通信、雷达、无线电频谱、医疗设备等领域都有广泛的应用。

应用原理微波技术的应用原理主要包括以下几个方面:1.电磁波传输特性:微波在传输过程中具有直线传播、穿透力强等特性。

微波可以通过大气、云层、建筑物等障碍物传播,因此在通信中得到广泛应用。

2.共振吸收特性:许多物质在特定的频率下对微波具有较强的吸收能力,这种现象被称为共振吸收。

通过利用物质对微波的共振吸收特性,可以实现微波加热、物质检测等应用。

3.多径传播特性:微波在传输中常常会经历多个路径的传播,这种现象被称为多径传播。

通过对多径传播的研究和利用,可以提高通信中的传输质量和可靠性。

4.功率与频率关系:微波功率的传输和控制与频率有密切的关系。

不同频率的微波在功率传输上有不同的特性,因此在应用中需要根据具体需求选择合适的频率。

应用领域微波技术具有广泛的应用领域,以下列举几个常见的应用领域:通信微波技术在通信领域有着重要的应用。

通过利用微波的直线传播特性,可以实现远距离的通信。

微波通信设备通过天线传输微波信号,实现无线通信。

微波通信设备通常用于长距离通信、卫星通信等场合。

雷达雷达是利用微波技术进行探测和测量的装置。

微波雷达通过发射微波信号并接收其回波来实现目标检测和距离测量。

微波雷达具有高精度、强干扰抗性等优点,被广泛应用于军事、气象、航空等领域。

无线电频谱微波技术在无线电频谱管理中发挥着重要的作用。

通过合理利用微波频段的特性,可以实现无线电频谱的高效利用和管理。

微波技术对无线电频谱的分配和规划起到了重要的指导作用。

医疗设备微波技术在医疗设备中有着广泛的应用。

例如,微波加热被广泛应用于肿瘤治疗,通过利用细胞对微波的共振吸收特性,可以实现对肿瘤组织的精确治疗。

微波技术发展与应用案例分享

微波技术发展与应用案例分享

微波技术发展与应用案例分享微波技术是指在微波频段(1-100 GHz)范围内应用的一种电磁波技术。

微波技术的发展与应用非常广泛,以下是一些微波技术的发展与应用案例分享:1. 无线通信:微波技术在移动通信、卫星通信、雷达通信等领域有着广泛的应用。

通过微波技术,可以实现远距离、高速率、高质量的无线通信。

例如,5G网络的通信频段包括了微波频段,可以通过微波技术实现更高速率的数据传输和更多用户的同时连接。

2. 雷达:雷达是通过发射微波信号并接收回波信号来探测目标的一种技术。

微波技术在雷达中扮演着非常重要的角色,可以实现远距离、高精度的目标探测和跟踪。

雷达广泛应用于气象预测、航空航天、海洋监测、军事等领域。

3. 医疗诊断:微波技术在医疗诊断中可以用于成像、治疗和监测等方面。

例如,微波成像技术可以用来检测乳腺癌和其他肿瘤,通过测量微波在生物体内的传播特性来得到影像信息。

微波治疗技术则可以用于疾病的热疗、肿瘤的消融等。

4. 无线充电:微波技术可以用于无线充电,通过将微波信号传输到接收设备,实现电能的传输。

无线充电技术可以方便地给电动汽车、电子设备等充电,减少使用插座的依赖。

5. 食品加热:微波技术在食品加热中有着广泛的应用。

微波加热可以快速均匀地将能量传递到食物中,做到节能、高效、保留营养等效果。

微波炉就是一个常见的微波加热设备。

6. 太阳能利用:微波技术可以实现太阳能的聚焦和转换。

通过将太阳能收集器中的太阳能转化成微波信号,然后再通过微波天线传输到接收设备,实现太阳能的利用。

这种技术可以在没有直接太阳照射的地方使用太阳能。

7. 安全检测:微波技术可以用于安全检测,例如人体安全检测、食品质量检测等。

微波传感器可以通过检测微波与物体之间的干涉和反射来实现对目标的检测,可以应用于人体的行人检测、非接触式体温检测、金属探测等。

这些案例只是微波技术发展与应用领域的一部分,随着科技的不断进步,微波技术的应用也将不断拓展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波技术在各领域的应用
发布来源:三乐微波发布时间:2014/5/30 8:57:00
一、微波原理
微波是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波和短波相比来说,要“微小”得多,所以称之为“微波”。

微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断的得到发展和应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。

20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。

战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。

在1943年终于制造除了第一台微波雷达,工作波长在10cm。

在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。

第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究和利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。

此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为
止,家用微波炉、工业微波应用等系列产品微波产品接近或达到世界先进水平。

微波通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收;对于水和食物等就会吸收微波而使自身发热;而对金属类东西,则会反射微波。

从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:
1 穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。

微波透入介质时,由于微波能与介质发生一定的相互作用,以微波频率2450MHz,使介质的分子每秒产生24亿五千万次的震动,介质的分子间互相产生摩擦,引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。

2 选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。

介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。

由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。

物质不同,产生的热效果也不同。

水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。

而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。

因此,对于食品来说,含水量的多少对微波加热效果影响很大。

3 热惯性小微波对介质材料是瞬时加热升温,升温速度快。

另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。

4 似光性微波波长非常小,当微波照射到某些物体上时,将产生显著的反射
和折射,就和光线的反、折射一样。

同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性。

5 穿透性微波照射于介质物体时,能深入该物体内部的特性称为穿透性。

例如微波是射频波谱中惟一能穿透电离层的电磁波(光波除外)。

6 信息性微波波段的信息容量是非常巨大的,即使是很小的相对带宽,其可用的频带也是很宽的,可达数百甚至上千兆赫。

7 非电离性微波的量子能量不够大,因而不会改变物质分子的内部结构或破坏其分子的化学键,所以微波和物体之间的作用是非电离的。

二、微波技术的工业应用
现代微波设备就是利用微波的这些特性,运用技术手段在各行业进行应用和发展,目前我公司目前主要应用有:
1 食品、保健品工业利用微波可对食品、保健品进行灭菌、脱水、烘干、膨化、调味、脱腥、解冻、催陈和保鲜处理。

目前已用于奶粉、奶酪、壮骨粉、洋参丸、豆粉、月饼、糕点、方便面、牛肉干、肉脯、肉条、肉松、鱼干片、鱼松、贝类、盐水鸭、解冻鱼肉禽蛋、酱菜、土豆片、腰果、花生、瓜子、大豆、白酒、黄酒、啤酒、牛奶、口服液、中药材等的生产中。

2 木材加工采用大功率微波干燥机对2-10公分厚的木板进行烘干,干燥速度快、木材不开裂、变形小、同时可杀死木材内部的卵虫和幼虫,中高档家具、地板、包装材料用途木料的处理最为合适。

微波也可对竹木复合板和拼板交接的固化处理也很理想。

3 杀虫灭菌应用微波加热技术能在较低的湿度下灭菌杀虫,若用微波处理食品和物料,在50-80度时就能起到杀虫灭菌作用。

目前广泛应用到大米、谷物、
豆类、烟叶处理、竹材、木料、纸张、食品、医药等行业等。

4 橡胶工业微波技术应用到橡胶工业中的橡胶硫化工艺中,与常规加热保温相结合,大大提高橡胶硫化时间和效率。

目前在河北衡水地区、山东地区广泛使用。

5 陶瓷工业微波高温可应用于陶瓷工业,将传统加热和微波加热方法相结合使用,可大大缩短陶瓷的干燥时间,同时不影响陶瓷烧制的成品率。

6 煤炭干燥煤炭开采后通常含水率较高(35%左右),如果采用常规烘干方法进行干燥,速度慢、效率低,干燥不彻底,采用微波法干燥,可以使煤炭内外同时升温,是水分蒸发,实现脱水干燥,效率得到大大提高。

7 微波等离子技术半导体生产工艺中已经采用微波等离子体技术,可进行蚀刻、溅射、气相沉积、氧化硅片;可用于金属、合金、非金属的表面处理;可用于陶瓷的高温烧结;可用于等离子体光谱分析,可检测十几种元素,另外还用于分解有毒化合物。

8 微波医疗垃圾处理技术利用微波技术在无氧或缺氧状态下,使微波承载体迅速升至高温,使得医疗垃圾在极短时间内迅速处于高温状态,直接灰化,极大降低了燃烧过程中有毒气体的产生。

烟气中气体再采用微波等离子体火炬进行高温裂解,整个处理过程和处理环境实现全封闭无害化处理。

此项技术的应用优于常规处理方法,开拓了微波应用的新领域。

9 污水处理利用微波非热效应和热效应选择吸波的“敏化剂”把微波能传给水中的污染物而诱发化学反应,通过物理及化学作用对水中的污染物进行降解、转化、加速流体中固、液分离,从而实现污水净化的目的,是水处理领域中一场崭新的革命。

10 微波制碳利用微波技术对竹子进行高温裂解,制作竹炭,大大提高生产效率,同时还能提取到竹醋液,竹焦油等产品,具有较高的经济价值,优于传统窑炉方法制作竹炭,目前正在大力开始推广使用。

相关文档
最新文档